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ON THE ZERO-ONE-POLE SET OF

A MEROMORPHIC FUNCTION

BY HIDEHARU UEDA

Introduction.

Let {an}, {bn} and {pn} be three disjoint sequences with no finite limit
points. If it is possible to construct a meromorphic function / in the plane C
whose zeros, one points and poles are exactly {an}, {bn} and {pn} respectively,
where their multiplicities are taken into consideration, then the given triad
((fln), {bn}y {pn}) is called a zero-one-pole set. In general an arbitrary triad
({fln(, {bn}, {pn}) is not a zero-one-pole set. Further if there exists only one
meromorphic function / whose zero-one-pole set is just the given trias, then
the triad is called unique. It is well known that unicity in this sense does not
hold in general.

Our first result of this note is the following

THEOREM 1. Suppose that ({an}, {bn}f {pn}) {{an}\J{bn}\j{pn}Φ0) is a
zero-one-pole set which is not unique. Let {cn}, \dn) and {qn} be the subsequences
of {an}, {bn} and {pn} respectively such that {cn)^J{dn}\J{qn}Φφ and such that
Σ \cn\-χ+ Σ \dn\-ι+ Σ \qn\-ι< + *>. Then ({an)\{cn}9 {bn}\{dn}, {pn}\{qn})

CnΦ0 dnΦ0 qnΦ0

ts not a zero-one-pole set of any nonconstant meromorphic function.

Ozawa has proved this result for {ρn} — {qn}=:{cn} — 0 and lί^#{dn}< + oo.
Seethe second supplement in [3, p. 315]. The assumption Σ k n l " 1 ^ - Σ l^n l " 1

CnΦ0 dnφo

+ Σ I^ΛI""1< + °° cannot be omitted. For example, let us consider
Q*0

e c

and

e' — c

Clearly N(z)Φl, c"1, and so the zero-one-pole set ({an}, φ, {pn}) ({an}Φ0) of

N is not unique. On the other hand, the zero-one-pole set of g is (φ, φ, {pn})

and Σ | f l » | - 1 = ( 2 τ r ) - 1 Σ I * | - 1 = + « > .
anφθ kΦO
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Theorem 1 does not hold in general in the case that ({an}, {bn}, {pn}) is

unique. This is shown by the following example: Let P(z) and Q(z) be two

nonconstant entire functions of order < 1 with no common zeros, and consider

g(z)=P(z)/Q(z) and N(z)~{g(z)}\ For further examples, see Ozawa [3, pp. 313,

314]. But there exist unique zero-one-pole sets for which a similar result as

Theorem 1 holds.

Our second result is the following

T H E O R E M 2. Suppose that f{z) is meromorphic of finite nonintegral order

p>l. Let ({an\, {bn), {pn}) be the zero-one-pole set of f(z) and let {cn}, {dn\

and {qn} be the subsequences of {an}, {bn} and {pn\ respectively such that

{cn}yj{dn}yj{qn}*0 and such that 2 \cn\"ι+ Σ | d » l " 1 + Σ \qn\"ι< + oo.
CnΦ0 dnΦ0 qnΦ0

Then {{an}\{cn}, {bn}\{dn}, {pn}\{qn}) is not a zero-one-pole set.

It is well known that the zero-one-pole set of / in Theorem 2 is unique.

See [4], Further, we prove

T H E O R E M 3. Suppose that f(z) is meromorphic, and satisfies lim sup T(rf f)/r

> 0 and lim inf N^r, 0, f)/T{r, / ) > 0 . Let {{an)y {bn)y \pn)) be the zero-one-pole

set of f{z) and let {cn}, {dn} and {qn} be the subsequences of {an\, {bn} and {pn)

respectively such that {cn}yj{dn}U{qn}Φ0 and such that Σ \cn\~1+ Σ \dn\~ι

cnΦ0 dnΦQ

+ Σ I ? » l " 1 < + » . Then ({an\\{cn}t {bn}\{dn}, {pn}\{qn}) is not a zero-one-

pole set of any nonconstant meromorphic function.

We remark that the zero-one-pole set of f(z) in Theorem 3 is unique. The

proof is substantially contained in Theorem Γ of [2, p. 414]. The assumption

lim sup T(r, f)/r>0 is necessary. If f=S2m and g=Sm, where m is a positive
r-»oo

integer and S=TL(l-z/av) with av=-tv~]1/p (1/2<O<1), then limm(ry /)/r=0,

lim JVχ(r, 0, f)/m(r, /)=(sin πp)/2m>0 and

Σ k.ι-'+ Σ ι
cnφθ dnΦ0

(p smπp)r2

( ε ( r h θ a s r - > o o ) . ( C f . [ 5 , p p . 1 8 , 1 9 ] . ) A l s o t h e a s s u m p t i o n Σ k n l " x + Σ l ^ n l " 1

cnΦ0 dnΦQ

+ Σ l#nl~1< + °° cannot be omitted. For example, we set g=(cosz—1)/2 and

f—g1. In this case, lim m(r,/)/r=4π" 1 , lim Nx(χy 0, f)/m(r, /)=1/4 and

Σ \dn\-1=2π-ι
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Our final result of this note is

THEOREM 4. Let f(z) be a meromorphic function whose zero-one-pole set is
({an), {bn}, {pn}), where neither {an} nor {pn} is empty. Let {cn}, {dn} and {qn}
be the subsequences of {an}, {bn} and {pn} respectively such that {cn}yj{dn}\J{qn)
=£0, {cn}Φ{dn} and {qn} Φ {pn}. Further suppose that

, * ,. q n n N(r, 0, f)+N(r, QQ, f)+N(r, {cn}VJ{dn}\J{qn})
(*) lim sup -=-—77 <l/z

r-°° 1 V> J)

holds. Then ({an}\{cn}, {bn}\{dn}, {pn\\{qn}) ts not a zero-one-pole set.

The unicity of zero-one-pole set of / in Theorem 4 has been proved in
Theorem 2 of [7]. The assumption (*) is necessary. Let P(z) and Q(z) be the
canonical products with no common zeros, and let L{z) be a transcendental
entire function. If we set g=(P/Q)eL and f=g2, then

T(r, /)=2T(r, g)^2m(r, eL) (r->oo),

N(r> 0, f)=N(r, 0, P)=o(m(r, eL)) (r-»oo),

ΛΓ(r, oo, f)=2N(r, 0, (?)=0(m(r, 2L)) (r->oo),

tf (r, {cn}U{<f«}Uton})=tf(r, 0, P)+AT(r, 0, <?)+tf(r, - 1 , (P/Q)eL)

=(l+o(l))m(r, eL)

and so that

_____ ,i/2

(Throughout this note, the letter E will denote sets of finite linear measure
which will not necessarily be the same at each occurrence.)

1. Proof of Theorem 1.

Let N and / be two distinct nonconstant meromorphic functions whose
zero-one-pole sets are {{an}, {bn}, {pn}), and suppose that ({an}\{cn}, {bn}\{dn},
\Pn}\{qn}) is the zero-one-pole set of a nonconstant meromorphic function g.
If P, R and Q are the entire functions of genus 0 whose zeros are {cn}, {dn}
and {qn} respectively (where for example, we put P=l if {cn} = 0), then there
exist four entire functions α, β, γ and δ such that

(1.1) f=Ne*,

(1.2) f-l=(N-l)eP,

(1.3) gP/Q=Ner,

(1.4) (g-iχR/Q)=(N-l)eδ.
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Eliminating / from (1.1) and (1.2), we have

(1.5) (ea-eβ)N=l-eβ.

Similarly, from (1.3) and (1.4) we obtain

(1.6) ((R/P)er-eδ)N=R/Q-eδ.

Combining (1.5) and (1.6), and noting that iV^O, we get

(1.7) PR(ea-eP)=QPe*(ea-l)+QRer(l-e?).

Since N^f, each of ea, eβ and ea~β is not identically equal to one.
In what follows we frequently use the following form of the impossibility

of BoreΓs identity.

Let Po, Pi,'•-, Pn (Pj^O, 0 ^ / ^ n , n ^ l ) be entire functions satisfying
m(r, Pj)=o(r) (r-»oo), and let glf g2, ••• , gn be nonconstant entire functions.
Then an identity of the following form

is impossible.

This is an easy consequence of Lemma 1 in [1, p. 283].

( I ) Assume first that ea=c{φl). In this case (1.5) implies that eβ is not
a constant, and from (1.7) we deduce that R=l and that

(1.8) (c-l)PQeδ+Qer-Qeβ+r+Peβ=cP.

Since P(^0) and ζ?(^0) are entire functions of genus 0, as we have stated
above, at least one of eδ, er and eβ+r must be a constant, so we discuss the
following three cases: ( I 0 eδ, (1 2 ) er, or (1 3 ) eβ+ϊ is a constant x.

For Case ( I 0, (1.8) gives

(1.9) Qe*-Qeβ+r+Peβ={c-x(c-l)Q}P.

If C—X(C—1)Q=Ξ0, then Q = l and er—e~β+ΐ=P^const., a contradiction. Hence
c—x{c—l)Q^0f which implies that at least one of er and eβ+r is a constant y.
First suppose that eγΞΞy. Then (1.9) becomes

(1.10) (P-yQ)eβ={c-x(c-l)Q}P-yQ.

Clearly P—yQ^O and {c — x(c—l)Q}P— yQ^O, which combined with the fact
of the nonconstancy of eβ imply that (1.10) is impossible. Thus we conclude
that er is not a constant in the present case (11). Next suppose that eβ+r=y.
Then (1.9) becomes
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Qer+yPe-r={c-x(c-ϊ)Q}P+yQ (=£0).

Since er is not a constant, this is untenable. Therefore Case (11) is impossible
in ( I ) .

For Case (1 2 ), (1.8) gives

(1.11) (c-l)PQeδ+(P-xQ)et = cP-xQ (=£0).

Here neither eδ nor eβ is a constant, thus (1.11) is absurd.
For Case (1 8 ), (1.8) yields

(c-l)PQeδ+Qer+xPe-r=cP+xQ (3=0),

which is also impossible since we may assume that neither eδ nor er is a
constant in the present case.

These observations lead us to conclude that ea is not a constant.

(Π) Assume next that eβ = c(Φl). From (1.7) it follows that P=l and that

(1.12) Rea-Qea+δ+Qeδ+(c-l)QRer=cR,

and thus at least one of ea+δ, eδ and er is a constant.
(Π0 ea+δ is a constant x. By (1.12)

(1.13) Rea+xQe-a+(c-l)QRer=cR+xQ (=£0),

so that er must be a constant y. Then (1.13) becomes

(=£0),

which is impossible. Thus we conclude that ea+δ is not a constant.
(Π2) έ?δ is a constant x. By (1.12)

(1.14) (R-xQ)ea+(c-l)QRer=cR-xQ (=£0),

so that er must be a constant y. Then (1.14) becomes

which is absurd. Thus also eδ is not a constant.
(Π3) er is a constant x. By (1.12)

(1.15) Rea-Qea+δ+Qeδ={c-x(c-l)Q}R.

Taking into account the fact that all of ea, ea+δ and eδ are not constants, (1.15)
implies c-x(c-l)Q=0. Hence 0 = 1 and ea—Re"-δ=l. This is impossible.

Thus we conclude that also eβ is not a constant.

(IΠ) Assume thirdly that er=c. In this case we have by (1.7)
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(1.16) PRea+(cQ-P)Reβ + QPeδ-QPeδ+a=cQR,

so that either eδ or eδ+a is a constant.
(mO eδ is a constant x. By (1.16)

(1.17) P(R-xQ)ea+(cQ-P)Reβ=(cR-xP)Q,

which implies cR—xP=0. Hence R = P=1 and £=%. From these and (1.17)
it follows that ea~β = l, a contradiction. Thus £a is not a constant.

(IΠ2) eδ+a is a constant x. By (1.16)

(1.18) PRea+(cQ-P)Re? + xQPe-a=(cR + xP)Q,

which yields cR + xP=0. Hence #=ΞPΞΞ1 and c+x—0. Substituting these into
(1.18) we have e2a+(cQ-l)eβ+a=cQ. This is untenable.

Thus we are led to the conclusion that er is not a constant.

(IV) Assume fourthly that eδ=c. In this case (1.7) becomes

(1.19) P(R-cQ)ea-PReβ-QReΐ+QRer+β=-cQP,

which implies that er+β is a constant x. From this and (1.19) it follows that
P{R-cQ)ea-PReβ-QRer=-{cP+xR)Q, so that cP+xR=0 i.e. P=R=1 and
c+χ=0. Hence (l—cQ)ea~β—Qeγ-β — l. This leads us to conclude that ea-β = lf

which is impossible. Thus we see that eδ is not a constant.

(V) Assume fifthly that e°-β=Ξc(Φl). By (1.7)

(1.20) QRer β

so that (Vi) er~β or (V2) eδ~β is a constant x.
For Case (Vi), (1.20) gives

(1.21) xQReβ + QPeδ~β-cQPeδ={a-c)P+xQ}R.

If ( l - c ) P + x Q = 0 , then P~Q=1 and l - c + x=0, so that (1.21) yields
(c—l)Reβ-δ+e-β=c. This is impossible. If (1-C)P+XQΞ£0, then we deduce
from (1.21) that eδ~β is a constant 3; and that (xR—cyP)Qeβ={(l—c)P+xQ}R
—yQP. This identity yields c = l , a contradiction.

For Case (V2), (1.20) becomes

(1.22) QRer-QRer-β-cQPeδ={(l-c)R-xQ}P.

It is easily seen that (?=1, and thus (1.22) yields

(1.23)

which implies (l — c)R—x=0. Hence / ? Ξ 1 and l—c=x. From these and (1.23)
it follows that cPeδ~r+e~β=l. This is impossible.
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Thus we conclude that ea~β is not a constant.

(VI) Assume sixthly that er~β = c. In this case (1.7) gives

(1.24) cQReβ+PRea-β+QPeδ-β-QPeδ+<χ-β=(P+cQ)R.

Suppose first that P+cQ=0} so that PΞΞQΞΞΞI and c— — l. Substituting these
into (1.24), we have

(1.25) Re2P-a-eδ-a+eδ=R,

which implies that e2β~a or eδ~a is a constant. If e2β~a is a constant x, then
(1.25) yields that —eδ'a-\-eδ=(l — x)R. Since eaΈ£l, xΦl, so that ed~a must be
a constant y. Hence we have yea—{l—x)R+y. This is impossible. If eδ~a is
a constant x and e2^-* is not, then (1.25) gives Re2β-a+xea=R+x (Ξ£0), which
is also impossible. Thus we may suppose that P+cQ^O, so that we deduce
from (1.24) that either eδ~β or eδ+a~β is a constant.

(VIi) eδ~β is a constant x. By (1.24)

which implies that (P+cQ)R—xQP=0. This is impossible because {cn}\J{dn}
\J{qn) is not empty.

(\Ί2) eδ+a-β is a constant *. Then by (1.24)

which implies that (P+cQ)R + xQP=Of but this is impossible.
Thus er~β is not a constant.

(VΠ) Assume seventhly that eδ~β = c. In this case we have by (1.7)

(1.26) QRer+PRea-β-QRer-β-cQPea=(R-cQ)P,

from which R—cQ=0 i.e. RΞΞQ=1 and c=l. From these and (1.26) it follows
that

(1.27) -pe-β-r+e-βjrpea-r=ι f

which implies that either ea~β~r or ea~r is a constant. If ea~r is a constant x,
then (1.27) gives (1—xP)e~β = l—XP^ΞO, a contradiction. Similarly also the
constancy of ea~β~r gives a contradiction.

Thus eδ"β is not a constant.

(W) Assume eighthly that β ί + β ^ Ξ c . In view of (1.7)

(1.28) QRer+PRea-β-QRe?-β+cQPe-a=(R+cQ)P,

which implies that R+cQ=0. Hence R=Q=1 and c= —1, so that (1.28) gives
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(1.29) e-P-Pea-

From (1.29) it follows that (VI x) ea'β-γ or (VI2) e~a-r is a constant x.
For Case (MO, (1.29) becomes e-β+xPeβ-*a=l + xP&0), which is impossi-

ble. For Case (Vffl2), (1.29) becomes e~β — xPe2a-β=l-xP (ξέO), which is also
impossible.

Thus e

δ+a-β is not a constant.

(DC) Assume finally that all of er, ea~β, er~β, eδ~β and eδ+a~β are noncon-
stant. In view of (1.7)

QRβr+PRea-β-QRer-β+QPeδ-β-QPeδ+a-β=PRf

which is clearly impossible.

All the above arguments ( I )-(K) are combined to show that ({an}\{cn},
{bn}\{dn}, {pn}\{qn}) is not a zero-one-pole set of any nonconstant meromorphic
function.

2. Proof of Theorem 2 and 3.

2.1. Proof of Theorem 2. Suppose that ({an}\{cn}, {bn}\{dn}, {pnWlQn})
is the zero-one-pole set of a meromorphic function g(z).

In this case we first note that g(z) is not a constant. In fact, if g(z) is a
constant, then {an} = {cn}f {bn} = {dn} and {ρn} = {qn} hold. This implies that
N{r, 0, f)+N(r, 1, f)+N(r, oo, /)=t f ( r , {cn}U{^n}W{^,})-^(r) (r-^oo). On the
other hand, by the second fundamental theorem (l—o(l))T(r, f)^N(r, 0, / ) +
iV(r, 1, f)+N(r, oo, /) (r-*oo), and so that T(r, f)=o(r) (r->oo), which contra-
dicts the assumption i o>l .

Secondly we note that g(z) is of finite order. In order to show this, we may
note that N(r, 0, g)+N(r, 1, g)+N(r, oo, g)£N(r, 0, f)+N(r, 1, f)+N(r, oo, /)
^3T(r, /)+O(l)^O(r^ + ε ) (ε>0, r->oo), and recall the fact that a nonconstant
meromorphic function has at most two Borel deficient values.

Let P(z), R(z) and Q(z) be the entire functions of genus 0 whose zeros are
{cn}> {dn} and {qn} respectively. For example, we set P(z)=l if {cn} is empty.
Then we have

(2.1) gP/Q=fe°,

(2.2) te-l)/?/O=(/-D^

with two polynomials a and β. Eliminating g from (2.1) and (2.2), we obtain

(2.3) ((R/P)e"-eβ)f=(R/Q)-eβ.

If (R/P)ea-eβ=0, then R==P=1, and so by (2.3) Qeβ = l. This is a con-
tradiction. Thus
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(2.4) f=m$gr-
If both ea and eβ are constants, we deduce from (2.4) that ^ 1 , a contradiction.
Hence ea or eβ is not a constant. In this case by (2.4) we obtain

(2.5) T(χy f)£2m(r, R)+m(r9 Q)+m(r, P)+2m(r,

l)){m(r, ea)+m(r, e?)} (r->oo).

Next, we proceed to estimate T(r, f) from below. Using the second
fundamental theorem we easily deduce T{r, g)<L(3+o(l))T(r, f) (r-^co)y and so
that by (2.1) and (2.2)

(2.6) m{χy e
a)+m(r, e?)<m(r, P)+m{r, R)+2m(R, <?)+2T(r, g)

+2T(r, /)+O(l)^(8+^l))T(r, /) (r-oo).

Combining (2.5) and (2.6), we conclude that p=max(dega, deg β), which con-
tradicts the nonintegrity of p.

2.2. Proof of Theorem 3. In this case we have (2.1)-(2.5) with two entire
functions a and β (where ea or eβ is not a constant), and (2.6) as rφE, r-»co.
Differentiating (2.1) and (2.2), we obtain

(2.7) g'P/Q+g(P/Q)'=(f'+fa')e«,

(2.8) g'R/Q+(g-iXR/QY=(f'+fβ'-β')eβ.

If a is a multiple zero of /, then by (2.1) and (2.7) at least one of
£(α)=£'(α)=0, g(a)=P(a)=0 and P(a)=P'(a)=0 holds. In particular by (2.2)
and (2.8) g(a)=g'(a)=Q implies that a is a zero of (R/Q)'-{R/Q)βf. Hence if
β is not a constant, then

r, 0, f)^N(rf 0, (R/Q)'-(R/Q)β')+N(r, 0, P)

£T(r, (R/Qy)+T(r, R/Q)+rn(r, β')+m(r,

r, R/Q)+m{r9 (^)7^)+m(

(r, i?)+m(r, ζ?)+m(r, F)}+o(m(r, e?))

=o(m(r, et))=o(T(r, /)) {rφE, r-*oo),

which is impossible. If β is a constant, then

(2.9) Nι{r> 0, / ) ^ M r , 0, (R/Q)')+N(r, 0, P)

r, R/Q)+m(r, P)

(r->oo)
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Since N^r, 0, f)>κT(r, f) with a suitable κ>0 and r^r0, (2.9) implies T(r, f)
=o{r) (r->oo), which contradicts the assumption lim sup T(r, /)/r>0.

3. Proof of Theorem 4.

Let ({an), {bn)y {pn}) be the zero-one-pole set of a nonconstant meromorphic
function f(z). Suppose that {cn}, {dn} and {qn} are subsequences of {an}, {bn}
and {pn} respectively such that {cn)\J{dn)\J{qn)Φ0 and such that ({an}\{cn},
{bn}\{dn}, {pn}\{Qn}) is the zero-one-pole set of a nonconstant meromorphic
function g(z).

If P(z), R(z) and Q(z) are entire functions whose zeros are {cn}, {dn} and
{qn) respectively (where for example, if {cn} is empty, we set P(Z)ΞΞI), then
we have

(3.1)

(3.2)

gP/Q=fe*,

(g-l)R/Q=(f-l)e'β

with two entire functions a and β. Eliminating g from (3.1) and (3.2), we
obtain

ψ2=:-fSer and φt=Te'β.

(n=l,2).

(3.3) /

where S=R/P, T=R/Q and γ=a-β. Put
Then by (3.3)

Further put

(3.5)

Here we state two lemmas.

LEMMA 1. // Δ vanishes identically, then at least one of {an\\{cn} and
\Pn}\{qn} is empty.

Proof. Since Δ vanishes identically, we deduce from (3.4) and (3.5) that

1

φl/φi
Φί7φi

1

φί/φz
Φ'ί/Φ*

1

Φ'zlφz
φί/φt

, Δ' =
4

Φ

AIΦi

ϊ/ψ*

Φ'JΦ

Φ'ilΦ

Φ*
ΦΊ
Φ'ί

φi

φί
φ'i

φz

φί
φ'i

= ΦΊ
ΦΊ

ψt

Φί
Φ'ί

1

0
0

=
φί

ΦΊ

φί

Φ'ί

which implies with two constants C and D

(3.6)
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(3.7) Te-^ψ^l-ψ^ψ

Combining (3.6) and (3.7), we easily get

(3.8)

Case 1. Assume first that {dn} is not empty. Since R(dn)~QφP(dn)Q(dn),
(3.8) gives C+JD=O and (C + l)Qer+β—Rer=CP. From the latter identity, we
easily see that CφO, — 1. Then by (3.6) and (3.7)

f CP __ q+QQ-Re-t f -Re?
1 CP+Re* (l+C)Q ' J "f

CP+Re* (l+C)Q ' J "CP+Re* '
which show that {cn} — {an}f {dn} — {bn) and {qn} — {pn}. This contradicts the
assumption that g(z) is a nonconstant meromorphic function.

Case 2. Assume next that {dn} is empty. Since R(z)^l, (3.6) gives
(CP+er)f=-DP. If D=0, we have CP+er=0, which implies P(z)=l. In
this case {qn} is not empty, and hence by (3.7) Cφ—1 and

7 (C+1)Q '

which implies that g has no poles. If DφO, (3.6) gives

f=._ -DP
1 CP+er '

which implies that g has no zeros.

LEMMA 2. Assume that Δ is not identically equal to zero. Then we have

(3.9) (l-o(l))T(r, /)

^2{N(r, 0, f)+N(r, oo, f)+N(r, 0, P)+N(r, 0, Q)+N(r, 0, R)}

+ O(log+m(r, P)+log+m(r, Q)+log+m(r, R)) (r<£E, r^co) .

Proof. Easy computations give

Φi=if'/f+S'/s+r')Φt,

ΦS={f'/f+s'/s+2(f7fXS'/s+f)+2iS'/s)r'+r"+(.rΎ}Φt,

ψ'3=(T'/T-β')ψ3,

Hence

(3.10) J=(S'/S+r'){2(f'/ff-f''/f}

-{2(T7T-β')(S'/s+r')-S"/s-2(S'/sy-r"-(r'f}(f'/f)

+(S7S)(T'7T)-(T7T)(S" /S)+(S' /S){(β'f-2(T7T)β'}
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-{T'/T){2{S'/S)γ'+γ"+{γ'f\+γ'{{T"/T)-2{T'/T)β'+(βΎ}

+β'{(S"/s)+2(S'/sy+r"+(ry}-β"(S'/s+r').

As we have shown in [7, Lemma 2],

(3.11) N{r, oo, 2(f'/fy-f"/f)^2N(r, 0, f)+N(r, oo, /) .

Also the term {S'/S){T"/T)—{T'/T){S"/S) requires attention. A direct com-
putation gives

(S'/S)(Tn/T)-(T'/T)(S"/S)

=(R'/R){(P"/P)-2(P'/py+2(Q'/QT-(Q"/Q)+2(R'/R)(P'/P-Q'/Q)}

+(Q'/Q-P'/PXR"/R)+(.P'/FKQ'/Q)-(Q'/QXP'/P)

-2(P'/PXQ'/Q)(Q'/Q-P'/P),

which implies

(3.12) N(r, oo, (S'/S)(T"/T)-(T'/T)(S"/S))

^2{N(r, 0, P)+N(r, 0, Q)+N(r, 0, R)}.

Thus (3.10) combined with (3.11) and (3.12) yields

(3.13) N(r, co, Δ)<2N{r, 0, f)+N(r, oo, /)

+2{N(r, 0, P)+N(r, 0, Q)+N(r, 0, R)\.

Now, dm and (3.5) give f=Δ'/Δ, and so

(3.14) m{r, f)^m(r, Δ')+m(r, J"1)

<m(r, Δ')+m(r, Δ)+N(r, oo, J)+O(l).

Here we estimate m(r, Δ') and w(r, J). By (3.1) and (3.2)

m(r, e")^m(r, g)+m(r, f-ι)+m{r, P)+m(r, <?"')

&T(r, g)+T{r, f)+m(r, P)+m(r, Q)+O(l)

^(4+<KD)T(r, f)+m(r, P)+m(r, Q) {r£E, r-oo),

w(r, eθ^m(r, ^-l)+m(r, (/-l)-»)+m(r,

£T(r, g)+T(r, f)+m(r, R)+m{r,

^(4+o(l))T(r, /)+»ι(r, J?)+»ι(r, (?) (r£E, r-»oo).

Hence

T(r, ί&3)^T(

, J?)+m(r, <?)} ( r £ £ , r-foo).
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f)+T(r, R/P)+m(r, *0

f)+m(r, R)+m(r, P)+m(r, ea)+m{r,

, /)+2{ro(r,

so that

(3.15) ro(r, Δ'\ m(r, Δ)£O(\og r+log T(r, sW+log T(r, ψ2)+log T(r, φs))

-O(logr+logT(r, /)+log+m(r, P)

+log+m(r, <?)+log+m(r, R)) (r£E, r->oo).

After (3.13) and (3.15) are taken into account, (3.14) gives (3.9).

We are now in position to prove our Theorem 4. Using Lemma 4 in [6],
we can choose P(z), R(z) and Q(z) such that

log+m(r, P)+log+m(r, i?)+log+m(r, Q)
( 3 J 6 )

Mr, 0, P)+N(r, 0, Λ)+JV(r, 0,

for a suitable set £?c[l, oo) of infinite linear measure. Clearly

(3.17) N(r, 0, P)+N(r, 0, R)+N(r, 0, (?)

^ΛΓ(r, 0, f)+N(r, 1,

Assume now that ({an}\{cn}, {bn\\{dn}, {pn}\{Qn}) is the zero-one-pole set of a
meromorphic function g(z). By assumption g{z) has zeros and poles, so we
deduce from Lemma 1 that Δ is not identically equal to zero. On combining
(3.9) in Lemma 2 with (3.16) and (3.17) we obtain

(l-0(l))7(r, /):S2{JV(r, 0, f)+N{r, oo, f)+N(r, 0, P)

+N(r, 0, R)+N(r, 0, Q)} {r^Ω\E, r^oo),

which contradicts the condition (*).
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