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ON THE KOBAYASHI AND CARATHEODORY DISTANCES

OF BOUNDED SYMMETRIC DOMAINS

BY YOSHIHISA KUBOTA

1. Let U denote the unit disk in the complex plane C and let p be the
Poincare distance in U. p is given by

p(z, w)—-
z—w I

(z, WEΞU).

X ~ Ί l-wz\

Since any automorphism φ of U with φ(w)=0 is given by

\ iθ
) = e

Z~~W

with some Θ^R, the distance p is also represented in the following:

\ogp(z, w)—inf\-χ-\og—.—~: 0 < r < l and rU^φ(z) for some

with φ(w)=θ},

where Aut(ί7) denotes the group of automorphisms of U and rU denotes the
set {z^C: \z\<r}. Furthermore, we have

In this note we show that the Kobayashi-Caratheodory distance of a bounded
symmetric domain has the same property. (It is known that, for a bounded
symmetric domain, the Kobayashi distance and the Caratheodory distance coin-
cide [3]). Namely, let D be a bounded symmetric domain given in a canonical
realization in the complex ΛΓ-space CN, and let kD be the Kobayashi-Caratheodory
distance of Zλ Then we get

kD(z, w)—infj o-log i Γ .' 0 < r < l and rD^φ(z) for some

φ(=Aut(D) with
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and

{z<=D: kD(0, z)<a}=rD, r=-^±-,

where Aut(D) denotes the group of automorphisms of D and rD denotes the
set {rz:z(ED} in CN.

2. In this section we consider domains D in CN satisfying the following
conditions:

(a) D is homogeneous,
(b) D is bounded,
(c) D is convex and contains the origin 0.

The following facts follow from (b) and (c).

( i ) If 0 < r < l , then rD is a compact subset of D.

(ii) If 0 < r ! < r 2 < l , then r7D(Zr2D.

(iii) If K is a compact subset of D, then KdrD for some r with 0 < r < l .

Here rD denotes the closure of rD in CN.
(a) and (iii) enable us to introduce the functions rfg: Z>-»[0, <χ>) (where

D) and dD: DXD-+10, oo);

dg(z)=inff^log , : 0 < r < l and rD^φ(z) for some

with

We note that, for the unit disk U in C, we have

dS(2r)=d?(w)=di7(z, w)=p(z, w) (z,

PROPOSITION 1. The functions d% and dD have the following properties:
(1) dζ,(z)^0, and d%(z)=0 implies z=w dD(z, w)^0, and dD(z, w)=0 implies

z=w.
(2) dD(z, w)=dD(w, z).
(3) // z-*dDy then </2(z)->oo, d?(w)-+oo and dD(z, w)->oo9 where dD denotes

the boundary of D.
(4) // ί&e=Aut(/>), then d%^{ψ{z))=d°(z) and dD(ψ(z), ψ{w))=dD{z, w).
(5) // WΪΞD and α>0, ί/zen

{zeP:rfSω<«}= U Ψ(rD), r = - ζ ^ f .
^eAut(Z)),0CO) = w;ί β -\-L

Proof. (2), (4) and (5) are immediate consequences of the definitions of dg

and dx,.
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To prove (1) let z and w be distinct points in D. Suppose there exists a
sequence {φn} of elements of Ant(D) such that φn(w)=0 for all n and φn(z)->0
as n-»oo. Since D is bounded, {φn} is a normal family. Hence we may suppose
that {φn} converges, uniformly on every compact subset of D, to a holomorphic
mapping ψ: D->CN. Since ψ(w)=\imφn(w)-0^D, ψ(D)<£dD and so ψ^Aut(D)
([5] p. 78). Thus we are led to a "contradiction that 0=φ(z)Φφ(w)=0. Hence
there exists a positive number δ such that δBNφφ(z) for all ^eAut(Z)) with
φ(w)=0. Here BN denotes the unit ball in CN. Since D is bounded, δBNZ)r0D

1 1-fr
for some r0 with 0<r o <l. Now it follows from (ii) that d£(z)ϊ>—log- °

2 6 l - r 0

>0, and (1) follows.
Next we prove (3). Suppose that there exists a positive number a such

that, for any compact subset K of D, there is a point zψK with d?(w)<a.
Then we can choose a sequence {2C7°} of points in D such that {zcπ)} tends to
a boundary point ζ and such that dD

z(n)(w)<a for all n. By the definition of
dD

z(n)(w), we can choose sequences {rn} and {φn} such that

, 4 g T <
" X ΐ n

and
φneiAut(D), 0»(z<n>)=O, φn(w)<ΞrnD.

Since ί^1} is a normal family and since φn(w)<s7Ό where r=(β2α—l)/O2

we may assume that {φΰ1} converges, uniformly on every compact subset of D,
to a holomorphic mapping ψ: D-^CN and that φn(w)->w*<^rD. Hence we have

llί&Cw*)—M/H l̂lί&Ci*/*)—^C »̂C »̂ll-f-||̂ <̂ »C »̂—^̂ C^̂ Cw))!! —*- 0 as n-oo,

where || || denotes the euclidean norm in CN, then ψ{w*)—w. This implies
that ^eAut(ΰ) ([5] p. 78). But this contradicts that 0(O)=lim^ή1(O)=Hmzcn)

=ζe9D. Thus we conclude that d?(u;)--*oo if z->dD. Similarly we can prove
that d%(z)-> oo if *->3Zλ

The function dD may not satisfy the triangle inequality. Following
Kobayashi [2], we introduce 3D by setting

dD{z, u;)=inf *fί ddfia\ 2°+1)),

where the infimum is taken over all finite sequences {zm

y z(1), ••• , 2cft)} with
zco)_^ a n cj ^c*)—^^ Then J^ is a pseudodistance on D.

Next we consider domains D which satisfy conditions (a), (b), (c) and an
additional condition

(d) D is circular.
The following lemma tells us that d%(z) decreases under holomorphic mappings:

LEMMA 1. Let Dλ and D2 be domains in CNl and CN2, respectively, which
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satisfy conditions (a)~(d). // F: Di->D2 is a holomorphic mapping, then

d$\w>(F(z))^dft(z) (z,

Proof. We shall first prove the inequality

for a holomorphic mapping G: D1->D2 with G(0)=0. Let z^Dx and d
1 1+r

Then there exists an r, 0<r<l , such that ylog-y^—<a and rD^φ(z) for

some (JeAut(A) with φ(0)=0. Put H-G°φ-\ Since H: Dι-^D2 is a holo-
morphic mapping with i/(0)=0 and since Z\ and J92 satisfy conditions (b)~(d),
we have H{rDx)c:rD2 ([6] p. 161). Hence G(z)=H(φ(z))(ΞrD2, and therefore

Thus we have

From this inequality we have, for any z,

by taking φ^AutiDi) and <f>2(ΞAut(D2) with φ1(w)=Of ψ2(F(w))-0.

If D is SL domain in CN which is holomorphically equivalent to a domain D
(i. e. there is a biholomorphic mapping of D onto D) satisfying conditions (a)^
(d), we define d% by

where φ is a biholomorphic mapping of D onto ΰ. Note that this definition
does not depend on choices of D and ψ. (It follows from Lemma 1). Hence we
can also define dD and 3D for D. The functions d% and dD have properties
(1)^(4) in Proposition 1. Further the following proposition is an immediate
consequence of Lemma 1.

PROPOSITION 2. Let Dx and D2 be domains in C i V l and CN*, respectively,
which are holomorphically equivalent to domains satisfying conditions (a)^(d). //
F: Di—>D2 is a holomorphic mapping, then

)£dfr(z) (z,
and

dD2(F(z), F(w))^dDl(z, w) (z,

Let kD and cD denote the Kobayashi pseudodistance and the Caratheodory
pseudodistance of D, respectively. If D is holomorphically equivalent to a
domain satisfying conditions (a)~(d), then it follows from Proposition 2 that
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3. We shall now turn our attention to bounded symmetric domains. It is
known that every bounded symmetric domain is holomorphically equivalent to
a domain in CN satisfying (a)~(d) [4]. (Conversely, every domain in CN satis-
fying conditions (a), (c), (d) is symmetric). Hence d%, dD and 3D are defined on
bounded symmetric domains D. In this section we shall show that, for a
bounded symmetric domain D, d%, dD and 3D coincide with kD and cD. Our
proof will follow Kobayashi's argument ([3] p. 52) which was used to prove
that kD—cD for bounded symmetric domains D.

L E M M A 2. Let UN be the unit polydisk in CN. Then

du

w

N{z)=du

z

N(w)=mzx{p{z3, wj):j=l, - , N\,

where z=(zlf ••• , zN) and w=(wlf ••• , wN).

Proof. Let z*—(z\, ••• , z%) a n d w*=(w*[, ••• , w%) be p o i n t s in UM a n d let

d*?(z*)<a. Then —log <a and rUN^φ(z*) for some r, 0<r<l, and for
u 1 r

some φ^Aut(UN) with 0(u/*)=O. Now φ has a form

z—(zu ••• , zN),

, N; ζeί/),

where e^eC, | ε ^ | = l and p is a permutation of the integers from 1 to iV ([5]
p. 68). Since ^ e A u t ( ί / ) , φj(w$w)=0 and φj{z%u^rU, we have

1 14r
p(zf, wj)=du

w){zf)^\og~^r<a (/=1, .- , N).

Since a was arbitrary, we have

max{p(z*, wf): y = l , ••• , N}^dg V * ) .

To prove the inequality in the opposite direction, let p(zf, wf)<a for all j .
Then we can choose an r, 0 < r < l , and φj^Aut(U), j=l, ••• , N, such that

4lQg 7 < ^ and φj(z*)(ΞrU and ^ ( M ; * ) = 0 . Put

0 ( * ) = ( 0 i ( z i ) , ••• , Φ N ( Z N ) ) , Z = ( Z U -" 9 Z N ) .

Then 0 is an element of Aut(£/*) satisfying ^(w;*)=:0 and φ(z*)^rUN. Hence

Thus we obtain that
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dSίΓU*)=max{p(z*, < ) : y = l , - , AT}.

Since p(z*, wf)=ρ(w*t zf), we have also

d°?(z*)=duAw*).

THEOREM 1. // D is a bounded symmetric domain in CN, then

kD(z, w)=cD(z, w)=d&z) (z, w<=D).

Proof. It is known that D is holomorphically equivalent to a domain D*
which has the following properties:

(a) D*ΓΛCι=Uι and D*cUN,
(β) for any 2*, w;*eD*, there exists a φ^Aut(D*) such that ψ(w*)=0 and

#**)=C=(ζi , - , Ci, 0, - , 0) where | ζ , | < l , y = l , - , /.
Here / is the rank of D. Since the injections Uι-^>D* and D*->UN are distance-
decreasing (by Proposition 2), we have

where ζ = ( ζ r , 0"), ζ ' = ( ζ i , - , &), 0*=(0, •••, 0). From Lemma 2 we have

dϋoN(ζ)=dΊι(ζ')=mAx{p(ζj9 0): ; = 1 , - , /},

and then we obtain

It is also known that

^•(ζ, 0 ) = ^ ζ , 0)=max{/o(ζ,, 0): ; = 1 ,

([3] p. 52). Hence it follows from (β) that, for z*,

dS;(z*)=kj^z*9 w*)=cD.(z*, w*).

This implies that

d%(z)=kD(z, w)=cD(z, w) (z,

COROLLARY 1. If D is a bounded symmetric domain in CN, then

dD(z, w)=3D(z, w)=d&z)=d?(w) (z,

Every bounded symmetric domain in CN is holomorphically equivalent to a
domain D in CN which satisfies conditions (a)~(d) and

(e) the isotropy group K of 0 in Aut (D) acts by complex linear trans-
formations.

We shall call such a domain D a domain given in a canonical realization. The
following is an immediate consequence of Theorem 1 and (5) in Proposition 1.



BOUNDED SYMMETRIC DOMAINS 47

THEOREM 2. Let D be a bounded symmetric domain given in a canonical
realization in CN. Then

ί 1 1 + r
kD(z, w)=infs-7rlog— : 0 < r < l and rD^φ(z) for some

i Δ 1 — r

φ^Aut(D) with φ(w)=θ}

and

e2a—l
{z^D: kD(0, z)<a}—rD, r— ,„ , 1 .

e2a+l

COROLLARY 2. Let D be a bounded symmetric domain given in a canonical
realization in CN and let wtΞdD. If 0^U<U<U<lt then

, tzw)—kD(tιW, t2w)+kD(t2w, Uw).

Proof. We shall first show that

kD(sw, tw)=kD(0, tw)-kD(Q, sw)

for 0 < s < ί < l . Since D satisfies conditions (c) and (d), {ζu/:ζeC, |ζ |<l}cZ>.
Hence

f,(ζ)=ζw

is a holomorphic mapping of U into D, and so

1 4 t-s

kD(sw, tw)^kυ{s, t)=j\og jΞj-=^

= kD(09 tw)-kD(0, sw)

by Theorem 2. But the triangle inequality yields

kD(sw9 tw)^kD(0, tw)-kD(0, sw).

Thus we obtain the equality

kD(sw, tw)=kD(0, tw)-kD(0, sw)

Using this equality we have, for 0^t1<t2<tz<l,

)=kD(0, Uw)-kD(Of Uw)

= {kD(0, hw)-kD(0, t2w)} + {kD(0, t2w)-kD(0, Uw)}

= kD(t2w, t3w)JrkD(t1w, t2w).
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