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CHANGE OF THE BASE POINT IN THE HOMOTOPY

EXACT SEQUENCE OF A FIBRATION

BY SEIYA SASAO AND HIDEAKI OSHIMA

§ 1. Introduction.

The purpose of this note is to show that the homotopy exact sequence of
a kind of principal quasiίibration in the sense of Dold-Lashof [2], which shall
be called a principal fibration, does not depend on the choice of base points
(Theorem 5.1). A typical example of the principal fibration in Example 3.4 is
also a principal fibre space in the sense of Peterson-Thomas [9].

The object of this note is classical and may be known to experts but we
have not seen any fully general description of it in reference except related
results in [10] and [3] which assert that the homotopy exact sequence of a
Serre fibration does not depend on the choice of base points and will be proved
in a general form in this note ((8) of Lemma 4.1).

Although we can work in the usual category of topological spaces under
some restrictions, we shall deal mainly with more convenient category WHK,
the category of weak Hausdorff ^-spaces [7], [8].

We are grateful to Y. Hirashima for bringing our attention to [3] and [10].

§ 2. Notations.

Continuous functions are called "maps".
We recall from [7] some notions. A space X is weak Hausdorff if f(K)

are closed for all compact Hausdorff spaces K and all maps / : K-*X. A subset
A of the space X is compactly closed if for every map / : K->X, where K is a
compact Hausdorff space, f~\A) is closed in K. A space X is a &-space if
every compactly closed subset of X is closed. The &-ification k(X) of a space
X is the space whose underlying set is that of X and whose closed sets are the
compactly closed subsets of X. If X, Y are spaces, let X^Y—k{XxY), where
X denotes the usual cartesian product, and let Map(Z, Y)=kC(X, Y), where
C(X, Y) denotes the space of maps from X to Y with the compact-open topology.
In WHK, we have the exponential law: Map(Z(g)F, Z)=Map(Z, Map(F, Z)).
See [8] and [12].

A space X with a distinguished point * is called a based space. A based
space X is well based if (X, *) is an NDR-pair. Recall from [6] and [13] that
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a pair of spaces (X, A) is cofibred if and only if (X, A) has the homotopy ex-
tension property (HEP) for all spaces, and that (X, A) is an NDR-pair if and
only if A is closed in X and (X, A) is cofibred, that is, a closed cofibred pair.
Notice that if (X, A) is cofibred and I G WHK then A is closed in X and so
{X, A) is an NDR-pair.

We shall use the following notations:
WHK—thQ category of weak Hausdorff ^-spaces;
CW=the category of CW complexes;
FCW=the category of finite CW complexes;
WHK*=the category of well based weak Hausdorff ^-spaces;
CW*=the category of CW complexes with a distinguished vertex;
FCW*=the category of finite CW complexes with a distinguished vertex;
HEP=homotopy extension property;
CHP^covering homotopy property;
CHEP=covering homotopy extension property;
c(x)=cx=the constant function into the point x;
1=10, 1], the unit interval;
C(X, Xu ••• ,Xn;Y, Yu '" > ̂ n)=the subspace of C(X, Y) of maps / with

f(Xι)dYι for all *
M a p ( Z , Xu .- ,Xn\Y, Yu .- , Yn)=kaX, Xu - ,Xn\Y, Yu - , Yn);
[Z, Xu •••, Xn Y,YU'", F n ] = t h e set of homotopy classes of maps / : X->Y

with f(Xt)(zYι for all i, where homotopy ψt satisfies φt(Xι)(ZYι;
ΣX=XχI/(Xx{0, 1}W{*}X/), the reduced suspension of (X, * ) ;
(X, A)X(Yy B)=(XXY, XXBUAXY);
π3: XiX ••• χXn-+XJt the projection to the j-th component.

§ 3. Principal fibration over an //-space.

DEFINITION 3.1. An //-space is a weak Hausdorff &-space G together with
a continuous multiplication

with two sided unit e.

DEFINITION 3.2. Let G be an //-space. A Serre (resp. Hurewicz) fibration
over G is a quintuplet (E, p, B, μ, G), usually triplet (E, p, B) is sufficient
notation, satisfying the following conditions.

(1) EEΞWHK and p: E->B is a map having the CHP for spaces in FCW
(resp. WHK), and

(2) μ:E®G—>£, μ(x, g)=xg

is a map such that

(2-1) xe=x,
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(2-2) xG=μ(x, G)dFx=p-\p(x))=fibΐe through x,

(2-3) *(*)* : [Z, * ; G, £] = [Z, *;FX, x~\ for all XGΞ£ and all ZEΞFCW*

(resp. WHK*), where

Λ ( X ) : G — > F X , κ(x)(g)=xg.

Remarks. (1) Λ (Λ ) factorizes into the composition of maps

κ(xY k
G — > k(Fx) — > Fx

where k is the canonical identity map, and (2-3) can be replaced by

(2-3/ *(*) ' * : [Z, *; G, e] = [Z, *; β ( ^ ) , *] for all x e £ and all Z^FCW*
(resp.

(2) As is well known, FCW* can be replaced by CW* in (2-3) and (2-3/.
(3) Recall from p. 63 of [4], p. 154 of [5] and 6.44 of [6] that if p: E-+B

has the CHP for spaces in FCW (resp. WHK), then p has the CHEP for rela-
tive CW pairs (resp. NDR-pairs in WHK).

If (E, p, B) is a Serre (resp. Hurewicz) fibration over G, then for any Z e
CW* (resp. WHK*) and any XΪΞE, the function

ZU)=κ(x)*-M: [ J Z , *; 5, />(*)] —-> [Z, *; F β , x ] s [ Z , *; G, e]

is called the characteristic homomorphism for the fibration with respect to x,
where Δ is the connecting (boundary) function. See the proof of Lemma 4.1(8)
given below or the chapter 4, especially Theorem 1.25 and Example 1.6, of [5]
for the definition of Δ.

DEFINITION 3.3. Let G be an associative //-space, that is, a monoid in
WHK. A Serre (resp. Hurewicz) fibration (E, p, B) over G is principal if

x(gg')=(xg)g' for every x<=E, g, g'(=G.

Remarks. (1) Any principal Serre fibration over G is a principal quasi-
fibration over G in the sense of Dold-Lashof [2] except the lack of an assump-
tion about the left translations of G.

(2) A principal fibration over G, (E, p, B), is not necessarily locally trivial
nor the translation function

τ:E*={(x,xg)\χξΞE, g^G} — > G , τ(x,xg)=g,

can be well-defined.
(3) A numerable principal T-bundle in WHK, where T is a topological

group in WHK (see [1] and [8]), is a principal Hurewicz fibration over T.
(4) If we work in the usual category of topological spaces and in addition
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we assume that the translation function τ: E*-*G can be defined and is con-
tinuous, then the principal Serre fibration over G is a principal fibre space in
the sense of Peterson-Thomas [9].

Example 3.4. Let T be a topological group in WHK, that is, let T be a
group and a space in WHK having the continuous multiplication T§§T->T and
the continuous inversion T->T. Let q: Y-+Y/T be a numerable principal T-
bundle ([1], [8]) and let XZΞWHK. Then G=Map(Z, T) becomes naturally a
topological group in WHK. Moreover we have a free action

Map(Z, F)(g)Map(X, T) —> Map(Z, F), (fgXx)=f(x)g(x),

and the map

T, F) —> £=Map(Z, 7/T)

is a principal fibre space in the sense of Peterson-Thomas [9] and also a principal
Hurewicz fibration over Map(Z, T). Indeed, q has the CHP for ^-spaces by 4.8
of [1], hence so does p by the exponential law for the functor "Map" (see 3.6
of [12] or 4.11 of [8]). By 6.27 of Oshima [8], we have

(1) xG=Fx,

(2) κ(x)f: G —> k(Fx) is a homeomorphism, and

(3) the translation function τ: k(E*) -> G is well defined and continuous.

§ 4. Operations induced by a path.

Case 1. Let (Z, A, A') be a cofibred triplet, that is, (Z, A) and (A, A') are
cofibred pairs. Let (X, C) be a pair of spaces and let ω: (/, 0, 1)-*(C, *o, *i)
be a path. We define

ω«: [Z, i4, ^ X, C, x0] — > [Z, Λ, ^ Z, C, x{]

as follows. Given a map / : (Z, 4̂, A')-*(Xf C, x0), we have a map L : 7xΛ-^C
extending fπ2Uωπi: {0}xAVIxA'->C. The map fπ2UL : {0} x Z υ / X i 4 - > I
has an extension H: IxZ->X. We define ω*[/3 = [i/1].

The above case can be seen in texts such as [4], [5] and [11]. Next we
consider less familiar case of which the first ω# was essentially treated in
Lemma B of [10] and the chapter 5 of [3]. See also Example 1.9 of [5; p. 235].

Case 2. Let p: E-^B have the CHP for spaces in FCW (resp. WHK),
ω: (I, 0, 1)->(JB, xOf Xι) a path, (Z, A, A') a triplet of CW complexes (resp. a
cofibred triplet in WHK). Set Fl=p~Xp(xl)). We shall define operators

ω* : [A, Af F o , *„] — > LA, A' Fly xx~\ ,

ω* : [ Z , A, A' E, Fo, xol — > [ Z , A, A' E, Fu Xl~].
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Notice that A and A' are closed in Z and so (Z, A, A') is an NDR-triplet.
Given a map f: (A, A')-*(F0, x0), there exists a map H: IxA^E extending
fπ%\Jωπx\ {0}XA\JlxA'-*E and lifting pωπx\ IXA-+B, by the CHEP. Hence
we have a map // 1=JH(1, ): (4, ^4')-<Fi, xj, and we define <w*[/]=[#i]. Given
a map g: (Z, A, A')-+(E, Fo, x0), we have a map g': IXA-+E lifting pωπx: / X i
-±B and extending gπ%\Jωπx: {0}xA\JlxA'->E, by the CHEP. We have also
a map L:IxZ->E extending gπ2\Jg': {0}xZu/Xi4^, by the HEP. Hence
we have a map Lx: (Z, Λ, i4')-<£, Ή, *i), and we define ω*[g] = [Li].

LEMMA 4.1. (1) α># /s ẑ e// defined.

(2) // αj^ft/ r ^ {0, 1}, then ω*=ω'*.
(3) // ω—c(x), the constant path to x, then ω* is the identical automorphism.
(4) If ω(l)=τ(0)f then (αH-r)*=r*ώ>*.
(5) ω# /s fl bijection.
(6) /n Case 2, ίAβ square

ω*
[Z, Λ ^ £, Fo, xo] —> [Z, Λ, ^ £, Λ, x j

I I
[ Λ ^ Fo, xo] > LA, A';FU χ{\

is commutative, where the verticals are the restrictions. Similar assertion holds
in Case 1.

(7) In Case 2, a>* /s natural with respect to bundle maps, that is, if p/: Ef^Bf

is an other fibration of the same type with p and there is a commutative square

where f and f are continuous, then the squares

Γ A At . 77 ^ Ί k Γ A At . EV γ t

[4, -4r; Fx, * J —> [4, 4 ' ; F\, x\~\
/*

j_ i>, y l , /L ^ / > , Γ o ; XoJ > {.£f **t Λ . ) h/ , r o> X o_

(/ω)
[Z, Λ A'; E, Fu xΔ —> [Z, Λ i4'; £', F' 1 ( x',I

/*
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are commutative, where x\=f(xt) and F\=p'~1(p'(x'l)).
(8) ([3], [10]). In Case 2, the following ladder of homotopy exact sequences

of the fibration is commutative

IΣZ,*;

(pω)* \

IΣZ, *;

B,

B,

b

b

o] >ίZ, *;FOi

1 *® ω*

>ΓZ,*;Fl!

, Xo] —

α
->iz,*

E,

S,

Xo] —

(£

JCi] —

->[Z,

D

* B, bo]

) (jx»)
*; B, bil

where ZΪΞCW* (resp. WHK*) and bt=p(x%).

Remark. In Case 1, the family of sets {[Z, A, A' \ Xy C, x] U G C ) and
operations {ω*[ωeC(/, C)} forms a local system of sets in C, by (1)~(5). In
Case 2, similar assertion holds.

Proof of Lemma 4.1. Let π: IxYxI-^IXl be the projection for any Y.
To prove (1) of Case 1, let / : (Z, A, A')Xl-+(X, C, x0) be a map. Let

ft': IχAx{i}-*C (i=0, 1) be any extension of fiKJωπr. {0} X^4x{/}W/X^4/X{2}
->C. Let Lι: IxZx{i}-*Xbe any extension of fiVJf/: {0\xZx{i}KJlXAx{i\
-+X. Let also g: IxAxϊ-^C be any extension of AΛ/O'U/IOUOMΓI : {0}X 4̂
X/U/XiXfO, lJU/X^'X/^C. Since (Z, ^)X(7, {0, 1}) is coίibred, the map
f\J(L*VjLι)\Jg: {0}xZx/VJ/xZx{0, 1}W/X^1X/->Z extends to a map H:IxZ
XI-+X. Then i/: {1}X(Z, A, A')Xl->(X, C, xλ) is a desired homotopy of ZΛ
to L\.

To prove (1) of Case 2, let ^ : (A, A')XI-±(FQy x0) be a homotopy, and let
Hι \ IXZx{i}-*E (f=0, 1) be a map lifting pωπx and extending 0i7r2Uίy^i: {0}

}->£. Then /w^ΠOfX^X/W/X^X/U/XAXίO, 1} =
. Since (A, ^0X(/, {0, 1}) is an NDR-pair by 6.12 of [6],

there is a map L: IxAXΪ->E lifting pωπx and extending φKJωπ^iH^KjH1), by
the CHEP, hence the restriction L: {1}XO4, A^xl-*^, xλ) is a desired homo-
topy of H\ to H\.

Let ψ : (Z, J4, i4OX/->(£, Fo, xQ) be a homotopy. We then have ψ/ : /xΛ.
X{i\-^E (/=0, 1) lifting /κwπi and extending φiKJωπ^. {Q)χAx{i)\JlxA'X{i}
->E. Extend ψtKJψi \ {0} XZX{/}W/X^X{/}-»£ to a map H': IxZx{i}->E.
We have L: IxAxI-*E lifting pωπr. IxAxI->B and extending ψUωπ^
(ψo'Uφ/): {Q}xAxI\JlxA'Xl\JIxAx{0, l}->£. Since (Z, >1)X(/, {0, 1}) is
cofibred by 6.12 of [6], the map ψVJ{H«\jHι\jL): {0} XZxI\JlX{Zx {0, 1}W^
Xl)-+E extends to # : IχZxI-+E. Then the restriction # : {1}X(Z, A, A')Xl
->(E, Fu Xι) is a desired homotopy of if0! to H\.

To prove (2) of Case 1, let / : (Z, A, A')-+(X, C, x0) and θ: (/, 0, l)X/->
(C, *0, Xi) be maps. The map gπ2\Jθπ: {0}xAx{2}U/xA/X{/}->C extends to
a map Lι: IxAx{i}-^C. The map gπ2ULι: {0}xZx{i}\JlXAx{i}-*X ex-
tends to a map TO: 7xZx{ι}->X The map gπ2\J(L*\jLι)\Jθπ: {0}xAxI\Jl
χAx{0,l}\JlxA'Xl-*C extends to a map h:IxAxI-+C, since (A, A')
X(f, {0, 1}) is cofibred. Since (Z, A)X(I, {0, 1}) is cofibred, the map gπ2U
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{K*VJKλ)\Jh\ {0}XZxIUlXZx{0, 1}UIXAXI->X extends to a map H: IxZ
XI-+X. Then the restriction H: {1}X(Z, A, A')Xl-»(X, C, x,) is a desired
homotopy of K\ to K\.

To prove (2) of Case 2, let / : (A, A')-*(F0, x0) and θ : (/, 0, l)χ/->(£, x0, xλ)
be maps. There exists a map Hι: IxAx{i}->E (i=0, 1) extending fπ2Uθπ:
{0}XAX{i}VJlXA'X{i}-+E and lifting pθπ: IχZx{i}-+B. Since 04,-4') X
(/, {0, 1}) is an NDR-pair, there exists a map H: IxAXI—>E extending fπ2\J
(H*KjHι)\Jθπ\ {O)XZX/U/XZX(O, 1}W/X{*} XI-+E and lifting /x9τr: IxZxI
->£. Then the restriction i/: {l}χO4, Ar)Xl-^{Fu xt) is a desired homotopy
of H\ to 7Λ.

Let / : (Z, 4, i4')-»CE, Fo> xQ) and 0 : (/, 0, l)χ/->(£, x0, xO be maps. There
exists a map Lι: /X^X{/}->£ extending fuθπ : {0}Xi4x{2}W/X{*}χ{ι}->£
and lifting pθπ: IXAX{i}-+B. The map fπ2\jLι: {0}xZx{i}UlxAx{i}->E
extends to a map i θ : IxZx{i}-+E. Since (Λ, i47)X(/, {0, 1}) is an NDR-pair,
there exists a map L : IxAXI->E extending the map fπi\J{U\jLι)\Jθπ : {0} X/l
X/W/X^4X{0, \}\JlxA'Xl-+E and lifting />βπ: /X^X/->5. Since (Z, A)X
(/, {0, 1}) is cofibred, the map fπ2\J(,K^KJKι)\jL: {0} x Z x M x Z x ( 0 , l)\J
IχAxI->E extends to a map H: IxZxI-*E. Then the restriction H: {1}X
(Z, A, A0x/-^(£, Fi, Xi) is a desired homotopy of K\ to ϋC1!.

To prove (3) of Case 1, let / : (Z, 4, i47)->(^, C, x) be a map. Since fπ2\J
cxπί^fπ2\ {Q}xAUlXA'^C, it has an extension fπ2: IXA-*C. Thus fπ2\J
fπ2: {0}xZW/Xi->Z has an extension fπ2: IxZ^X. Therefore c**[/] = [/].

To prove (3) of Case 2, let / : (Λ, A')-+(FX, x) be a map. The map fπ2:
IχA-^E extends ίπ2\Jcxπx\ {0}xA\JlXA/->E and lifts pcxπλ: /Xi4->C. Thus
Cατ*[/] = [/]. Let g: (Z, Λ, A ' H E , F x, x) be a map. Then the map ̂ rπ2: IxA
->£ extends gπ2Ucxπ!: {OlXAW/XA'^ and lifts ί c ^ : IxA~>B. The map
gπ2\Jgπ2\ {0}xZVJlxA->E has an extension^7Γ2: IxZ^E. Thus Cα *[#] = [£].

To prove (4), let ω and τ be paths in an appropriate space such that ω(0)
= x0, ω(l)=τ(0)=xί and τ(l)=x2.

To prove (4) of Case 1, let / : (Z, Λ, i4')->(Z, C, %0) be a map. Let /Γ:
IXA-+C be an extension of fπ2\Jωπx\ {0} X^W/X^;->C, and let V : IxA-^C
be an extension of Hιπ2\Jτπ1: {Q}xA\JIχA'-^C. Let H: IxZ-^X be an exten-
sion of fπ2\jH': {0}xZ\JlxA^X, and let L: IxZ->X be an extension of
Eλπ2\jL'\ {0}xZ\JlxA-*X. Then [i/i]=ω*[/] and [L1]=τ#[i/1]=r*ω*[/], by
definition. Define if: IxZ-^X by

, z) if 0^ί^

L(2ί-1, z) if

Then K\{0}xA\JIxAf ^ fπ^iωΛ-φ, and AΊ
Thus [L1] = [ii:1]=(ω+τ)*C/]. Therefore τ*ω*[/]

To prove (4) of Case 2, let / : (A, A')->(F0, x0) be a map. Let //:
be a map extending fπ2\Jωπx: {{)}xA\JlxA'~^E and lifting pωπλ: IxA-*B.
Let L: /Xi4->£ be a map extending H^^τπ^. {ΰ}xA\JlxA'-*E and lifting

!: IXA->B. Then [#i]=ω*[/] and [L1]=r*[i/1]=r*ω*[/]. Define K:
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->£ by

f H(2t,z) if
K(t, z)=\

{ L(2t-l,z) if

Then K is an extension of /^2W(α)+τ)πΊ: {0}xA\JlxA'-*E and a lifting of
ί(ω+r)ίΓi: /Xi4->β. Thus [Li]K#i]=(ω+r)*[/] and so r*ω*[/]=(ω+r)*[/].
Let g: (Z, A, A')-*(E, Fo, x0) be a map. Let h: IxA-^E be a map extending
gπ2yjωπt: {0}xA\JlxA'->E and lifting pωπr. IxA->B, and let H': IxZ-*E
be an extension of gπ2\Jh: {0}XZUIxA->E. Let Λ': 7x^4->£ be a map ex-
tending H\πJUτπι: {0} X A W/X ./!'-•£ and lifting pτπ1: IxA-^B, and let 1/:
IχZ-*E be an extension of H\π2\Jh': {0}xZVJlxA-+E. Then [JΪΊ]=ω*[^]
and [L'1]=τ*[//'1]=r*ω*[^]. Define Kf: ΪXZ-+E by

) if

L\2t-l,z) if

Then Kf\{O\xAVJlxAf=gπ2\J(ω-\-τ)π1 and J
Thus [ L \ ] = [ / r Ί ] = ( ω + r ) * [ £ ] and so τ # ω # [ g ] [ ^

To prove (5), let ω be any path in an appropriate space with ω(0)=x0 and
<U(1)=Λ:1. Since ω-\-ω~1^c(xQ) rel {0, 1} and ω^+ω^cζx!) rel {0, 1}, ω* is^a
bijection of which the inverse is ar 1 # , by (2), (3) and (4).

(6) and (7) can be proved easily by definition. So we omit their proofs.
Let us prove (8). The commutativity of ® and ® is trivial by definition.

Consider the following diagram:

[_ΣZf *; β, fc0] - L iCZ, Z; B, ft0] = [CZ, Z, *; β, 6e, W

J
\_CZ,Z;B, 6,] = \CZ, Z, * B, bu bC_

3
ICZ, Z,*;E, F,, *,] — • [Z, * F,, *,]

^ tCZ, Z, * 5, F,, x j —> [Z, * Fu χx]
ί* 3

where CZ=Zx//(Zx{l}U{*}X/) is the reduced cone of Z, q:(CZ, Z,*)-+
(ΣZ, *, *) is the quotient map, and 3[/] = [/ |Z], If this diagram is commuta-
tive, then so is φ, since Δ—dp*~1q*.

By definition, © is commutative.
Given any map / : (CZ, Z, *)->(£, Fo, x0), there exist maps / ' : IxZ-^E

lifting j&α>7Γi: IxZ-+B and extending fπ2\Jωπx: {0}XZυ/X{*H^ and //: 7χ
CZ->E extending fπ2\Jf: {0}xCZuIxZ-+E, so [//i]=a>*[/], hence jM>*[/]
= [/)//i]. Since ί/': IxZ-+B and />#: IXCZ-+B extend pfπ2\Jpωπ,\ {0}xZW
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and pfπ2\Jpf: {0}XCZUlXZ-*B, respectively, it follows that
= [£ί/i], so © is commutative.

Given any map g: (ΣZ, *)->(B, W, there exists a map L: IxΣZ^B ex-
tending gVJpω: {Q}xΣZVJlX{*}^B, so [Li] =(/*»)*[#] and ^*(ίω)*[^] = [ L ^ ] .
Since pωπx'.IxZ-^B extends pω^KJφo): JX{*}W{0} x Z - > 5 , and since L(idXq):
IXCZ-^B extends gqπ2\Jpωπ1: {0} X C Z U / X Z ^ 5 , it follows that (/>ω)VL§ ]
:rrC^i^]=^*(ίίί>)#[<§']. Thus ® is commutative, hence so is ®, and this proves
(8). This completes the proof of Lemma 4.1. •

We shall show that ω* — h*: \_A, A'\ Fo, Xo]-*[A, A'\ Fu xx~] for some map
h: (Fo, Xo)-^(Fίy xλ) in some cases.

LEMMA 4.2. Let p: E—>B be a map, ω: (/, 0, 1)-+(E, x0, xx) a path, and set
Ft=p-\p(xt)). Suppose that

(1) (Fo, JCO) is a closed cofibred pair,
(2) p has the CEP for IxF0, and
(3) p has the CHP for IxF0XL

Then there exists a map h: (Fo, Xo)-+(Flf xλ) which is unique up to homotopy with
respect to the following property: there exists a map H: IxF0->E extending
ωπx\JiQπ2yjhπ2: IX{x0}\J{0} XFOW{1} XFO->F and lifting pωπx: IXF0->B, where
ij: Fj-^E is the inclusion.

Proof. By (1), (2) and the CHEP, there exists a map H: IxF0-^E extending
<u^UtoK2: /X{xo}W{O}xFo->£ and lifting pωπr. IxF0->B. Set h=H1: (Fo, x0)
->(Fi, Xi). To prove the uniqueness of h, suppose that there is a map Hu* IX
F0X{i}->E(i=0, 1) extending uπJUωπx: {0}xF0X{i}VJlX{x0}X{i}-+E and lift-
ing pωπr. IxF0X{i}^B. Since (Fo, xo)X(I, {0, 1}) is a closed cofibred pair, it
follows from (3) and the CHEP that there exists a map H: IxF0Xl->E extend-
ing (2>2)υ(ft)7Γi)υ(//VJfί

1): {0}xFoX/U/X{^o} X/U/XFoX{0, l}->£ and lifting
pωπr. IXF0Xl->B. Then H\{l}xF0Xl defines a homotopy (Fo, xo)Xl-+(Flf xx)
of H\ to H\. m

PROPOSITION 4.3. Let p:E->B have the CHP for spaces in FCW (resp.
WHK), ω: (/, 0, l)->(£, x0, Xi) a path, and set Ft=p-\p(x{)). Suppose that
(Fo, XO)ΪΞCW* (resp. WHK*). Then there exists a map h: (Fo, XoMίΊ, ^i) such
that

ω* = Λ* : IA, A' Fo, x0] — > [A, ^ ' F,, Λ l ]

CPF j&αfr (res/). NDR-pair in WHK) (A, A'). Moreover h is unique in
the same sense as 4.2.

Proof. By 4.2, there exists a map H: 7xF 0 ->F extending iQπ2Uωπ1: {0}X
FoU/X{xo}->F and lifting pωπx: IxFQ->B. Set h=Hi: (Fo, Λ : 0 H ( F ! , jd). Given
any map / : 04, A')-*(F0, x0), the map G—H{idXf): IxA->E extends fπzVJωπx:
{0}χAKJlXAf->E and lifts pωπr. IxA-^B. It follows from the definition that
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]. The uniqueness of h was proved in 4.2.

Remarks. (1) If p: E-^B has the CHP for weak Hausdorff ^-spaces and
every fibre Fx is a topological manifold, then (Fx, x)e WHK* and hence the as-
sertion of 4.3 holds (for every NDR-pair in WHK).

(2) The maps h of 4.2 and 4.3 are called / w ^admissible in [13; p. 185].

§ 5. Main result.

Our main result is

THEOREM 5.1. Let G be an associative H-space, and let (E, p, B) be a principal
Serre (resp. Hurewicz) fibration over G. Suppose that

(1) Xo, Xi^E, go, gi&G, and g0, gi have inverses,
(2) ω: (/, 0, l)->(£, xogo> Xigi) is a path, and
(3) Zt=CW* (resp. WHK*).

Set bi = p(xt) and Ft = p~\bi). Then the square

lZ,*;G,e] -+ lZ,*;Fo,xol

ίZ,*;Ft,

*>*

, * Fu

ίZ, * G, β] > ίZ, * Fu

is commutative, where R{g){y)=yg and g* ts the homomorphism induced by the
inner automorphism h-*g~ihg of G. Moreover the following diagram is also
commutative

P* X(xo) /o* P*
, * B, 6,] * ίZ, * G, β] —» [Z, * £, *,] »[Z, * B, 6,]

(pω)

V7 * * F

\ω*

IZ,*;E,

* [Z, * G, β] — * [Z, * £, [Z, * B,
/>*
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where j z : (G, e)-~>(FlJ xι)-*(E, χt) is the composition of tc(xt) and the inclusion.

COROLLARY 5.2. Suppose the following data' X^WHK; Z^ΞWHK*; T a
topological group in WHK; (Y, p, B) a numerable principal T-bundle; /0, ^ G
Map(X, Y) λ0, Λ<ΞMap(X, T);ω: (/, 0, l)-KMap(X, Y), M>, fM a path. Then

the diagram

-> IΣZ, *; Map(X, B), />/0] — > [Z, *; Map(X, T), ce~]

I (Pω)* J (U-1)*
> IΣZ, *; Map(Z, B), pfo —> [Z, *; Map(Z, T), ce]

[Z, *; Map(Z, F), /0] —> [Z, *; Map(Z, 5), />/0]

> [Z, * Map (X, Y), / J —> [Z, *

is commutative, where the horizontal sequences are homotopy exact sequences of the
principal Hurewicz fibration, p*: Map(X, Y)—>Map(X, 5), 0i>gr Map(X, T) given
in Example 3.4. // in addition X and Y are well based, then the statement re-
placing Map (,) by Map (, * , *) is true.

Corollary 5.2 follows immediately from Theorem 5.1 which will be proved
in the next section. Now we prove

PROPOSITION 5.3 (cf. Theorem 7.1 of [5; p. 305]). Let G be an associative
H-space, (E, p, B) a principal Serre (resp. Hurewicz) fibration over G, and let
Z<ΞΞCW* (resp. WHK*).

(1) l(x): \_ΣZ, *; B, p(x)~\-^l_Z, *; G, e] is a homomorphism with respect to
the semi-group structures derived from ΣZ and G.

(2) Let Gr be an associative H-space with unit e' (E', p', Bf) a principal
Serre (resp. Hurewicz) fibration over G' p: G^-G' a homomorphism, that is, p is
continuous, p(gh)—ρ(g)p(h)(g,h^G)and p(e)—e'\ and suppose a commutative
square

Ψ

where Ψ, φ are maps and Ψ(xg)=Ψ(x)ρ(g) ( X G £ , g^G). Then the square
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[ΣZ, * B, p(x)2 > [Z, *;G,e}

Φ*\ \P*

£ΣZ, * B', *'(*')] — > [Z, * G', e'l
X{x')

is commutative for all x ε £ , where xf—Ψ{x),

Proof. Let hι\{ΣZ, *)->(£, />(*)) be maps (ί=l, 2). Let g: ZxI-^ΣZ be
the canonical quotient map. Then hιq\ {*} Xl\jZx{l}—pcXy and hence there are
maps H*: ZxI->E lifting A*̂  and extending c(x), by the CHEP. We then have
J[A<] = [i/io], by Example 1.6 of [5; p. 229]. Set Z(x)[A<] = [A/i], where A'*:
(Z, *)->(G, e). Since (Z, *)X(/, {0, 1}) is an NDR-pair and since p(cx\Jtc{x)h'ιπx):
[{*}X/WZX{1}]WZX{()}-•£ is the restriction of hq: ZxI->B, it follows that
there exists a map //': ZxI->E lifting /zι# and extending cx\Jtc(x)hnπ1. Then

Hn(z,0)=xhn(z) for all

Define H: ZxI->E by

f if'Xz, 2t)h'\z) for O^ί^

ί H'\z,2t-1) for 2
Then

(h\z, 2t) for 0 ^ ^

h\z, 2ί—1) for l/2^ί^lj

(2r, 1)=Λ //(*, t)=x,

so [iro]=J[A1+A2]. Also H(z, 0)=H'\z, O)h'\z)=(xh'\z))h'\z)=x(h'\z)h'\z)),
so J[A/1 + A/a] = [flΓo]=ic(x)*([A/1][Λ/2]) and hence Z(%)[A1+A2] =%(x)[A1]+
%(x)[/ι2]. This proves (1).

To prove (2), let h: (ΣZ, *)->(5, /)(x)) be a map. Since hq=pcx on {*}X/
VJZX{1}, there is a map i f : ZXI-+E lifting hq and extending c(x), by the
CHEP. It follows that Hf

Q^κ{x)u rel * for some u^C(Z, *; G, e). Since (Z, *)
X(i, {0, 1}) is an NDR-pair, there exists a map H: ZXI-+E lifting hq and ex-
tending c(x)Uκ(x)uπ: [{*}X/UZx{l}]wZx{0}->£. Then 2f[A]=[#0]. A l s o

i/(z, 0)=Λ:(X)W(Z) and hence X(*)[A]=|>]. We have

hence J'ί6*[A]=ϊr*J[A]=A;(Λ;/)*io*[M], so Z(x/)^[/ι] = io*[w] = io*(X(x)[/z]). This
proves (2). •
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§ 6. Proof of Theorem 5.1.

T H E O R E M β.Γ. Suppose the following data: G an associative H-space (E, p, B)

a principal Serre (resp. Hurewicz) fibration over G; go,gι^G; ω:(I, 0, 1)—>

(E, xogo, xigi) a path; ZΪΞCW* (resp. WHK*). Set Fι=p'\p(xt)).

( i ) If go and gλ have inverses, then the next two diagrams are commutative

in which j t : G-^Fi-^E is the composition of κ(xι) and the inclusion, and L(g)(y)

=gy

ΐΣZ, * B, p(xo)2 > [Z, * Fo, x 0 ] < [Z, * G, e]

©

IΣZ, * B, />(*„)] »• IZ, * F., x»g0] * * X" * \Z, * G, Λ ]

Δ * *(Xogo)*
ΐΣZ, * B, />(*„)] > [Z, * F,, * , * , ] * [Z, * G, β]

Δ
ΐΣZ, * B, p{xj] > [Z, * F,, x,gt]

, * β, #*,)] > [Z, * Fu xigil *

©

',*; B, ρ(xiϊ] » [Z, *; Ft,

LZ,

CZ,

[Z,

*;

*;

I*;
i

G,

Γ (Ώ

G,

Pί n

G,

ft]

. :
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( o ) *

[Z, *; G, e\ > [Z, *; Λ, *o]

[Z, * G, £o] » [Z, * Fo,

[Z, * G, >• [Z, * Fΰf

[Z, * G, • [Z, * Fx,

[Z, * G, gj

[Z, *; G, [Z, *; Fu

Jl*

(ii) // go—gι=e, then the square

[Z, *; G, el

-*[Z, *;£, x,]

> [Z, * £,

-> [Z, * JB,

®

[Z, *; jB,

[Z, *; Fu *,#,] > [Z, *; £, x^,

-> [Z, * E,

t

ίZ,*;G,e}

ίZ, *; F., *.]

[Z, *;F,,

z's commutative.

Proof, (ii) is a corollary to (i). We shall prove (i). The commutativity of

P* d
ΐΣZ, *; B, ί(*.)]s[CZ, Z, *; E, Flt *,] * [Z, *; F,, *,]

1 k=1
, •; B, , Z, •; £ , F,, * ^ > [Z, *; F,f
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implies the commutativity of ©.

® and ® are commutative by (8) of Lemma 4.1.

To prove the commutativity of ®, let h: (Z, *)->(G, e) be a map and define

a map H: IxZ^E by H(f, z)=ω(t)h(z). Then

p(H(t,z))=p(ω(t));

H(t,*)=ω(t);

mθf z)=xogh(z)=(κ(xog)h)(z);

mi, *)=*iλ(*)=(*

hence ^#A:(^O^)*[/I]=A;(XI)*[/I] by the definition of ω*, so ® is commutative.

We can easily prove the commutativity of other squares and triangles of the

diagrams in (i). •

The first diagram of Theorem 5.1 and the left square of the second diagram

of Theorem 5.1 are commutative by the commutativity of the first diagram of

(i) of Theorem 6.1. The middle square of the second diagram of Theorem 5.1

is commutative by the commutativity of the second diagram of (i) of Theorem

6.1. The last square of the second diagram of Theorem 5.1 is commutative by

(8) of Lemma 4.1. This proves Theorem 5.1.
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