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ON THE EXISTENCE OF LIMIT CYCLES OF THE EQUATION
x'=h(y)—F(x), y=—g(x) *

By KE WANG

1. Introduction.

Owing to their theoretical and practical importance, the Liénard equations
have attracted much attention in recent years, in particular, for theory of
periodic solutions, see [1-77.

In this paper, we consider the existence of limit cycles of the system

{ x'=h(y)—F(x)
y'=—gx),

(1)

which is little more general than the Liénard equation. We assume that F, G,
h: R—R are continuous functions and satisfy the property of uniqueness for
the solutions to the Cauchy problems associated to the system (1), and xg(x)>0
for every x+0, ya(y)>0 for every y+0. Without loss of generality, we also
assume F(0)=0. We obtained some new results. The theorems of this paper
generalized some results in [5] and [7].

Let Y+ Y-, C* C- denote the sets {(x, y): y=0, x=0}, {(x, y): y<0, x=0},
{(x, ¥): i(y)=F(x), x>0} and {(x, y): h(y)=F(x), x<0}, respectively.

2. Technical Preliminaries.
LEMMA 1. If we assume
(i) lim h(y)=+co, and lim h(y)=—oo,
y-+oo Y-

then the sufficient and necessary condition that there exists a point N&Y -~ such
that the negative half-trajectory Ly passing through point N does not intersect
C*is

(i), there exists a continuously differentiable function k,(x) defined on (0, o)
with positive derivative such that

g(x)
ki(x)

F(x)= h(k,(x)+ for x>0.
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Proof. 1If the condition (ii), holds, let us consider the system

5 =h(y)— (i) +-522)

ki(x) (2)

y'=—g(x).

It is easy to see that y=£k,(x) is a solution of (2). From the comparison the-
orem, it follows that the solution of (1) passing through the point N=(0, £,(0))
is under the curve y==Fk,(x), so it will not cross C*.

If there exists a point N=Y - such that Ly does not intersect C*. We can
suppose the equation of Ly is y=£k,(x). It is easy to see that k,(x) is continu-
ously differentiable and its derivative is positive. We have

F=h(k)+-£2

Thus the Lemma is proved.

By Lemma 1, we can give concrete conditions on A(y), F(x) and g(x), so
long as a concrete function £k,(x) is given. For example, if we set k,(x)=

CG(x)—M, where G(x):ﬁg(s)ds, C, M>0, x>0, then we can prove the follow-

ing corollary.

COROLLARY 1. Suppose that there exist constants C, M>0 such that
FZh(CC~Mytg  for x20,
then there exists a point NEY - such that Ly does not cross C*.

LEMMA 2. If condition (i) is satisfied, and if we assume

(i), h(y) is strictly increasing, and there exists a continuous non-increasing
function ky(x) such that

F(x)> h(—ki(x))

and
e g(s)ds < <
Fe—h—ky = Tor =0
where M is a positive constant, then there exists a point NEY - such that LYy
does not cross C*.

kl<x>+§

Proof. Let yy=M+£k,0). Since F(x)>h(—ki(x)), so k£,(0)>0, and y,>0.
Set point N=(0, —y,). Suppose that the equation of the section of the curve
Ly under C*is y=y(x). If Ly intersects C*, because on C*F(x)=h(y) and
Y(0)=—y,<—k,(0)<F(0)=0, so there must exist ¥<(0, o) such that y(%)=
—ky(%), and y(x)<—Fk(x), 0<x<Zx. This implies that
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z g(s)ds

—k1<z>=y<f>=—y°+§om ‘

Thus we have,

- (T gds
0=—yo+ki(E)+ S F(s)—h(y(s))

~ z g(s)ds
<—yetb O+ m B
S—ytM
=—£(0).

This is a contradiction, and the Lemma is proved.

Remark. 1f h(y) is strictly increasing, then the condition (ii), in Lemma 2
is necessary as well.

By Lemma 2, we can give concrete conditions on A(y), F(x) and g(x), sc
long as a concrete function £k,(x) is given. For example, if we set k,(x)=
—h(—C), where C is a positive constant, then we can prove the following
corollary.

COROLLARY 2. If there exist constants M, C>0 such that

F(x)+C>0
and

. g(s)
So_——F(S)—i—C ds<M  for x=0,

then there exists a point NEY~ such that Ly does not intersect C*.

Suppose that there exists a strictly increasing function A,(y) which satisfies
the following condition

h(y»)=h(y) for y=y,=0. (3)
Let e(x)=h7'(F(x)), and
e(x) for e(x)zy:
et(x)=
Y1 for e(x)<y;.
Let E*+ denote the set {(x, y): x=0, y>e*(x)}.
LEMMA 3. C-NE*=@.
Proof. Let point A(x, y)E*. If F(x)=hy)), since y>e*(x)=hi (F(x))

=¥1, S0 hy(y)>F(x) and hence A(y)=h,(y)>F(x), thus AEC-.
If F(x)<hi(y,), then hi(F(x))<y: and e*(x)=y,, since y>yi, $0 A(y)=hi(y)
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=h(y,)>F(x), and AEC-.
Lemma 4. If lir:l h(y)=4oco, lim F(x)=—a, where a>0 is a constant, then
Y->+oo xI->—0
there exist constants b,, by, bs>0 such that

E{(x, y): x<—b;, y>—b}NC-=7@,
E){(x, ):0=2x=—by, yZb}NC=0Q.

Proof. There exist numbers b,, b,>0 such that F(x)<—a, for x<—b, and
h(y)>—a for y>—b,. Let a point Ax, y)EE{(x, y): x<—by, y>—b,},
then A(y,)>—a>F(x,), so A,(xi, y1)EC".

There exists a number b,>0 such that

h(y)> max F(x) for y>b,.
02zrz-b;
If the point Ay(x,, y,)€E,, then h(y2)>0=mgxb F(x)=F(x,), so A,€C".
rz-01

LEMMA 5. If the point NS E*, then the positive half-trajectory L} passing
through N must intersect Y.

Proof. From Lemma 3 it is clear that E* is above C- and that E* is a
connected set. Let the equation of L} on the left plane is (x(¢), ¥(¢)). Since
() strictly increases at ¢ increases, and x(¢) is strictly increases when L} is
in E*, we assert that L} will not escape from the set {(x, 3): x¥y<x <0, y¥< v},
and that L} must reach the set E*{(x, y): xy<x =0, y*<y, where y*=$13££“e(x)}.

Onece L} enters E*, it will not leave E* unless it cross Y*. Because in E*
x(¢) and y(¢) are strictly increasing, so if L} does not cross Y*, we can prove
that x(t)—a*<0 and y(t)—+oo as t—+oo. But from the given conditions we
have

dy _ —g)

dx — h(y)—F(x)

Since xxy<x<0 along L}, we have

. _lgla®)]
cli{& = lim A(y)
Ystoo

This is a contradiction.

LEMMA 6. Under condition (i), if

(iii), there exists a function hy(y) satisfying (3) and there exist a number
x0=0 and a continuously differentiable function k,(x) with negative derivative such
that

M)+ EEL2F G for x<xs0,
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lim ko(x)>y5,  lim (Au(Ro(x) = F(2)>0, ky(x0)<0.

Then the positive half-trajectory L% passing through N, —y,), 0>—y,=ky(x,),
must cross C~ and next cross Y.

Proof. If L% does not cross the line x=x,, it must cross C~ and Y*. If
% cross the line x=x, at the point P, then yp>k,(x,). It is easy to see that
y=k,(x) is a solution of the system

- 8(x)
2 =h0)— (M) +555)

y'=—g(x).

From the comparison theorem, we can prove that L} must be located above
the curve y==~k,(x) for x<x, Since

Lim (i) —F(x)>0,

% must enter in E* when ¢ is sufficiently large. By Lemma 5, we can prove
this Lemma.

By Lemma 6, we can give concrete conditions on A(y), F(x) and g(x), so
long as concrete functions k,(x) and h,(y) are given. For example, if we set
hy(y)=y/2 and ky(x)=CG(x)—M for x<0 with M>0 and C=—1/h(—M), we
can prove the following corollary.

COROLLARY 3. If h(y)=y/A, y=20, G(—)=+co and there exists a number
M>0 such that

F(x)<h( h(G<"> —M) h—M) for x=0,
G(x)
xll m M—M—ZF(JC))>M,

then the positive half-trajectory L} passing through N(O, x,), 0>v,>—M, must
cross C~ and Y*.

LEMMA _l If
(ili)y, lim F(x)=—a<0, where a>0 is a constant and liin h(y)=+o0, then
RS PES

the positive half-trajectory LY passing through the point N(O, y,), —b=<,<0,
must intersect Y+, where b=——sg§>{h(y)=—a}.
Yy

Proof. From Lemma 4, there exist sets

El{(xy 3’): x<_b1’ y>—b2}y
EZ{(x’ y): _bl§x<01 y>b3} »

and
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such that (E,\UE,)NC-=@. It is easy to see from the proof of Lemma 4 that
—by>—b. % will not cross the line y=—b, and x=—b,. If L} does not
enter in E, it must cross Y*. If L} enters in E,, it will not escape from E,
before it cross Y*, and from Lemma 5, it must cross Y*.

LEMMA 8. Suppose that the condition (i) holds, and one of the conditions
(ii)a and (ii)p holds. If

(iv) [im (G(x)+F(x)=+-0,

then the positive half-trajectory L% passing through NEY* must cross C* and
Y-.

Proof. Suppose condition (i) and (ii), hold. It follows from (ii), that
F(x)=zA, A= 2i?f(o)h(y). Let point N,=(0, £,(0)). Since Ly, is located above
Yaky

the line y=~#,(0) and under the curve y=£k,(x) for x>0, so L% must located
under the line y=yy and above the line y=~,(0) before it escape from the
right half plane.

Let the equation of L} be (x(¢), () with x(0)=0, y(O)=yy. If JET&F(’C)
=+oc0, then there exists a number x*>0 such that

F(x*)> max h(y).
ky(O)sysyy

Thus, L% must be located on the left of the line x=x*, because x'({)=
h(y(@t)—F(x(t)). If L% does not leave the region R:0<x<x* k0)<y<yw,
there must exist a singular point of (1) and this is impossible, so L} must cross
C* and Y~ to leave the region R.

If [im F(x)<4oo, then G(4+o0)=+c. Let us consider the equation

{ x'=h(y)—A,
y'=—g(x).

Let L* denote the positive half-trajectory of (4) passing through the point N,
and let (x*(f), y*(t)) be the solution of L*. By the comparison theorem, it is
easy to see that L} is located on the left of L*. If L* crosses C* and Y-,
then so does L}. If L* does not cross Y- and x*(¢) is bounded for x>0, then
% would stay in the region R*:0=x<x**, £y(0)<y<yy, where x**>0is a
upper bound of x*(), which implies that (1) has singular points in R*. This
is impossible.
If L* does not cross Y~ and x*(¢) is unbounded for x>0, then there are
points P, k=1, 2, ---, in L* such that xp,—+oco. Since

(4)

dy _ —gx)
dx — h—4 >0
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dy —g(x)

=z < *

dx = max h(y)+A defb*g(x), x>0,
kj(OOsSYysy N

and it follows that
d

yN—yp,,=SiP —d—%dxg—b*G(xpk)—»+00, as k-0,
k

This is a contradiction.
If the condition (i) and (ii), hold, the proof is similar.

3. The Main Results.

THEOREM 1. Suppose that conditions (i), (iv), one of (ii)a, (ii), and one of
(iii)a, (iii), hold. If

(v) xF(x)<0, for 0<|x|«1;

(Vi) By(x0)<k,(0) when condition (iii), holds, or ky(x.)<<—b when condition
(iii), holds; then (1) has at least one limit cycle.

Proof. The method of proof is to construct Poincare-Bendixson annular
region. Consider V(x, y)=G(x)+H(y), where H(y)=S:h(s)ds. It is obvious

that V(x, y) is definite positive in a sufficiently small neighberhood of (0, 0),

and we have
Vir(x, y)=—g(x)F(x)>0.

Thus, for sufficiently small ¢, the trajectory of (1) starting from the point on
closed curve S,: V(x, y)=c go out of the interior region of S, at ¢ increases.
So we can take S, as the interior boundary.

Next, let us construct the exterior boundary. Take point A=(0, ky(x,)).
From Lemma 1, 2, it follows that L; does not cross C* and Y*, and L} must
cross C-, and then cross Y+ at point B. It is clear that yz>0. By Lemma 6,

% must cross C*, and then cross Y~ at point C. According to the uniqueness
of trajectory of (1), we have y,>y,. We can take the closed curve @U—Cﬁ
as the exterior boundary. The theorem is proved.

THEOREM 2. If
1°. xg(x)>0, x#0, yh(y)>0, y#0, xF(x)<0 for 0<]x|<K1;

2, F(x);mcc(x)—M)Jrci for x<xe<0 and x=0, C, M>0;
. h(y) _1 N ; _ .
3. S22, y#0, 20, Gl—e)=+eo, lim (CCx)—F(x)>M;

4°. EJG(’CHF(X»:-‘_OO ;



LIMIT CYCLES 105

then (1) has at least one limit cycle.

This theorem follows from Corollary 1, 2 and Theorem 1 immediately.
Suppose the strictly increasing function h,(y) satisfies the condition

h(y)=h(y) for 0=y,Zy. (5)

Let the function y=Q,(x) be the inverse function of
x=a"S:h2(s)ds, where a>0 is a parameter.

It is easy to see that

(x) 1
4" ho Qo G(x)=—7% = . (6)
S0uG)  HEED
LEMMA 9. If hi(y) satisfies the condition (5), and
F(x)z(1+a Hh(QG(x))  for x=x,20, (7)

then there exists a pont NEY~ such that the negative half-trajectory Ly of (1)
passing through N does not intersect C*.

Proof. From (6) (7) we have
F(x)Z hlQG(x)+a " hy(QxG(x)))

= h QUG+ — B (8)
Zx QAG(x))

Since lim h(y)=-o0, s0 lim hy(y)=-4oco. There exists a number M>0 such
—400 Y-+oo
that !
hy(y)= max h(y) for y=M.
0sysy,

Now we will prove
ho(Q:(G(x))Z H(QoG(x))—M). (9)

If QiG(x))—M=0, then hy(Qy(G(x))>0=2AQ(G(x)—M). If QAG(x)—M
=y, then
ho(Q:(G(x))Z ha(Qo(G(x))— M) Z h(QA(G(x))—M).

If 0<Qu(G(x))—M <y:, M<QG(x)<M+y,,
ho(Qo(G(x))> hz(M)zoxsr;a;glh(y)z h(Q«G(x)—M).

Thus, (9) holds. From (8) and (9) we have
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F)2 h(QuG) M)+ ——BF
S (@G —M)

By Lemma 1 we can compleat the proof.

COROLLARY 4. If condition (i) holds and there exist positive constants a,,
Bi, x1, ¥1 such that

ry)Sa,yfr  for y=9,>0,

F(x)=a,GFVO+EO(x)  for x=x,>0,
where

a1=<1+191>(1:§f9 L g,

then there exists a point NEY~ such that the negative half-trajectory Ly does
not intersect C*.

Proof. Taking hy(y)=a;y?, a:ﬂi, it is easy to verify that
1

Qz(x):.( 1+ﬂ1 )1/(1+ﬂ1)a1_1/(1+ﬁ1)x1/(1+ﬁ1) ,

B:

and

(1+a)hQuGxN)=(1+ B I;Iﬁ L) g uaspogauassig)

=q,GPUC+BD(x),

Hence, the corollary is proved from Lemma 9.
Suppose the strictly increasing function h,(y) satisfies the condition (3) and
hy(4o0)=+4o0. Let the function y=Q,(x) be the inverse function of

x=a“S:h1(s)ds. It is easy to see that

8(x) _ 1
QuGGxy  QUCGLD

a ' h(Q(G(x))= d

dx
LemMMA 10. If h(y) satisfies the condition (3), and
F(x)=(14+a™Mh(Q«(G(x))  for x<x,=0,
IIm (—F(x)+G(x)=+e,

then the positive half-trajectory L} with NEY~ must cross C~ and Y+.
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Proof. 1f 1lim F(x)=—co, the Lemma can be proved by Lemma 7. If

lim F(x)=c¢>—co, then G(—o)=+4co and for any M>0 there exists a %,<x,
Z—->=00
such that

F(x)£hi(Q:(G(x))—M)+a""hi(Q:(G(x)))

=h1(Q1(G(x))—M)+d_g(i‘)__
Zx (@uG(x))

<I(Q:(Gx)—M)+— 8(x) for x<Fe<x0=0.
a2z (QuG(x)—M)

Taking k.(x)=0Q.(G(x))—M, we have
}ir.r}o(h‘(kZ(x))_F(x))>0’

so from Lemma 6, this Lemma is proved.

COROLLARY 5. Under condition (i), if ﬁ@(—F(x)+G(x))=+oo and there
exist constants a, B2, ¥1, x:.>0 such that

My)Zzayf2  for y=y.:>0,

F(x)<b,GP2/+B2(x)  for x<—x,=0,
where

148, \B2/ B
B e

then the positive half-trajectory L% passing through any point NEY~ must cross
C- and Y*.

bi=(1+8:)(

170 .
o1/ +ﬂ2),

The following Theorem follows from Lemma 8, 9 and 10.

THEOREM 3. If

1°. xg(x)>0, x#0, yh(3)>0, y#0, xF(x)<0 for 0<|x|<1;

2°. there exist strictly increasing function hy(y), ho(y) such that
hi(zh(MNzhi(y)  for 0=y.=<y;

3. F)Z14aiH(Q(G(x)  for x=x=0,
F(x)z(14+a3M)hy(Qo(G(x))  for x=x,20;

4. lim (F(x)sgnx+G(x)=+eo;

then (1) has at least one limit cycle.



108 KE WANG
COROLLARY 6. If
1°. xg(x)>0, x#0, yh(y)>0, y+0, xF(x)<0 for 0<|x|<K1;
2°. Tim (F(x)sgnx+G(x)=+c0;

-0

3°. there exist positive constants ai, as, Bi, B2, Y1, X1, Xo Such that
a;yP 1z h(y)za,yPe for yzy:20,
F(x)=a,GPro+Bo(x)  for 0=x,<x,

F(x)<a,GF/*f2(x)  for 0=—x,2x,
where

il 1
at=<1+ﬁl>(1;ﬁl)ﬁ S aerso, i1, 2;

then (1) has at least one limit cycle.
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