TOPOLOGICAL TYPES OF COMPLEX ISOLATED HYPERSURFACE SINGULARITIES

By Osamu Saeki

§ 1. Introduction.

Let $f: \mathbb{C}^n$, $0 \to \mathbb{C}$, 0 be a holomorphic function germ which has an isolated critical point at the origin $(n \ge 2)$. Then there are several ways to define a topological type of f. Let g be another holomorphic function germ with an isolated critical point at the origin.

DEFINITION 1. f and g are topologically right equivalent if there is a homeomorphism germ $\varphi: \mathbb{C}^n$, $0 \rightarrow \mathbb{C}^n$, 0 satisfying $f = g \circ \varphi$.

DEFINITION 2. f and g are topologically right-left equivalent if there are homeomorphism germs $\varphi: \mathbb{C}^n$, $0 \rightarrow \mathbb{C}^n$, 0 and $\psi: \mathbb{C}$, $0 \rightarrow \mathbb{C}$, 0 satisfying $f = \psi \circ g \circ \varphi$.

Set $V_f = f^{-1}(0)$ and $V_g = g^{-1}(0)$, which are germs of complex analytic varieties at the origin.

DEFINITION 3. f and g are topologically V-equivalent if there is a homeomorphism germ $\varphi: C^n$, $0 \rightarrow C^n$, 0 satisfying $\varphi(V_f) = V_g$.

Set $D_{\varepsilon}^{2n} = \{z \in \mathbb{C}^n ; \|z\| \le \varepsilon\}$ and $S_{\varepsilon}^{2n-1} = \partial D_{\varepsilon}^{2n}$ for $\varepsilon > 0$. Then by Milnor [9] $S_{\varepsilon}^{2n-1} \cap V_f$ is a smooth (2n-3)-dimensional manifold for $\varepsilon > 0$ sufficiently small. The pair $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_f)$ is called the *link* of the singularity of f.

DEFINITION 4. f and g are link equivalent if $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_f)$ is homeomorphic to $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_g)$ for all sufficiently small ε and ε' .

Our problem is whether these definitions are equivalent or not. By the definitions, the right equivalence implies the right-left equivalence, which in turn implies the V-equivalence. Furthermore, since $(D_{\varepsilon}^{2n}, D_{\varepsilon}^{2n} \cap V_f)$ is homeomorphic to the cone over the link $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_f)$ ([9]), the link equivalence obviously implies the V-equivalence. The first non-trivial result was obtained by King [5]: the right-left equivalence is equivalent to the link equivalence for $n \neq 3$. After that Perron [12] showed that it also holds for n = 3. Our main result of this paper is the following.

Received April 25, 1988

THEOREM 1. If two holomorphic function germs with isolated critical points at the origin are topologically V-equivalent, then they are link equivalent.

Combining this with the results of King and Perron, we obtain the following immediately.

COROLLARY 2. Let f and g be holomorphic function germs with isolated critical points at the origin. Then the following three are equivalent.

- (a) f and g are topologically right-left equivalent.
- (b) f and g are topologically V-equivalent.
- (c) f and g are link equivalent.

Remark. The real analogue of Corollary 2 does not hold in general. In fact, for all $n \ge 7$ King [4] gives an example of two real polynomial functions $f, g: \mathbb{R}^n$, $0 \to \mathbb{R}$, 0 which are topologically V-equivalent but not topologically right-left equivalent, nor link equivalent. (Note that even in the real case the link equivalence implies the right-left equivalence [4].) Furthermore it is easy to show that the right-left equivalence does not imply the right equivalence in the real case. For example, consider $x^2 + y^2$ and $-(x^2 + y^2)$.

Our proof of Theorem 1 is divided into three cases. When n=2, we use results of Burau [1] and Zariski [15] concerning links of singularities in \mathbb{C}^2 . When $n \ge 4$, we use the topological h-cobordism theorem together with the existence and uniqueness theorem of topological normal disk bundles for codimension two locally flat embeddings [6]. When n=3, we need an additional lemma due to Perron [12].

In $\S 3$ we show that the homeomorphism which gives the V-equivalence can actually be made to be a diffeomorphism except possibly at the origin. Some relations between the right equivalence and the right-left equivalence are also discussed in $\S 3$.

The author would like to express his sincere gratitude to T. Nishimura for suggesting the problem and giving invaluable advice.

§ 2. Proof of theorem 1.

Let f and g be as in § 1, and suppose they are topologically V-equivalent. We shall show $(S_{\varepsilon}^{2^{n-1}}, S_{\varepsilon}^{2^{n-1}} \cap V_f)$ is homeomorphic to $(S_{\varepsilon}^{2^{n-1}}, S_{\varepsilon'}^{2^{n-1}} \cap V_g)$.

Case 1. n=2.

Let $\Delta_f(t)$ (resp. $\Delta_g(t)$) be the characteristic polynomial for the Milnor fibration of f (resp. g) [9]. Then Lê [8] shows that if f and g are V-equivalent, $\Delta_f(t) = \Delta_g(t)$. Furthermore, Burau [1] shows that if f and g are irreducible and $\Delta_f(t) = \Delta_g(t)$, $(S_{\varepsilon}^3, S_{\varepsilon}^3 \cap V_f)$ is homeomorphic to $(S_{\varepsilon}^3, S_{\varepsilon}^3 \cap V_g)$.

Now let $f=f_1f_2\cdots f_r$ and $g=g_1g_2\cdots g_s$ be irreducible factorizations. Since f and g are V-equivalent, we have r=s and may assume f_i and g_i are V-equivalent. Set $K_i=S^3_i\cap V_{f_i}$ and $K'_i=S^3_{i'}\cap V_{g_i}$, then (S^3_i,K_i) is homeomorphic to $(S^3_{i'},K''_i)$ by the above facts. (Note that $S^3_i\cap V_f=\cup K_i$ and $S^3_{i'}\cap V_g=\cup K'_i$.) Then Zariski [15] shows that $(S^3_i,S^3_i\cap V_f)$ is homeomorphic to $(S^3_{i'},S^3_{i'}\cap V_g)$ if and only if the linking number of K_i and K_j is the same as that of K'_i and K'_j $(1\leq i,\ j\leq r;\ i\neq j)$. The linking number of K_i and K_j in $S^3_i=\partial D^4_i$ is defined to be the algebraic intersection number of C_i and C_j in D^4_i , where C_i (resp. C_j) is a 2-chain in D^4_i with $\partial C_i=K_i$ (resp. $\partial C_j=K_j$). Thus V-equivalence obviously implies that the corresponding linking numbers are the same. Hence the links $(S^3_i,S^3_i\cap V_f)$ and $(S^3_i,S^3_i\cap V_g)$ are homeomorphic.

Case 2. $n \ge 4$.

Since f and g are topologically V-equivalent, there is a homeomorphism germ $\varphi: \mathbb{C}^n$, $0 \to \mathbb{C}^n$, 0 satisfying $\varphi(V_f) = V_g$. Take sufficiently small ε , $\varepsilon' > 0$ such that $\varphi(D_{\varepsilon}^{2n}) \subset \operatorname{Int} D_{\varepsilon}^{2n}$. Set $K_f = S_{\varepsilon}^{2n-1} \cap V_f$, $K_g = S_{\varepsilon}^{2n-1} \cap V_g$ and $W = V_g \cap (D_{\varepsilon}^{2n} - \operatorname{Int} \varphi(D_{\varepsilon}^{2n}))$ (Fig. 1). Using the cone structures of V_f and V_g at the origin ([9]), we see easily that W is an invertible cobordism between $\varphi(K_f)$ and K_g ; hence, it is an h-cobordism (e.g. see [5]). Since K_f and K_g are simply connected ([9]), W is homeomorphic to the product $K_g \times I$ by the topological h-cobordism theorem ([7]).

Figure 1.

Let $N(K_f)$ (resp. $N(K_g)$) be the tubular disk neighborhood of K_f (resp. K_g) in S_{ε}^{2n-1} (resp. S_{ε}^{2n-1}). By the existence theorem of tubular disk neighborhoods

for codimension two locally flat embeddings [6] we can extend $\varphi(N(K_f))$ and $N(K_g)$ to a tubular disk neighborhood N(W) of W in $D^{2^n}_{\epsilon^n}$ —Int $\varphi(D^{2^n}_{\epsilon})$. Since W is homeomorphic to the product $K_g \times I$, N(W) is also homeomorphic to the product $N(K_g) \times I$. Set $E_g = S^{2^{n-1}}_{\epsilon^n}$ —Int $N(K_g)$, $E_f = S^{2^{n-1}}_{\epsilon^n}$ —Int $N(K_f)$ and $X = Cl(D^{2^n}_{\epsilon^n} - (\varphi(D^{2^n}_{\epsilon^n}) \cup N(W)))$, where Cl denotes the closure in C^n . Then X is a cobordism relative to the boundary between E_g and $\varphi(E_f)$. Using the uniqueness of tubular disk neighborhoods in codimension two [6], we see easily that X is an invertible cobordism; hence, it is an h-cobordism. Since the fundamental groups $\pi_1(E_g)$ and $\pi_1(E_f)$ are isomorphic to the infinite cyclic group Z ([9]) and the Whitehead group of Z vanishes [3], the h-cobordism X is in fact an s-cobordism. Hence by the topological s-cobordism theorem [7], there is a homeomorphism between X and $E_g \times I$ which extends the product structure on the boundary. Thus there is a homeomorphism η from $\varphi(E_f) \cup \varphi(N(K_f)) = \varphi(S^{2^{n-1}}_{\epsilon})$ to $E_g \cup N(K_g) = S^{2^{n-1}}_{\epsilon^n}$ such that $\eta(\varphi(K_f)) = K_g$. Hence $(S^{2^{n-1}}_{\epsilon^n}, K_f)$ is homeomorphic to $(S^{2^{n-1}}_{\epsilon^n}, K_g)$.

Case 3. n=3.

Since we do not know whether the invertible cobordism W above is homeomorphic to the product, the above argument does not apply to this case. Instead, we use the following lemma due to Perron.

Lemma 3. ([12]) Let $f, g: C^3$, $0 \rightarrow C$, 0 be holomorphic function germs with isolated critical points at the origin. Let F_f (resp. F_g) be the closure in S^5_{ϵ} (resp. $S^5_{\epsilon'}$) of a fiber of the Milnor fibration of f (resp. g). Suppose there is a topological embedding $\xi: F_f \rightarrow F_g$ with the following properties.

- (1) $\xi(F_f) \subset \operatorname{Int} F_g$ and $F_g \operatorname{Int} \xi(F_f)$ is an h-cobordism between ∂F_g and $\xi(\partial F_f)$.
- (2) The induced homomorphism $\boldsymbol{\xi}_*: H_2(F_f; \mathbf{Z}) \to H_2(F_g; \mathbf{Z})$ is an isomorphism which preserves the Seifert forms of f and g.

Then the links $(S_{\varepsilon}^5, S_{\varepsilon}^5 \cap V_f)$ and $(S_{\varepsilon'}^5, S_{\varepsilon'}^5 \cap V_g)$ are homeomorphic. (In fact, they are diffeomorphic.)

(For the definition of Seifert forms, see [12].)

In the following, we use the notations used when $n \ge 4$. Set $M = \partial(\varphi(D_e^6) \cup N(W))$. Then using an s-cobordism argument similar to that above, we see that there is a homeomorphism $\eta:(M,K_g) \to (S_e^5,K_g)$. Let $p_0: S_e^5 - \operatorname{Int} N(K_f) \to S^1$ be the restriction of the Milnor fibration of f. Using the uniqueness of the tubular disk neighborhood, we see easily that the tubular disk neighborhood N(W) is trivial; i.e. N(W) is homeomorphic to the product $W \times D^2$. Thus the fibration $p_1 = p_0 \circ \varphi^{-1}: \varphi(S_e^5 - \operatorname{Int} N(K_f)) \to S^1$ extends to a fibration $p_2: M - \operatorname{Int} N(K_g) \to S^1$. Let p_3 be the fibration given by $p_2 \circ \eta^{-1}: S_e^5 - \operatorname{Int} N(K_g) \to S^1$ and let $p_4: S_e^5 - \operatorname{Int} N(K_g) \to S^1$ be the restriction of the Milnor fibration of g. Note that p_4 is a smooth fibration, while p_3 is only a topological fibration. However, using the method of Perron [12], we can show, changing the orientation of the base space S^1 of p_4 if necessary, that

there is a homeomorphism $\eta':(S_{\varepsilon'}^{5},K_{g})\rightarrow(S_{\varepsilon'}^{5},K_{g})$ such that $\eta'(N(K_{g}))=N(K_{g})$ and $p_{4}\circ\eta'=p_{3}$ (Diagram 2). (Perron uses Freedman's result: every compact 1-connected 5-dimensional *smooth* h-cobordism is homeomorphic to the product. However, by Quinn [13] the smoothness of the h-cobordism is not necessary.)

Diagram 2.

Let F_1 ($j=0,1,\cdots,4$) be the fiber of the fibration p_1 over $1{\in}S^1$. Then $F_2{-}\operatorname{Int} F_1{\cong}W$ is an h-cobordism and the inclusion map $i:F_1{\to}F_2$ induces an isomorphism on homology, which obviously preserves the Seifert forms of p_1 and p_2 . (See the proof of Lemma 12 of [12].) Thus the topological embedding $\xi{=}\eta'{\circ}\eta{\circ}i{\circ}\varphi:F_0{\to}F_4$ satisfies the conditions in Lemma 3. Thus the links (S_5^5,K_f) and (S_5^5,K_g) are homeomorphic. This completes the proof of Theorem 1.

§ 3. Further results.

First we show the following.

PROPOSITION 4. Let $f, g: \mathbb{C}^n$, $0 \rightarrow \mathbb{C}$, 0 be holomorphic function germs with isolated critical points at the origin. If f and g are topologically V-equivalent, then there exists a homeomorphism germ $\varphi: \mathbb{C}^n$, $0 \rightarrow \mathbb{C}^n$, 0 which is a diffeomorphism except possibly at the origin such that $\varphi(V_f) = V_g$.

Proposition 4 follows from Theorem 1, Theorem 2.10 of [9], and the following lemma.

LEMMA 5. Let f and g be as in Proposition 4. If $(S_{\varepsilon}^{2^{n-1}}, S_{\varepsilon}^{2^{n-1}} \cap V_f)$ is homeomorphic to $(S_{\varepsilon}^{2^{n-1}}, S_{\varepsilon}^{2^{n-1}} \cap V_g)$, then they are diffeomorphic.

Remark. In fact, Lemma 5 holds for fibered knots ([2]) in general.

Proof of Lemma 5. For n=2, this is a well-known fact. Thus we assume $n \ge 3$. Let F_f (resp. F_g) be the closure in S_{ε}^{2n-1} (resp. S_{ε}^{2n-1}) of the Milnor fiber of f (resp. g). Using the infinite cyclic covering method and the topological h-cobordism theorem ([7], [13]), we see that F_f is homeomorphic to F_g .

Furthermore the Wall construction ([14, p. 140]) shows that the geometric monodromies of the Milnor fibrations of f and g are topologically pseudo-isotopic relative to the boundary. (For details see [12, § 3].) This topological pseudo-isotopy gives a homeomorphism between $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_f)$ and $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_g)$ which preserves the Milnor fibers in a neighborhood of a fiber. Therefore, changing the orientations if necessary, we see that the Seifert forms of f and g are isomorphic; hence, $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_f)$ is smoothly isotopic to $(S_{\varepsilon}^{2n-1}, S_{\varepsilon}^{2n-1} \cap V_g)$ by [2] $(n \neq 3)$. For n=3, we can use Lemma 3 and get the same result. This completes the proof.

Next we consider the right equivalence and the right-left equivalence. If f and g are right equivalent, then by the definitions they are right-left equivalent. Conversely, King [5] shows that if f and g are right-left equivalent, either f or \bar{f} is right equivalent to g, where \bar{f} denotes the germ of the conjugate of f. Thus if we can show that f is right equivalent to \bar{f} for every holomorphic function germ f with an isolated critical point, then the right-left equivalence implies the right equivalence. Along these lines, Nishimura shows the following.

PROPOSITION 6. ([10]) Let $f: \mathbb{C}^n$, $0 \to \mathbb{C}$, 0 be a holomorphic function germ with an isolated critical point at the origin. If (a) n=2 or (b) f has a non-degenerate Newton principal part, then f is topologically right equivalent to \bar{f} .

(For the definition of the non-degeneracy of the Newton principal part, see [11] for example.)

Nishimura proves part (a) of Proposition 6 using the fact that the links of singularities in C^2 are invertible. Part (b) is proved by the fact that if f has a non-degenerate Newton principal part, then it can be deformed through a topologically trivial family into a polynomial function germ whose coefficients are real ([11]). Note that if f is a holomorphic function germ whose power series expansion has real coefficients, then $f(\bar{z}) = \bar{f}(z)$; hence, f is right equivalent to \bar{f} .

REFERENCES

- [1] W. Burau, Kennzeichnung der Schlauchknoten, Abh. Math. Sem. Univ. Hamburg 9 (1933), 125-133.
- [2] A. Durfee, Fibered knots and algebraic singularities, Topology 13 (1974), 47-59.
- [3] G. HIGMAN, The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
- [4] H. King, Real analytic germs and their varieties at isolated singularities, Invent. Math. 37 (1976), 193-199.
- [5] H. King, Topological type of isolated critical points, Ann. of Math. 107 (1978), 385-397.
- [6] R. Kirby and L.C. Siebenmann, Normal bundles for codimension 2 locally flat embeddings, Lecture Notes in Math. no. 438, Berlin-Heidelberg-New York, Springer, 1975, 310-324.

- [7] R. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, Ann. of Math. Stud. no. 88, Princeton Univ. Press, Princeton, N. J., 1977.
- [8] Lê Dûng Tráng, Topologie des singularités des hypersurfaces complexes, Astérisque 7 et 8 (1973), 171-182.
- [9] J. MILNOR, Singular points of complex hypersurfaces, Ann. of Math. Stud. no. 61, Princeton Univ. Press, Princeton, N. J., 1968.
- [10] T. Nishimura, A remark on topological types of complex isolated singularities of hypersurfaces, private communication.
- [11] M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan 31 (1979), 435-450.
- [12] B. Perron, Conjugaison topologique des germes de fonctions holomorphes à singularité isolée en dimension trois, Invent. Math. 82 (1985), 27-35.
- [13] F. Quinn, Ends of maps, III; dimension 4 and 5, J. Diff. Geom. 17 (1982), 503-521.
- [14] C. T. C. WALL, Surgery on compact manifolds, New York, Academic Press, 1971.
- [15] O. ZARISKI, General theory of saturation and saturated local rings II, Amer. J. Math. 93 (1971), 872-964.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA 990, JAPAN