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CHANGE OF THE BASE POINT IN THE HOMOTOPY
EXACT SEQUENCE OF A FIBRATION

By SEIYA Sasao AND Hipeaki OSHIMA

§1. Introduction.

The purpose of this note is to show that the homotopy exact sequence of
a kind of principal quasifibration in the sense of Dold-Lashof [2], which shall
be called a principal fibration, does not depend on the choice of base points
(Theorem 5.1). A typical example of the principal fibration in Example 3.4 is
also a principal fibre space in the sense of Peterson-Thomas [9].

The object of this note is classical and may be known to experts but we
have not seen any fully general description of it in reference except related
results in [10] and [3] which assert that the homotopy exact sequence of a
Serre fibration does not depend on the choice of base points and will be proved
in a general form in this note ((8) of Lemma 4.1).

Although we can work in the usual category of topological spaces under
some restrictions, we shall deal mainly with more convenient category WHK,
the category of weak Hausdorff k-spaces [7], [8].

We are grateful to Y. Hirashima for bringing our attention to [3] and [10].

§2. Notations.

Continuous functions are called “maps”.

We recall from [7] some notions. A space X is weak Hausdorff if f(K)
are closed for all compact Hausdorff spaces K and all maps f: K—X. A subset
A of the space X is compactly closed if for every map f: K—X, where K is a
compact Hausdorff space, f~'(A) is closed in K. A space X is a k-space if
every compactly closed subset of X is closed. The k-ification 2(X) of a space
X is the space whose underlying set is that of X and whose closed sets are the
compactly closed subsets of X. If X, Y are spaces, let XQY =~k(XXY), where
X denotes the usual cartesian product, and let Map(X, YV)=kC(X, Y), where
C(X, Y) denotes the space of maps from X to ¥ with the compact-open topology.
In WHK, we have the exponential law: Map(XQY, Z)=Map (X, Map (Y, Z)).
See [8] and [12].

A space X with a distinguished point * is called a based space. A based
space X is well based if (X, %) is an NDR-pair. Recall from [6] and [13] that
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a pair of spaces (X, A) is cofibred if and only if (X, A) has the homotopy ex-
tension property (HEP) for all spaces, and that (X, A) is an NDR-pair if and
only if A is closed in X and (X, A) is cofibred, that is, a closed cofibred pair.
Notice that if (X, A) is cofibred and XeWHK then A is closed in X and so
(X, A) is an NDR-pair.

We shall use the following notations:

WHK=the category of weak Hausdorff k-spaces;

CW=the category of CW complexes;

FCW=the category of finite CW complexes;

WHK,=the category of well based weak Hausdorff k-spaces;

CWs=the category of CW complexes with a distinguished vertex;

FCWy=the category of finite CW complexes with a distinguished vertex;

HEP=homotopy extension property;

CHP=covering homotopy property;

CHEP=covering homotopy extension property;

¢(x)=c,=the constant function into the point x;

I=[0, 1], the unit interval;

X, X, -, X,;Y, Y, -, Y,)=the subspace of C(X, Y) of maps f with
f(X,)Y, for all 7;

Map(X, X, -+, Xo; ¥V, ¥y, -+, Y)=kC(X, Xy, -+, Xn3 Y, Yo, o, Vo)

[X, X, -, X.; Y, Y, -, Y,]=the set of homotopy classes of maps f : X—Y
with f(X,)CY, for all 7, where homotopy ¢, satisfies ¢,(X,)CY,;

2 X=XXI1/(Xx{0, 1}\U{*}XI), the reduced suspension of (X, *);

(X, AAXY, B)=(XXY, XXBUAXY);

T, XiX -+ X X,—X,, the projection to the j-th component.

§3. Principal fibration over an H-space.

DEFINITION 3.1. An H-space is a weak Hausdorff k-space G together with
a continuous multiplication

CRG—G, (g &)—> g8

with two sided unit e.

DEFINITION 3.2. Let G be an H-space. A Serre (resp. Hurewicz) fibration
over G is a quintuplet (E, p, B, ¢, G), usually triplet (E, p, B) is sufficient
notation, satisfying the following conditions.

@H) EcWHK and p: E—B is a map having the CHP for spaces in FCW
(resp. WHK), and

is a map such that

(2-1) xe=zx,
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(2-2) xG=p(x, G)CTF,=p ' (p(x))=fibre through x,

(2-3) k(x)x:[Z, *; G, el=[Z, x; F;, x] for all x€E and all ZeFCW,,
(resp. WHK), where

x): G —> F, (x)g)=xg.

Remarks. (1) k(x) factorizes into the composition of maps

k(x) k

where k is the canonical identity map, and (2-3) can be replaced by

(2-3Y k(x)x:[Z, =; G, e]=[Z, *; k(F,), x] for all x&E and all ZEFCW,
(resp. WHK,).

(2) As is well known, FCW, can be replaced by CW, in (2-3) and (2-3)".

(3) Recall from p. 63 of [4], p. 154 of [5] and 6.44 of [6] thatif p: E~B
has the CHP for spaces in FCW (resp. WHK), then p has the CHEP for rela-
tive CW pairs (resp. NDR-pairs in WHK).

If (E, p, B) is a Serre (resp. Hurewicz) fibration over G, then for any Z&
CWy (resp. WHK,) and any x<E, the function

X(x):/c(x)*“d: I:ZZy *3 B) ﬁ(x):l — [Z; *3 FJ:) X]'EEZ, *3 G’ e]

is called the characteristic homomorphism for the fibration with respect to x,
where 4 is the connecting (boundary) function. See the proof of Lemma 4.1(8)
given below or the chapter 4, especially Theorem 1.25 and Example 1.6, of [5]
for the definition of 4.

DEFINITION 3.3. Let G be an associative H-space, that is, a monoid in
WHK. A Serre (resp. Hurewicz) fibration (E, p, B) over G is principal if

x(gg=(xg)g’ for every x<E, g, g'eG.

Remarks. (1) Any principal Serre fibration over G is a principal quasi-
fibration over G in the sense of Dold-Lashof [2] except the lack of an assump-
tion about the left translations of G.

(2) A principal fibration over G, (E, p, B), is not necessarily locally trivial
nor the translation function

T:E*:{(x) xg)]xEE’ gEG}-—>G» T(x: xg):g;

can be well-defined.

(3) A numerable principal T-bundle in WHK, where T is a topological
group in WHK (see [1] and [8]), is a principal Hurewicz fibration over 7.

(4) If we work in the usual category of topological spaces and in addition
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we assume that the translation function 7: E*—G can be defined and is con-
tinuous, then the principal Serre fibration over G is a principal fibre space in
the sense of Peterson-Thomas [9].

Example 3.4. Let T be a topological group in WHK, that is, let T be a
group and a space in WHK having the continuous multiplication TQT—T and
the continuous inversion T—7. Let ¢: Y—Y /T be a numerable principal T-
bundle ([1], [8]) and let Xe WHK. Then G=Map(X, T) becomes naturally a
topological group in WHK. Moreover we have a free action

Map(X, Y)@Map (X, T) —> Map(X, Y),  (f@)x)=f(x)g(x),

and the map
p=Map(id,, q): E=Map(X,Y)— B=Map(X, Y/T)

is a principal fibre space in the sense of Peterson-Thomas [9] and also a principal
Hurewicz fibration over Map (X, T). Indeed, ¢ has the CHP for k-spaces by 4.8
of [17], hence so does p by the exponential law for the functor “Map” (see 3.6
of [12] or 4.11 of [8]). By 6.27 of Oshima [8], we have

n xG=F,,
) k(x) : G — k(F;) is a homeomorphism, and

3) the translation function 7: 2(E*) — G is well defined and continuous.

§4. Operations induced by a path.

Case 1. Let (Z, A, A’) be a cofibred triplet, that is, (Z, A) and (A4, A’) are
cofibred pairs. Let (X, C) be a pair of spaces and let w: ([, 0, 1)=(C, x,, x,)
be a path. We define

(l)*: I:Z) A} AI; X) C) xO] - [Zr A’ A/; X; Cr xl]

as follows. Given a map f:(Z, 4, A)—(X, C, x,), we haveamap L:IxXA-C
extending fr,\Jwr,: {0} X AUIXA'—-C. The map fr,JL: {0} XZUIXA—-X
has an extension H:IXZ—X. We define w*[f]=[H,].

The above case can be seen in texts such as [4], [5] and [11]. Next we
consider less familiar case of which the first w*¥ was essentially treated in
Lemma B of [10] and the chapter 5 of [3]. See also Example 1.9 of [5; p.235].

Case 2. Let p: E—B have the CHP for spaces in FCW (resp. WHK),
o:,0, )=(E, x,, x;) a path, (Z, A, A’) a triplet of CW complexes (resp. a
cofibred triplet in WHK). Set F,=p ' (p(x,)). We shall define operators

w*: [A, A"; Fy, xo] —>[A, A" Fy, x.],
w*:[Z, A A", E, F, xo] —>[Z, A, A’; E, F\, x,].
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Notice that A and A’ are closed in Z and so (Z, A, A’) is an NDR-triplet.
Given a map f: (A4, A")—(F,, x,), there exists a map H: IXA—E extending
fr,\Jor,: {0} X AUIXA’'—E and lifting pwr,: IXA—B, by the CHEP. Hence
we have a map H,=H(1, ): (A, A")—(F,, x,), and we define w*[ f]=[H,]. Given
amap g:(Z, A, A)—(E, F,, x,), we have a map g’: IX A—F lifting por,: [XA
—B and extending gm,Uwr,: {0} X AUIXA’—E, by the CHEP. We have also
a map L:IXZ—-E extending gm,Ug’: {0} X ZUIXA—E, by the HEP. Hence
we have a map L,:(Z, A, A")—~(E, Fi, x,), and we define w*[g]=[L,].

LEMMA 4.1. (1) o* is well defined.

(2) If w=w’ rel {0, 1}, then w*=w'*.

3) If w=c(x), the constant path to x, then w* is the identical automorphism.
@) If w(1)=1(0), then (w+1)*=r*w*.

B) * is a bijection.

(6) In Case 2, the square

(l)#
[Z: A: A,; E} FOr xO]—’ I._.Z} Ar A,; E) Flr xl:]
! l
(4, 4% Foy xo]  — A ARy 2]
@

is commutative, where the verticals are the restrictions. Similar assertion holds
in Case 1.

(7) In Case 2, w* is natural with respect to bundle maps, that is, if p’: E'—B’
is an other fibration of the same type with p and there is a commutative square

f

E——E'

Pl li"
B ——f‘,—’ B

where f and f’ are continuous, then the squares

f
[4, A5 Fo, 2]~ [A, A/ F'y, 1'1]
| [
[A4, A"; Fy, x ] —[A, A5 F'y, 274
fx
[
I:Z’ A: A/; E; FO) xo] - [Z: A: A/; E,; FIO; xlo:l
o* | |
[Zy A’ A,; E’ Fly xl] - [Zy Ay A/; E/) F/h x,l]

*
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are commutative, where x’,=f(x,) and F’,=p" '(p'(x’.)).
(8) ([3], [10]). [In Case 2, the following ladder of homotopy exact sequences
of the fibration is commutative

"——’[Z‘Zr *; B: bO:l_’[Z) *;FO; xO]-ﬂ[Z; *;E; xO]——_’[Z$ *;B, bO]
(po)* l ©) lw’* ® lw‘* ® l(pw)‘*
__’[Z‘Zr*;Br bl]“—’EZ’*;Fh xl]_'_’[Z) *;Er xl]—"EZ; *; B} bl]

where Z&CWy (resp. WHKy) and b;=p(x,).

Remark. In Case 1, the family of sets {[Z, A, A"; X, C, x]|x=C} and
operations {w?|w=C(I, C)} forms a local system of sets in C, by (1)~(5). In
Case 2, similar assertion holds.

Proof of Lemma 4.1. Let n: IXY XI—IXI be the projection for any Y.

To prove (1) of Case 1, let f:(Z, A, A )XI—(X, C, x,) be a map. Let
[/ IXAX{i}—C (=0, 1) be any extension of f;\Uwm,: {0} X AX{{}\UIX A’ X {i}
—C. Let L': IXZX{i}—>X be any extension of f,\Uf, : {0} X ZX {i}\UIXAX{i}
—X. Let also g: IXAXI—C be any extension of fU(f/\Ufi)Jwr,: {0} XA
XTUIXAXA{0, 1} UIX A’ XI—-C. Since (Z, A)X(, {0, 1}) is cofibred, the map
SULILNYUg: {0} X ZXTUIXZX{0, 1}NVIXAXI—X extends to a map H: IXZ
xXI—X. Then H: {1} xX(Z, A, A)XI—-(X, C, x;) is a desired homotopy of L°
to LY.

To prove (1) of Case 2, let ¢: (A, A")XI—(F,, x,) be a homotopy, and let
H*: IXZXx{i}—E (=0, 1) be a map lifting pwr, and extending ¢;7,\Jwr,: {0}
XAXA{IPUI XA’ X{i}—E. Then por |{0}XAXIUIXA XI\JIXAX{0,1}=
PPUor, J(H"UHY). Since (A4, A’)X(, {0, 1}) is an NDR-pair by 6.12 of [6],
there is a map L:IXAXI—FE lifting por, and extending ¢\Uwr,\J(HUH"), by
the CHEP, hence the restriction L: {1} X(A, A")XI—(Fi, x,) is a desired homo-
topy of H® to H’,.

Let ¢:(Z, A, A)XI—~(E, F,, x,) be a homotopy. We then have ¢;":IXA
X{i}—=E (=0, 1) lifting pwr, and extending ¢;Jwm,: {0} X AX{{}\JIXA" X {7}
—E. Extend ¢;U¢ : {0} XZX{{} UIXAX{i}—E to a map H®: IXZX{i}—E.
We have L:IXAXI—E lifting por,: IXAXI—B and extending ¢Uwr;_
(" UP) {0} XAXTUTX A’ XTIUIXAXA{0, 1}—E. Since (Z, A)XU, {0,1}) is
cofibred by 6.12 of [6], the map Q\J(H"UH"UL): {0} X ZXT\UIX(ZX{0, 1}\UA
X I)—E extends to H: IXZ XI—E. Then the restriction H: {1} X(Z, A, A")XI
—(E, Fy, x,) is a desired homotopy of H° to H%,.

To prove (2) of Case 1, let f:(Z, A, A)—~(X, C, x,) and 0:(,0, 1)XI—
(C, xo, x,) be maps. The map gm,Ulr: {0} XAX{{}JIXA"X{i}—C extends to
amap L': IXAX{i}—C. The map gm,\UL': {0} X ZX{i}UIXAX{i}—=X ex-
tends to a map K*:IXZXx{i}—»X. The map gr, J(L°ULY IOz : {0} Xx AXT\UI
XAXA{0, INJIXA'XI-C extends to a map h:IXAXI—C, since (A4, A')
X(I, {0, 1}) is cofibred. Since (Z, A)X(I, {0, 1}) is cofibred, the map gm,\U
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(KOUKYUR: {0} X ZXTUIXZX{0, I}UIXAXI—-X extends to a map H: IXZ
XI—X. Then the restriction H: {1} X(Z, A, A)XI—-(X, C, x,) is a desired
homotopy of K° to K%,

To prove (2) of Case 2, let f: (A, A)—(F,, xo)and 6: (I, 0, )X I—(E, x,, x,)
be maps. There exists a map H*: IXAX{i}—E (=0, 1) extending frm,\U0r:
{0} X AX{i}UIX A’ X{i}—E and lifting plr:IXZX{i}—B. Since (A4, A")X
(I, {0, 1}) is an NDR-pair, there exists a map H: IXAXI—E extending fm,\J
(H"UHY U0 : {0} X ZXT\UIXZ X{0, 1} UIX {*} XI—E and lifting pOr: IXZXI
—B. Then the restriction H: {1} X(A, A")XI—(F, x,) is a desired homotopy
of H° to H',.

Let f:(Z, A, A)—(E, F,, xo)and 6 : (I, 0, 1)XI—(E, x,, x,) be maps. There
exists a map L': IXAX{i}—FE extending fUfr: {0} X AX{i}UIX{x}X{i}>E
and lifting pOr: IX AX{i}—=B. The map fr, JL': {0} X ZX{i}UIXAX{i}—>E
extends to a map K*: IXZX{i}—E. Since (A, A’)x(, {0, 1}) is an NDR-pair,
there exists a map L: I X AXI—FE extending the map fz,\J(L"UL) UGz : {0} XA
XIUIXAX{0, 1}\UIXA’XI—E and lifting pOr: IXAXI—B. Since (Z, A)X
(I, {0, 1}) is cofibred, the map fr,\U(K"UK)WJL: {0}XZXIUIXZx{0, 1}\U
IXAXI—E extends to a map H: IXZXI—E. Then the restriction H: {1} X
(Z, A, A )XI—(E, F,, x,) is a desired homotopy of K° to K!',.

To prove (3) of Case 1, let f:(Z, A, A)—(X, C, x) be a map. Since fr,\U
cami=fmy: {0} X AUIXA’—C, it has an extension fr,: IXA—C. Thus fm,U
fry: {0} X ZUIX A—X has an extension fm,:IXZ—X. Therefore ¢, *[f1=[f].

To prove (3) of Case 2, let f: (A, A")—>(F,, x) be a map. The map fr,:
IXA—E extends fr,\Uc,m,: {0} X AUIX A’>E and lifts pc,m,: IXA—C. Thus
c*Lf1=0f]. Let g:(Z, A, A)>(E, F;, x) be amap. Then the map gr,: I XA
—FE extends gm,\Jc,m,: {0} XAUIXA'—E and lifts pc,m,: IXA—B. The map
gm\Jgm,: {0} X Z\UIX A—FE has an extension grn,: IX Z—E. Thus ¢, *[g]l=[g].

To prove (4), let w and z be paths in an appropriate space such that w(0)
=x,, w(1)=7(0)=x, and 7(1)=x,.

To prove (4) of Case 1, let f:(Z, A, A")—~(X, C, x,) be a map. Let H':
IXA—C be an extension of fm,Jwzr,: {0} X AUIXA'—C, and let L' : IXA—C
be an extension of H,w,\Urx;: {0} X AUIXA'>C. Let H: IXZ—X be an exten-
sion of fa,UH :{0}XZUIXA—X, and let L:IXxZ—X be an extension of
Him,\UL : {0} X ZUIX A—X. Then [H,]=w*[f] and [L,]=7*[H,]=t*w*[f], by
definition. Define K: IXZ—X by

H(2t, z) if 0=t<1/2
L2t—1,2z) if 1/2=5¢<1.

Then K|{0}XAUIXA = fr,\J(w+7)r;, and K|{0} X ZUIXA=fr,UK|IXA.
Thus [L,]=[K,]=(w+7)*[f]. Therefore t¥w*[ f]=(w+7)*[f].

To prove (4) of Case 2, let f: (A, A")—(F,, x,) be a map. Let H: IXA—E
be a map extending frm,\Jwr,: {0} X AUIXA'—-E and lifting pwm,: IXA—-B.
Let L:IXA—E be a map extending H,m,\Urr,: {0} x AUIX A’—E and lifting
prry: IXA—B. Then [H]=w*[f] and [L,]=c*[H,]=7*w*[ f]. Define K: IXA

K, z)={
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—FE by
H(2t, z) if 0<t<1/2

K, z)={
L(2t—1, z) if 1/2<t<1.

Then K is an extension of fm,\J(w+7)m,: {0} X AUIXA'-E and a lifting of
plo+7)r i IXA—B. Thus [L,]1=[K,]=(w+7)*[ ] and so t¥w*[f]1=(w+7)*[f].
Let g:(Z, A, A")—(E, F,, x,) be a map. Let h: IXA—E be a map extending
g \Jom,: {0} X AUIXA'—E and lifting pwr,: IXA—B, and let H' : IXZ—E
be an extension of gm,\Uh: {0} XZUIXA—E. Llet h':IXA—E be a map ex-
tending H'ymw,\Urr,: {0} X AUIXA’—E and lifting prm,: IXA—B, and let L’:
IXZ—E be an extension of H',m,\Uh': {0} XZUIXA—E. Then [H ]=w0*[g]
and [L'\]=t*[H'\]=t*w*[g]. Define K': IXZ—E by

H'(2t, z) it 0=t<1/2

K'@, z)={
L'2t—1,2) if 1/2Zt<1.

Then K'|{0}XAUIXA'=gr,\J(w+7)r, and K'|{0}XZUIXA=gnr,JK'|IXA.
Thus [L']=[K"]=(0+1)*[g] and so t*w*[g]l=(0+7)*[g].

To prove (5), let w be any path in an appropriate space with w(0)=x, and
o(l)=x,. Since w+w'=c(x,) rel {0,1} and w*4+w=c(x,) rel {0, 1}, «* isTa
bijection of which the inverse is w™'¥, by (2), (3) and (4).

(6) and (7) can be proved easily by definition. So we omit their proofs.

Let us prove (8). The commutativity of @ and ® is trivial by definition.
Consider the following diagram:

*

q
[(¥Z, x; B, bl — [CZ, Z; B, b]]==[CZ, Z, x; B, b, bs]

o* | ® | (paye

[ZZ) *5 B; bl] 7 I:CZ: Z; B; bl] _.._.[CZ’ Z} *; B; bl; bl]
q
D )
;[CZ: Z’ *5 E’ FO; xo] ——>|:Z, *3 FO) xo]
® lw* ® 1(0*
;[CZ’ Z’ *; E; Fl) xl]_—_’[z’ *;Fl) xl]
Dx 0

where CZ=2ZXI/(Zx{1}\U{x} XI) is the reduced cone of Z, ¢q:(CZ, Z, x)—
(2Z, *, x) is the quotient map, and o[ f1=[f]|Z]. If this diagram is commuta-
tive, then so is @, since 4=0p4 'g*.

By definition, ® is commutative,

Given any map f:(CZ, Z, x)—(E, F,, x,), there exist maps f':IXZ—-E
lifting pwr,: IX Z—B and extending fr,Jwr,: {0} X ZUIX{*}—E, and H: IX
CZ—FE extending fr,\Jf': {0} XCZUIXZ—E, so [H]=w*[f], hence prw*[f]
=[pH,]. Since pf': IXZ—B and pH: IXCZ—B extend pfr,\Jpor,: {0} X ZU
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IxX{+x}—=B and pfr,\Jpf : {0} XCZUIXZ—B, respectively, it follows that
(pw)¥ [ f1=[pH,], so ® is commutative.

Given any map g:(XYZ, *)—(B, b,), there exists a map L:IX2XZ—>B ex-
tending gUpw: {0} X TZUIX{*}—-B, so [L]=(pw)*[g] and ¢*(pw)*[g]=[L.q].
Since pwr, : X Z— B extends pwr,\Jc(b,): X {*x}\U{0} X Z— B, and since LEdXq):
IXCZ—B extends gqm,\Upwr,: {0} X CZUIX Z—B, it follows that (pw)¥¢*[g]
=[L,g]=¢*(pw)*[g]. Thus @ is commutative, hence so is @, and this proves
(8). This completes the proof of Lemma 4.1. =

We shall show that w*=hy:[A, A’; Fo, xo]—[A, A’; F,, x,] for some map
h: (Fy, xo)—(F;, x,) in some cases.

LEMMA 4.2. Let p: E—B be a map, w: (I, 0, 1)>(E, x,, x;) a path, and set
F,=p7(p(x,)). Suppose that
(1) (Fs, xo) is a closed cofibred pair,
(2) p has the CHP for IXF,, and
(3) p has the CHP for IXFyxI.

Then there exists a map h: (Fy, x0)—(Fi, x,) which is umque up to homotopy with
respect to the following property: there exists a map H:IXF,—E extending
@O1,\Jiom\ AT, : IX{x,}\J{0} X Fo\U{1} X Fo—FE and lifting por,: IXF,—B, where
i1, F;—~E is the inclusion.

Proof. By (1), (2) and the CHEP, there exists a map H: I X F,—F extending
o\ Uiyt I X {x,}\U{0} X Fy—E and lifting pwr,: IXFy,—B. Set h=H,: (F,, x,)
—(F,, x;). To prove the uniqueness of h, suppose that there is a map H* IX
Fox{i}—>FE (i=0, 1) extending 7,m,\Jwm,: {0} X Fo X {{}UIX{x,} X{i}—F and lift-
ing pom,: IXF,X{i}—B. Since (F,, x,)X(I, {0, 1}) is a closed cofibred pair, it
follows from (3) and the CHEP that there exists a map H: IXF,XI—E extend-
ing (fom )\ J(@m )\ J(H UHY): {0} XFo X I X {x0} X U X Fyx {0, 1}—E and lifting
por,: IXFyXI—B. Then H|{1}XF,XI defines a homotopy (Fy, x,) X [—(F;, x,)
of H°, to H';. m

PROPOSITION 4.3. Let p: E-»B have the CHP for spaces in FCW (resp.
WHK), w:(, 0, 1)>(E, xo, x,) a path, and set F,=p-'(p(x;). Suppose that
(Fo, x0)ECWy (resp. WHKy). Then there exists a map h: (Fo, xo)—(Fi, x;) such
that

of=hy:[A, A" o, xo] —> [A, A"; Fy, x.]

for every CW pair (resp. NDR-pair in WHK) (A, A’). Moreover h is unique in
the same sense as 4.2.

Proof. By 4.2, there exists a map H: IXF,—E extending 7,m,\Jowr,: {0} X
FyUIX{x,}—E and lifting por,: IXF,—B. Set h=H,: (Fy, xo)—(F}, x,). Given
any map f: (A4, A")—(F,, x,), the map G=H@dX f): IXA—E extends fr,Jor,:
{0} X AUIX A’—E and lifts por,: IXA—B. It follows from the definition that
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¥ f]=[G]1=h4[f]. The uniqueness of i was proved in 4.2. =

Remarks. (1) If p: E—B has the CHP for weak Hausdorff k-spaces and
every fibre F, is a topological manifold, then (F,, x) WHK, and hence the as-
sertion of 4.3 holds (for every NDR-pair in WHK).

(2) The maps s of 4.2 and 4.3 are called pw '-admissible in [13; p. 185].

§5. Main result.
Our main result is

THEOREM 5.1. Let G be an associative H-space, and let (E, p, B) be a principal
Serre (resp. Hurewicz) fibration over G. Suppose that

1) x, x:€E, g0, 2.€G, and g,, g1 have inverses,

2) w:(,0, 1)>(E, xog0, x:181) 7S a path, and

(3) ZeCWy (resp. WHK).
Set b;=p(x,) and F,=p~*(b;). Then the square

[Z,*; G, e] ———> [Z, *; Fy, x,]

£(X o)
R(go)«
[Z; *; FOy xOgO]
(go871)* o*
[Z, *; F, 18]
R(g1")«
£(x)x

[Zy*;G} e]—_——-)[Zy*;Fly xl]

is commutative, where R(g)(y)=yg and g% 1s the homomorphism induced by the
inner automorphism h—g=*hg of G. Moreover the following diagram is also
commutative

D« X(x0) Jox D«
22, B, b]—[Z,%;G,e]—> [Z, %, E, x)]—>[Z, *; B, b,]

| Regos

[Z: *; E’ Xogo]

(pw)* (8og1")* lw* (pw)*

[Z’ *; E’ xlglj

| Reg
Y b

ere 7 [ZZ) * 5 By bl]'_’ [Z, * 3 G; e] - [Z, * 3 E, x,]——*[Z, * 5 B, bl]
Dx 2(x1) Jix Dx
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where 7,: (G, e)—(F,, x,)—(E, x,) 1s the composition of k(x,) and the inclusion.

COROLLARY 5.2. Suppose the following data- X&eWHK; Z€WHKy; T a
topological group m WHK; (Y, p, B) a numerable principal T-bundle; f, f1€
Map(X, Y); 4, L1&Map(X, T); w: (I, 0, D)=Map(X, Y), fode, f14:) @ path. Then
the diagram

= [2Z, x; Map(X, B), pfo] — [Z, *; Map(X, T), ¢.]
| by | ot
- ——[2Z, x; Map(X, B), pfr] — [Z, *; Map(X, T), c.]

—[Z, #; Map(X, Y), fo]—>[Z, +; Map(X, B), pf,]
| R0 R0 | (b
> [:Zy *5 Map(X’ Y)’ fl] - [Zv *3 Map(X; B)) pfl]

1S commutative, where the horizontal sequences are homotopy exact sequences of lhe
principal Hurewicz fibration, py: Map (X, Y)—Map(X, B), over Map(X, T) given
in Example 3.4. If in addition X and Y are well based, then the statement re-
placing Map(,) by Map(, *; ,x*) is true.

Corollary 5.2 follows immediately from Theorem 5.1 which will be proved
in the next section. Now we prove

PROPOSITION 5.3 (cf. Theorem 7.1 of [5; p. 305]). Let G be an associative
H-space, (E, p, B) a principal Serre (resp. Hurewicz) fibration over G, and let
ZeCW, (resp. WHK).

1) X(x):[2Z, =; B, p(x)]=[Z, *; G, €] 1s a homomorphism with respect to
the semi-group structures derived from 27 and G.

(2) Let G’ be an associative H-space with umt e'; (E’, p’, B') a principal
Serre (resp. Hurewicz) fibration over G'; p: G—G’ a homomorphism, that s, p s
continuous, p(gh)=p(g)p(h) (g, h€G) and ple)=e’; and suppose a commutatrve
square

E v E’

I

B B’
¢

where U, ¢ are maps and T(xg)=¥(x)p(g) (x€E, g&G). Then the square
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A(x)
[2Z, *; B, p(x)] —[Z, #; G, €]

N I

Z,x; B, p'(x") ] ————[Z,*;G', ¢
[2Z, * ()] = [Z,*;G', e]

is commutative for all x€E, where x'=¥(x).

Proof. Let h*:(XZ, *)—(B, p(x)) be maps (:=1,2). Let ¢: ZXI—2Z be
the canonical quotient map. Then h'q|{*} XI\UZ X {1}=pc., and hence there are
maps H': ZXI—FE lifting h'q and extending c¢(x), by the CHEP. We then have
ATh*1=[H%], by Example 1.6 of [5; p.229]. Set X(x)[A*]=[h’*], where h’*:
(Z, ¥)—(G, e). Since (Z, %)X (I, {0, 1}) is an NDR-pair and since p(c,\Uk(x)h'*rm,):
[{#}XIUZX{1}J]UZ x{0}—B is the restriction of hq: ZXI—B, it follows that
there exists a map H': ZXI—E lifting h'q and extending ¢,\Ux(x)h'*m;. Then

ALh*1=[H"];
H"(z, 0)=xh""(z)  for all z€Z.

Define H: ZXI—E by
H'\(z, 2t)h'*(z) for 0<Zt<1/2
H(z, t)=
H'*z, 2t—1) for 1/2<t<1.
Then
hi(z, 2t) for 0<t<1/2

p(H(z, t))={
h¥z, 2t—1) for 1/2<t<1

}=(h1+h2)(2, ;

H(z, )=H'"z, )=x;  H(+, t)=x,

so [Ho=4[h*+h*]. Also H(z, 0)=H"'(z, 0)h"*(z)=(xh'*(2))h"*(z)=x(h'*(2)h"*(2)),
so A[h*+h'?1=[H,] = &(x)«([A"*I[~h"*]) and hence X(x)[A'+h*]=X(x)[A']+
X(x)[A*]. This proves (1).

To prove (2), let h:(XZ, *)—(B, p(x)) be a map. Since hg=pc, on {*}XI
UZX {1}, there is a map H’:ZXI—FE lifting hg and extending c(x), by the
CHEP. It follows that H',~«(x)u rel x for some usC(Z, *; G, e). Since (Z, %)
X, {0, 1}) is an NDR-pair, there exists a map H: ZXI—E lifting hq and ex-
tending c(x)Uk(x)ur: [{*} XIUZX{1}JUZ x{0}—E. Then A[h]=[H,]. Also
H(z, 0)=k(x)u(z) and hence X(x)[h]=[u]. We have

VH(z, 0)=P(xu(2)="(x)ou(z)=r(x")pu(z))

hence 4'Py[h1=V [ h]1=£(x")sp:[u], 50 X(x")ps[h]1=psx[ul=p«X(x)[h]). This
proves (2). m
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§6. Proof of Theorem 5.1.

THEOREM 6.1, Suppose the following data: G an associative H-space; (E, p, B)
a principal Serre (resp. Hurewicz) fibration over G; g, g§:€G; w:(, 0, )—
(E, %080, X181) @ path; ZECWy (resp. WHK,). Set F,=p ' (p(x.)).

(i) If g, and g, have inverses, then the next two diagrams are commutative
in which j,: GoF;—E 1s the composition of k(x,) and the inclusion, and L(g)y)

=g).

X(xo)*
4 B(Xo)x
[2Z} *; B} p(xo)] I [Z: *; Fo, xO] 6___[27 *; G.' e]
= @ R(go)« R(go)«
K(Xo)x
[3Z, #; B, p(x))]—>[Z, *; Fy, X081 <——1[Z, *; G, g0]
= = L(gs")«
b A IC(Xogo)*
[ZZ’ *5 B, p(xo):l-'_'—'> [Z) * 3 For Xogo] D — [Z’ *; G} e]
(pw)¥ o =
\ 4 £(X181)x
[EZ: *; B: p(xl)] -_— [Z’ *; Fl: xlgl] D — [27 *; G: e.-.l
= = L(gl)*
£(X1)x
[2Z, *; B, p(x))]—> [Z, *; F, x,8,] «—— [Z, x; G, g]
= @ R(g1"« R(g1)x
K(X 1) \

I:ZZ: *3 B: p(xl)] I [Z> *3 Fl’ xl] I —— [Zr *3 G: e]

]

A(x1)x
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Jox

[

K(%o)s

}

I:Z» *; G’ e] —_ [Z7 *;Fo’ xo] —-—)‘[Z»*;E; xo]

R(go)«
k(x0)
[Z,%; G, 8] ———>[Z, *;
L(gih«
(XoZo)x
[Z,%; G, e] ———>[Z, *;
= ®
k(x181)
(2,43 G, 128 g s
L(g)x
A KX 1)
[Z, *; G, g] [Z, *;
R(g7")s
\ £(X1)x A

R(g0)+

¥

F, xng

R(gi")«

R(g0)«

N

Fo, xoge] — > [Z, *; E, x0g0]

FO; xOgO] —_—> [Z, *; E.' xogo]

o¥

[Zy *; E: xlgl]

A

F, x,g¢.)]—>[Z, ; E, x:8:]

R(gi")x

[Z) *; Gr e]‘———__é[Z; *;Fl: xl]'——"‘_>[Z) *; E: xl]

B

(i) If ge=gi=e, then the square

is commutative.

Proof. (ii)

]'x*

E(X0)x
[Z,%; G, e] —————>[Z, %; F,, x,]

]

[Z» *3 G} e] —— [Z’ *3 FL- xl]

(

is a corollary to (i).

xl)*

We shall prove (i).

The commutativity of

Dx 0
(3Z,%; B, p(x)1=[CZ, Z, *; E, F,, x,] ——>[Z, %; F,, x.]

»
[3Z, +; B, p(x)]=[CZ, Z, +

lR(g )x

1R(g)*

;Ey Ft’ xig]———>[Zy *; Ft; xig]
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implies the commutativity of @.
and are commutative by (8) of Lemma 4.1.
To prove the commutativity of @, let h:(Z, x)—=(G, e¢) be a map and define

a map H: IXZ—E by H(t, z)2=w(t)h(z). Then
p(HE, 2))=p(e(@);
H(, ©)=0();
H(0, 2)=x.gh(2)=(k(x,g)1)(2);
H(1, 2)=x:h(2)=(k(x)h)(2);

hence w*k(x,g)x[h]=k(x,)x[h] by the definition of w*, so @ is commutative.
We can easily prove the commutativity of other squares and triangles of the
diagrams in (i). m

The first diagram of Theorem 5.1 and the left square of the second diagram
of Theorem 5.1 are commutative by the commutativity of the first diagram of
(i) of Theorem 6.1. The middle square of the second diagram of Theorem 5.1
is commutative by the commutativity of the second diagram of (i) of Theorem
6.1. The last square of the second diagram of Theorem 5.1 is commutative by

(8) of Lemma 4.1. This proves Theorem 5.1.
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