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ON THE KOBAYASHI AND CARATHEODORY DISTANCES
OF BOUNDED SYMMETRIC DOMAINS

By YosHIHISA KUuBOTA

1. Let U denote the unit disk in the complex plane C and let p be the
Poincaré distance in U. p is given by

o(z, w)=%log (z, wel).

b
1—wz

' z— w |
' 1—wz |
Since any automorphism ¢ of U with ¢(w)=0 is given by

0 Z—W
1—wz

d(z)=e

with some =R, the distance p is also represented in the following:

o(z, w)—lnf{flog i+r 0<r<1 and rU>¢(z) for some

p=Aut(U) with g(w)=0},

where Aut(U) denotes the group of automorphisms of U and rU denotes the
set {z€C: |z|<r}. Furthermore, we have
e *—1

In this note we show that the Kobayashi-Carathéodory distance of a bounded
symmetric domain has the same property. (It is known that, for a bounded
symmetric domain, the Kobayashi distance and the Carathéodory distance coin-
cide [3]). Namely, let D be a bounded symmetric domain given in a canonical
realization in the complex N-space CV, and let k2, be the Kobayashi-Carathéodory
distance of D. Then we get

ka2, w)_mf{—log 1““’ 0<r<1 and rD=¢(z) for some

{z€U: p(0, 2)<a}=rU, r=

g Aut(D) with ¢(w)=0},
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and
_et—1

{zeD: kp(0, 2)<a}=rD, =gy

where Aut(D) denotes the group of automorphisms of D and D denotes the
set {rz:z=D} in CV.

2. In this section we consider domains D in CV satisfying the following
conditions :

(a) D is homogeneous,

(b) D is bounded,

(¢) D is convex and contains the origin 0.
The following facts follow from (b) and (c).

(i) If 0<r<l, then 7D is a compact subset of D.

(ii) If 0<r,<r,<1, then r,DCr.D.

(iii) If K is a compact subset of D, then KCrD for some r with 0<r<]1.
Here 7D denotes the closure of D in C¥.

(a) and (iii) enable us to introduce the functions dB: D—[0, o) (where we
D) and dp: DXD—[0, «);

147

1= : 0<r<1 and rD=¢(z) for some

dg(z)=inf{% log

= Aut(D) with ¢(w)=0},

dp(z, w)=min{d}(z), d2(w)}.
We note that, for the unit disk U in C, we have

d%)=dY(w)=dy(z, w)=p(z, w) (z, wel).

PROPOSITION 1. The functions d3 and dp have the following properties:

(1) d2(2)=0, and d2(z)=0 implies z=w ; dp(z, w)=0, and dp(z, w)=0implies
z=w.

(2) dplz, w)=dp(w, 2).

(3) If z—0D, then dB(z)—oo, dP(w)—co and dp(z, w)—>co, where 8D denotes
the boundary of D.

4) If ¢=Aut(D), then dfc(P(2)=d2(2) and dp(P(2), p(w))=dp(z, w).

(5) If weD and a>0, then

{zeD: di(z)<a}= W ¢(rD), r='§:%i’-

PEAUL (D), P(D=w

Proof. (2), (4) and (5) are immediate consequences of the definitions of d5
and dp.
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To prove (1) let z and w be distinct points in D. Suppose there exists a
sequence {¢,} of elements of Aut(D) such that ¢,(w)=0 for all n and @.(z)—0
as n—oo, Since D is bounded, {¢.} is a normal family. Hence we may suppose
that {¢,} converges, uniformly on every compact subset of D, to a holomorphic
mapping ¢ : D—C?. Since ¢p(w)=lim@.(w)=0€D, ¢(D)¢oD and so ¢p=Aut(D)
([5] p.78). Thus we are led to a "contradiction that 0=¢(2)#¢(w)=0. Hence
there exists a positive number J such that 0By ?¢(z) for all g=Aut(D) with
¢(w)=0. Here By denotes the unit ball in C¥. Since D is bounded, 0B yDr,D
1+7,
1—7,

for some 7, with 0<7»,<1. Now it follows from (ii) that dB(z);—;—log

>0, and (1) follows.

Next we prove (3). Suppose that there exists a positive number a« such
that, for any compact subset K of D, there is a point z¢& K with d?(w)<a.
Then we can choose a sequence {z‘™} of points in D such that {z®} tends to
a boundary point { and such that d2m(w)<a for all n. By the definition of
d%m(w), we can choose sequences {r,} and {¢,} such that

0<ra<l,  —log i:r"

D) <a

and
d.€Aut(D), @.z)=0, ¢@.(w)sr.D.

Since {¢3'} is a normal family and since ¢n(w)e;ﬁ where r=(e?**—1)/(e?**+1),
we may assume that {¢;'} converges, uniformly on every compact subset of D,

to a holomorphic mapping ¢: D—C?" and that é.(w)>w*srD. Hence we have
lPpw*)—w|| S Nl p(w*)— (b (W) + | (D n(w))— 7 (P a(w))]| —> 0 as n—oo,

where || || denotes the euclidean norm in C¥, then ¢(w*)=w. This implies
that ¢=Aut(D) ([5] p.78). But this contradicts that ¢v(0)=1i£n ¢;1(0)=Li£2 ztm
={=dD. Thus we conclude that d2(w)—oco if z—aD. Similanrl; we can prove
that dB(z)—oo if z—aD.

The function d, may not satisfy the triangle inequality. Following
Kobayashi [2], we introduce dp by setting

k-1 '
d p(z, w)=inf 20 dp(z?, z0+D),
=

where the infimum is taken over all finite sequences {z¢®, z, ---, z¢¥} with
z®=z and z>=w. Then d, is a pseudodistance on D.

Next we consider domains D which satisfy conditions (a), (b), (¢) and an
additional condition

(d) D is circular.
The following lemma tells us that dZ(z) decreases under holomorphic mappings :

LEMMA 1. Let D, and D, be domains in C¥1 and C?:, respectively, which
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satisfy conditions (a)~(d). If F:D,—D, is a holomorphic mapping, then
APy (F(2)=d2(z) (2, weDy).

Proof. We shall first prove the inequality
d3(G(2)=dP(z) (z€D)
for a holomorphic mapping G: D,—D, with G(0)=0. Let z=D, and d{i(z)<a.
Then there exists an », 0<r<1, such that %log i-'__: <a and rD,>¢(z) for

some ¢<Aut(D,) with ¢(0)=0. Put H=G-¢'. Since H: D,—D, is a holo-
morphic mapping with H(0)=0 and since D, and D, satisfy conditions (b)~(d),
we have H(rD,)CrD, ([6] p.161). Hence G(2)=H(¢(z))erD,, and therefore
d?(G(z))<a. Thus we have

AP G(2)<df(z) (2€Dy).

From this inequality we have, for any z, weD,,
A2y (F(2))= dB(¢ae F o 7" Nhi(2))) < dR(Pi(2)) = d5x(2)
by taking ¢,=Aut(D,) and ¢,=Aut(D,) with ¢ (w)=0, ¢(F(w))=0.

If D is a domain in C?¥ which is holomorphically equivalent to a domain D
(i.e. there is a biholomorphic mapping of D onto D) satisfying conditions (a)~
(d), we define df by

dB(z)=dB .\ ¢(2),

where ¢ is a biholomorphic mapping of D onto D. Note that this definition
does not depend on choices of D and ¢. (It follows from Lemma 1). Hence we
can also define dp and dp for D. The functions d2 and d, have properties
(1)~(4) in Proposition 1. Further the following proposition is an immediate
consequence of Lemma 1.

PROPOSITION 2. Let D, and D, be domains in C¥: and C?:, respectively,
which are holomorphically equivalent to domains satisfying conditions (a)~(d). If
F: D\—D, is a holomorphic mapping, then

AP (F(2)ZdBW(z) (2, weD)
and
dp,(F(2), F(w)Zdp (2, w) (2, wED)).

Let kp and ¢, denote the Kobayashi pseudodistance and the Carathéodory
pseudodistance of D, respectively. If D is holomorphically equivalent to a
domain satisfying conditions (a)~(d), then it follows from Proposition 2 that

cp=<dp<kp.
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3. We shall now turn our attention to bounded symmetric domains. It is
known that every bounded symmetric domain is holomorphically equivalent to
a domain in C¥ satisfying (a)~(d) [4]. (Conversely, every domain in C¥ satis-
fying conditions (a), (¢), (d) is symmetric). Hence d2, dp and d, are defined on
bounded symmetric domains D. In this section we shall show that, for a
bounded symmetric domain D, dB, d, and dp coincide with £, and ¢p. Our
proof will follow Kobayashi’s argument ([3] p.52) which was used to prove
that kp=cp for bounded symmetric domains D.

LEMMA 2. Let U" be the unit polydisk in C¥. Then
45" (2)=d¥"(w)=max{p(z,, w): j=1, -, N},

where z=(z,, -+, zy) and w=(w,, -, wy).
Proof. Let z*=(z%, ---, z%) and w*=(w¥, ---, w¥) be points in U¥ and let
dvY(z%)<a. Then %—log i+ <a and rU¥ =¢(z¥*) for some 7, 0<r<1, and for

some ¢=Aut(UY) with ¢g(w*)=0. Now ¢ has a form
()= (1(zp>), 5 Bu(zpanr)), z=(zy, -+, 2n),

BO=erfad s (=1, NiLED),

where ¢;,&C, |¢;|=1 and p is a permutation of the integers from 1 to N ([5]
p. 68). Since ¢,cAutU), ¢, (w};)=0 and ¢,;(zF)=rU, we have

(a3, wH=di ()53 log 11"

<a (]:1: R N)‘

Since « was arbitrary, we have
max{p(z¥, wi): j=1, -, N}<d%'(z*).

To prove the inequality in the opposite direction, let p(z¥, w¥)<a for all j.
Then we can choose an r», 0<»<1, and ¢,=Aut(lU), j=1, -+, N, such that

%log }i: <a and ¢ (z¥)erU and ¢ (w¥)=0. Put

#(2)=(s(z1), -, dnlzy), 2z=(z,, -, 2n).
Then ¢ is an element of Aut(UY) satisfying ¢(w*)=0 and ¢(z*)=U”¥. Hence

147 <a.
1—r

dg.’v(z*)éé—log

Thus we obtain that
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d%Y (z¥)=max{p(z¥, w}): j=1, -, N}.
Since p(z¥, wH=p(w¥, z¥), we have also

du¥ (z%)=du" (w*).

THEOREM 1. If D is a bounded symmetric domain in C¥, then
kn(z, w)=cp(z, w)=d¥z) (2, wED).

Proof. 1t is known that D is holomorphically equivalent to a domain D*
which has the following properties :
(@) D*N\C'=U! and D*cCU¥,
(B) for any z*, w*eD*, there exists a ¢<Aut(D*) such that ¢(w*)=0 and
P@*)=C=, -+, &, 0, -+, 0) where [{;|<1, j=1, -, L
Here [ is the rank of D. Since the injections U'—D* and D*—U? are distance-
decreasing (by Proposition 2), we have

AN QO=dTQ=d8' Q)
where {=(’, 0), {'=(,, -, &), 07=(0, ---, 0). From Lemma 2 we have
a3 Q=d3" ¢ =max{p({, 0): j=1, -, I},
and then we obtain
d¥Q)=max{p{,, 0): j=1, ---, i}.
It is also known that
k&, 0)=cp«(C, 0)=max{p(,, 0): j=1, -, I}
([3] p.52). Hence it follows from (B) that, for z*, w*e D*,
DUz*)=kp(z*, w¥)=cplz*, w*).
This implies that
di(2)=kp(z, w)=cp(z, w) (z, weD).

COROLLARY 1. If D is a bounded symmetric domain in CV, then

dp(z, w)=dpz, w)=diz)=dP(w) (z, weD).

Every bounded symmetric domain in C¥ is holomorphically equivalent to a
domain D in C¥ which satisfies conditions (a)~(d) and
(e) the isotropy group K of 0 in Aut(D) acts by complex linear trans-
formations.
We shall call such a domain D a domain given in a canonical realization. The
following is an immediate consequence of Theorem 1 and (5) in Proposition 1.
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THEOREM 2. Let D be a bounded symmetric domain given in a canonical
realization in CN. Then

ko(z, w)=inf{%log i-l__: : 0<r<1 and rD>¢(z) for some

g Aut(D) with ¢(w)=0}

and
(zeD: kn(0, D<a}=rD, r=tol
z < RplU, ay=ru, r= e2a+1 .
COROLLARY 2. Let D be a bounded symmetric domain given in a canonical
realization in C¥ and let weadD. If 0<5t,<t,<t;<1, then

kp(tiw, taw)=kp(tiw, taw)+kplt.w, t,w).

Proof. We shall first show that
kp(sw, tw)=Fkp(0, tw)—kp(0, sw)

for 0<s<t<1. Since D satisfies conditions (c) and (d), {{w:{eC, || <1}CD.
Hence

is a holomorphic mapping of U into D, and so

t—s
1, M =g 1 14t 1. 14s
kp(sw, tw)= ky(s, t)—flog s —-2—log - ilog 1—s

1—st
=kp(0, tw)—kp(0, sw)

by Theorem 2. But the triangle inequality yields
kp(sw, tw)=kp(0, tw)—Ep0, sw).
Thus we obtain the equality
kp(sw, tw)=kp0, tw)—kp0, sw)  (0<s<t<]1).
Using this equality we have, for 0<t, <8, <t, <1,
kp(tiw, tyaw)="Fkp(0, t;w)—kp(0, t,w)

={kp(0, t;w)—kp(0, t,w)}+{~x(0, t,w)—kp(0, t,w)}
=kp(t.w, taw)+kp(tiw, t.w).
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