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THE CONNECTION BETWEEN THE SYMMETRIC SPACE
E;/Ss(16) AND PROJECTIVE PLANES

By KENJI ATSUYAMA

§0. Introduction.

Simple Lie groups are already classified, and they have four kinds of infinite
series of classical types and have five exceptional types. H. Freudenthal wrote
many papers to obtain the geometrical and intuitive image of the exceptional
Lie groups (cf. [5]). We have now the same aim as his. Our methods to solve
the problem were first devised by B. A. Rozenfeld [7], but he didn’t succeed
completely in explaining the all cases which contain the exceptional Lie groups.
For lack of the associativity in Cayley algebras, his explanations were incom-
plete (cf. [5]). To justify his assertions, we gave first a unified construction
of real simple Lie algebras which were easy to handle directly [1]. Namely we
made representative spaces for the exceptional Lie groups. Three symmetric
spaces with the types EIlI, EVI and EVI in the E. Cartan’s sense were next
constructed explicitly as orbits of some projections in the sets of endomorphisms
of the Lie algebras. We asked whether several similar properties to projective
planes hold in the symmetric spaces by regarding the antipodal sets as lines
[2], [3]. In this paper we continue to study the type FE /Ss(16), where Ss(16)
=Spin(16)/Z,, and we assert that this space is also a projective plane in the
wider sense of Theorem 4.16.

§1. A construction of real simple Lie algebras.

The coefficient field is the field R of real numbers. Composition algebras
are classified and have the seven following types:

’real complex quaternion Cayley

R Cc Q ¢
C Q; 6,

division
split

Let M™ be the nXn matrix algebra with coefficients in R. Set tr(X)=
(X + -+ Fxan)/n for X=(x,;)€M™ and let T: X—XT be the transposed oper-
ator. E is the unit matrix of M If U is a composition algebra, it has the
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usual conjugation —:a—d and has an inner product (a, b)=(ab+ab)/2 for
a, beW. Let APQM™RA® denote the tensor product over R of these alge-
bras. If the confusion does not occur, we write aXs simply instead of a®XRs,
where aU®, seY® and XeM™. APRQM QU has the following operations
except for the addition.

the product : (aXs)(bYt)=abXVst,
the involution: aXs—> X753,
the trace : Tr@Xs)=atr(X)Es.

Let M be the linear subspace of APRM XA such that any element in M
has the value 0 for the trace Tr and also has the skew-symmetric form for the
above involution. We denote by Der A® the Lie algebra of inner derivations
D, of AP where D, (c)=[[a, b], c]—3(a, b, ¢) for a, b, ccUP if we put
[a, b]=ab—ba and (a, b, c)=(ab)c—a(bc).

Let L(UAP, M™, A®) be the vector space Der U PMPBDer A (direct sum).
This becomes a Lie algebra by the following anti-commutative product [1]:

1 [D®, D(D]:{the Lie prod%ct of Der % 8:;;:
(2)  [D®H+D®, aXs]=(DVa)Xs+aX(D®s),
(3) For x=aXs and y=bYt in M,
[x, y1=(X, Y)s, O)Da,p+(xy—yx—Tr (xy—yx))+(X, Y)a, b)D;..,

where D eDer A® and (X, ¥V)=tr (XY).
If we restrict the composition algebras A to R, C, Q or €, then the Lie
algebra L(AP, M™, A®) becomes a compact real Lie algebra. It is generally

simple. For instance, E,=L(€, M?, €) holds:

R C Q € R C Q

B, A, C, F, R | Bor D Any C,
A, AfDA, As E c Aoy AniDAnoy Asns
C3 AS D6 E7 Q Cn AZn-—l D‘Zn
F, E; E, E;

(n=3) (nz2)

GO Oy

The Killing form B of L(YAP, M™, A®) can be given by

B(D®4aXs+D®, DP+aXs+D®)
=¢,BP(DD, DP)+eoa, a)X, X)(s, $)+c,BH(D®, D®),
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and
co=n((n—2)d,d,+4(d+d.—2)),

Cz=Co/48 (Z.:lr 2))

where D®P+aXs+DPe LAV, M*, A®) and d,=dimUY». There are two
remarks for the coefficients ¢,, ¢,. (i) Since the inner product (X, X) contains
1/n in its definition, the factor (n—2)d,d,+4(d,+d,—2) is essential in ¢, (ii)
B denotes the Killing form of Der®. In the case of AP=R, C or Q, we
also use B instead of the Killing form of Der A‘® because R, C or Q can be
realized as subalgebras of € naturally.

A basis of € which we use usually is given explicitly.

a basis: e, ey, -+, ey,

rules of product:
@10,7=@3, €104 05, C4C1™=0C1, €205 ECr, €3€,=E1, €385, Cs€y—C2,
ee,=—e,e, (1, 7=1 and i+#7)), e,e,=—e, (121),
¢, is the unit element,

the conjugation —: 2y —> @, ¢, —> —e, (1=i<7).

Then R, C or Q can be generated by the bases {e,}, {€, e;} or {e,, e, es, s}
respectively.

§2. A construction of symmetric spaces /.

We construct some symmetric spaces on which the exceptional Lie groups
act, by making use of the compact exceptional Lie algebras L(A, M3, A®).

Set @=L(AP, M3, A®) simply. Let ¥ be the subset of & such that any
element x in X satisfies the identity

(ad x)((ad x)*+1)((ad x)*+4)=0,

where ad x is the adjoint representation of & and 1 means the identity trans-
formation of &. The eigenspaces of ad x, for each x=X%, can be given by

By(x)={z=@|(ad x)z=0},
Sy(x)={ze6|(ad x)’z=—7*z}, (=1, 2).
For x€X we define three transformations P;(x) of & by
Py(x)=1+5/4(ad x)*4+1/4(ad x)*,
P(x)=—4/3(ad x)*—1/3(ad x)*,
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Py(x)=1/12(ad x)*+1/12(ad x)*.

These satisfy Pi(x)Pi(x)=Pix), P{(x)P{(x)=0 (f#7) and Py(x)+Pi(x)+Px)=1.
Namely each Py(x) is the projection of & onto &;(x). Therefore & has a direct
sum decomposition G=8,(x)PG,(x)PGy(x). Then (G(x)PG(x)PG.(x) is a
Cartan decomposition with respect to the involutive automorphism 1—2P,(x)
(=expr(ad x)).

0 00
Example. Let &=L(€, M3, €) and take K,=(O 0 1) in MN%. Then the
0—-10
eigenspaces {®,(x)} can be given by the following.
dimension
2¢ 0 0
G(K;): Der@PH| 0 —a  b|PDer@ 14+64+14=92,
0 —b —a
0 b1 bz 0 a; G,
G(K): {—b, 0 0D|la, 0 0 100+28=128,
—b, 0 0 a, 0 0
000, /00 O
G(K): {00 a)EB(O a O) 144-14=28,
0a 0 00 —a .

where a, a, a, (resp. b, by, b,) are linear combinations of e,&e, and e,&@e, (resp.
ee®e, and e,Qe;y), i, j=1, 2, -+, 7.

We now construct a symmetric space I/ in the set End® of endomorphisms
of @. The action of the adjoint group G of & on End@® is defined by g-h=
ghg™! for g&G and h<End®. Let II be the orbit of the projection Py(K,) by
G under this action, i.e., [I={g-P,(K,)|g=G}. Note that g-P,(K,)=Pi(gK,).
Then the eigenspace &,(gK,) can be regarded as the tangent space at P,(gK,)
of 71, and the eigenspace Gy(gK,)PG,(gK,) can also be regarded as the Lie
algebra of the isotropy group at P,(gK,) (cf. [2], Proposition 2.4). When we
introduce a G-invariant Riemannian structure into I/ by restricting the Killing
form B of & to each tangent space &,(gK,), the adjoint group G equals to the
identity component of the isometry group of /1. If @ is a compact exceptional
Lie algebra, II is simply connected from [4], p. 411.

PROPOSITION 2.1. [T is a compact symmetric space in which each point P,(gK,)
has the geodesic symmetry 1—2P,(gK,). The type of II can be given by the
table:
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R C Q €

RP, CP, QP, P,
CP, CP,xCP, G°4,2) EI
QP, G°%4,2) G@8,4) EVI
CP, El EVI EvIl

@aqeﬂ

where G°4,2)=SU(6)/S(UMA)XU(2)), G(8,4)=S0(12)/SO8)*xSO4) and the first
column contains four planes from the real projective plane to the Cayley plane.

Proof. We can obtain the table by the direct calculation.

One has an involutive automorphism

Q11 Gy Qg3 Q11 — Q2 —Ays
ﬁ: Qg1 Qo2 Qo | —>| — A2 [FP) (2}
A3y G3p Qs —as Qs QA3

in the matrix algebra M3 This can be extended easily to the Lie algebra
G=L(AP, M3, A®) by

B: DY+ aQ@XQs+DP —> DD+ aQBXRs+DP .

Denote this extended map by f again. Then B=expn(ad K;) and P,(K,)=
(1—pB)/2 hold. Hence the orbit of 8 by G is the same as II essentially. We
notice moreover that all the symmetric spaces in Proposition 2.1 are constructed
by a single transformation B8 of AM*® and the spaces in the first column have the
structure of projective planes. Therefore one can expect that the remaining
symmetric spaces may have the similar structure. For each point P in II we
will regard later the antipodal set L(P) of P as a line and investigate I from
the viewpoint of projective planes. All lines are transitive one another (see
Proposition 3.8 in the case of II=EVI).

PROPOSITION 2.2. L(P) is a compact connected symmetric space. The follow-
ing table gives the type of L(P) in each case: S™ is an n-dimensional sphere.

R C Q €
St S? St S8
ST S'EXST GY2,2) G@B,2)
St GY2,2) G4,4) GBY
S8 GB,2)  GB4) GG8)

@em:c‘
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§3. A maximal flat torus in //.

In the remaining sections, let &=L, M? Q) and II=FE;/Ss(16) (=EVI).
For simplicity we write P(x) instead of P,(x). We analyze here the structure
of the integer lattice of a maximal flat torus and study the subset of [/ which

consists of all points commuting with P(K)).
Define three elements {K.} in ¥C& by

0 00 001 010
K,={0 01), K,= OOO), K;={—100},
0—-10 —-100 000

where the unit element ¢, and the notation ) are omitted. Let ¥, be the 8-
dimensional abelian subspace of M spanned by {K,, ¢, Kse,, ---, e.Kze,}, and set
Ty={exp(adz)-P(K,)|z€%,}. T, is a maximal flat torus in /I passing through
P(K,). Then, with respect to ¥,, & has a root space decomposition

S=T, PG, (over C).

The 240 roots are given, with respect to the operation ad(3 a;e;Kse,), a:=R,
by
+2a,ta)i (0ZI<jET),

—(aotea,+esa,+ -+ +e.a4)l (e,==1 and the product &, - &,=1),
where i=+/=T1. A fundamental root system consists of
A=—2a,—azi, A=—2(a,—ay)i,
Aa=—2(as;—ai, A=—2(a,—asi,
As=—2(as—a,i, Ae=—2a,—aqi,
H=—2a,+aq),i
As=—(Qy—ay—Ay—A3—ay—as—as+a,)i.

The highest root is Ay=—2(a,+a,)i. Then 2,=22,+32,+42;+52,+64;+44:+
3A:+22; holds and the extended Dynkin diagram becomes

Ii_
e, O O O- O O O

A Y R N R T N T

Define an 8-dimensional simplex in %, by

SUD={x €T, W(xD)Z0, -, 2(x)=0, A(xD)=7}.
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This contains the origin of ¥,, and any point in /I is conjugate to some point
in exp(ad &(I1))- P(K;). Let x, denote the vertex of &(IT) which corresponds to the
root A,, then the coefficients of the vectors {x;/=|i=1, 2, ---, 8}, with respect
to the basis {e;K;e,|7=0, 1, ---, 7}, can be given by the table:

x/m| 0 1 2 3

4
1 |1/4 1/4 0 0 0
1/3 1/6 1/6 0 0
3/8 1/8 1/8 1/8 0
2/5 1/10 1/10 1/10 1/10 O
5/12 1712 1712 1712 1712 1/12 0 0

7/16 1/16 1/16 1/16 1/16 1/16 1/16 —1/16
5/12 1712 1712 1712 1/12 1/12 1/12  1/12
172 0 0 0 0 0 0 0

5
0
0
0

O O O O ;™
O O O O3

O N o Ul W N

Remark. The Lie algebras of the isotropy group at the points exp(adx,):
P(K,) in Il have respectively the types (1) A.PI, (2) C.PB,:, (3) 2B.PD;,
4) 2B,, &) IPB,PD,, (6) D,BI, (7) B, and (8) 2D,, where [ is a one-dimension-
al center. If x,=the origin 0, one has (9) D,.

LEMMA 3.1. Let z€%,. Then exp(adz) 1s the identity transformation of &
if and only if each fundamental root 2, satisfies 2,(z)E2rnZi, where Z is the
integer ring.

Proof. Assume that exp(adz)=1 and take a non-zero element g,=®, for
each root 4. Since g,=exp(adz)g;=(expA(z))g, holds, we see expA(z)=1. This
means A(z)e2xZi. We next show the converse. Since any root 1 can be
written as A= 1,4, (n,Z), we have exp(adz)g,=(expA(z))g:=(exp 2 n:4:(2))g 2
=gz

For the highest root A,, set 2,=>}m;4,. Then we see that m;=2, m,=3, ---,
ms=2 by the above. The integer lattice € in T, is defined by 2={z=%I,]
exp(adz)=1}.

PROPOSITION 3.2. L={2n,mx,4+ -+ +2nymexs|n;SZ} holds, where {x,} are
the vertexes of &(II).

Proof. Assume that z&3, satisfies exp(adz)=1 and set z=31&,x, (§;=R).
From Lemma 3.1, there exists an integer n,&Z for each 7 such that 2,(zi)=2zn,.
Since A;(x;i)=0 (##s) and A,(x,)=n/m, hold, we obtain &=2n,;m,. Conversely,
let z=332nym,x, (n;€Z). Then A,(zi)=3 2n,m,A,(x:i)=2n;7 holds. This shows
exp(adz)=1 from Lemma 3.1.

We rewrite Proposition 3.2 by making use of the basis {¢;K,e,} of T,.
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Then we obtain the following where z=3}t;¢;Kse, (t;=R).

PROPOSITION 3.3. Let z€%,. Then z& & holds if and only if z satisfies (1)
or (ii):

(i) tiewZ, for each i, and D t,€2nZ,

(i) ti—m/2€nZ, for each i, and 2t;€2nZ.

®&,(x) is the tangent space at P(x) of II.

LEMMA 3.4. Let ze®(x). Then exp(adz) leaves P(x) fixed if and only if
exp(ad2z)=1 holds in G.

Proof. Put e(z)=exp(adz) simply. Assume that e(z)-P(x)=P(x). Then
we obtain e(z)P(x)=P(x)e(z). Hence it holds that e(—z)=e((1—2P(x))z)=
(1—2P(x))e(z)(1—2P(x))=e(z) because 1—2P(x) is the geodesic symmetry at
P(x) in II. This identity implies ¢(2z)=1. We next show the converse. Since
e(2z)=1 gives e(z)=e(—z), we have e(z)=e(—z)=e((1—2P(x))z)=(1—2P(x))
e(z)(1—2P(x)). Therefore e(z)P(x)=P(x)e(z) holds.

PROPOSITION 3.5. Let z=%,. Then exp(adz)-P(K,)=P(K,) holds if and
only if z satisfies (i) or (ii) where n/2Z={nr/2|nsZ}:

(i) tien/2Z, for each i, and D t,enZ,

(i) t,—n/den/2Z, for each i, and 2 t,=nZ.

Proof. One obtains this from Proposition 3.3 and Lemma 3.4 because
T,C (K.

LEMMA 3.6. Let ze®,(K,). The point exp(adz)-P(K,) commutes with P(K,)
if and only if exp(ad2z)- P(K,)=P(K,) holds.

Proof. This is the same as Lemma 3.4 [3] essentially.

ProposITION 3.7. Let z=%,. The point exp(adz)-P(K,) commutes with
P(K,) if and only if z satisfies (i) or (ii):

(1) tiew/4Z, for each i, and 2 t;=n/2Z,

(i) t,—rw/8en/AZ, for each i, and S t;=n/2Z.

Proof. This can be derived easily from Proposition 3.5 and Lemma 3.6.

Let L(P(K,)) denote in II the antipodal set associated to P(K,), and 2 be
the submanifold of /I of which points are the middle points of the shortest
closed geodesics with the initial point P(K,).

PROPOSITION 3.8. The subset of all toints in II commuting with P(K,)
becomes two connected submanifolds L(P(K,)) and 2. They are totally geodesic
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and compact.

Proof. Take ze©(Il). If exp(adz)-P(K,) commutes with P(K,), z=x, or
x5 holds from Proposition 3.7, where x, and x, are the vertexes of &(II).
Hence, the points commuting with P(K,) form two orbits 2 and L(P(K,)) since
they are transitive to exp(adx,)-P(K,) or exp(adxs)-P(K,). The types as
symmetric spaces are SO(16)/U(8) and G(8,8) respectively. Note that P(K,)=
exp (ad xs)- P(K) holds. The distance between P(K,) and L(P(K,)) can be given

by
[ (B0, 70 2dt={ (— B, x))d1=2Tr,

where B is the Killing form of & and y(t)=expf(ad x,)- P(K,) is the shortest
geodesic from P(K,) to P(K,).

Remark. If II is another exceptional type in Proposition 2.1, we have the
following table where the values mean the distance from P(K,):

| 6P, El EVI EVI
0 SO(10)/U(5) (SO(12)/U(6))x S? SO(16)/U(8)
2/ 3= 3WV2x V307
S8 G(8,2) G(8,4) G(8,8)
L(PE.D) J 3vV2r 26 n 67 24/157

§4. II as a projective plane in a wider sense.

We introduce two geometrical objects, points and lines, into /7 in order to
study II from the viewpoint of projective planes. Let P<II. Then we call
the antipodal set L(P) a line (associated with P) and call P a point again in the
sense of the projective geometry. The incidence structure is defined by the
inclusion relation.

Let IT* denote the set of all lines of /I. First we show that the corres-
pondence L from II to II* defined by L:P—L(P) gives the notion of the
polarity to /I (Proposition 4.3) and next analyze the structure of the inter-
section L(P)NL(Q). Finally we assert that /7 is a projective plane in the
wider sense of Theorem 4.16.

(NOTATIONS). T, is the maximal flat torus defined in §3 and contains
P(K),). %,is its Lie algebra at P(K,) spanned by the basis {e;K,e,}, and
dim%,=8 holds. &,(K,) is the tangent space at P(K,) of /I and contains ¥,.
The subset ¥ of @ is defined in §2. G is the identity component of the iso-
metry group of /I. Let Iso(P) denote the isotropy group at P in /I with
respect to G. Set U(Q)=Iso(P(K,))NIso(Q) for Qell. 1(Q) is the Lie algebra
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of U(Q). The distance between P and Q is denoted by d(P, Q). The notation
& means the equivalency.

LEMMA 4.1. L(P)={Qell|PQ=QP and d(P, Q)=2+/15x} holds.

Proof. We can prove this by Proposition 3.8 and by the transitivity of
points in I7.

LEMMA 4.2. The correspondence L : II—II* is a bijective map.

Proof. The definition of L gives the surjectivity. So we show that L is
injective. From the transitivity of points in 7, it is sufficient to see that
L(P(K)=L(Q), for Q=ll, implies P(K,)=Q. Assume L(P(K,)=L(Q). Then
there exists an element a<Iso(P(K,)) such that a-Q<T, Hence one has
L(P(K,)=L(a-Q). This means d(a-Q, L(P(K,)))=2+/15x, but such a point in
T, is P(K,) only. In fact this holds by the following assertion and then one
obtains a-Q=P(K,), i.e., Q=P(K,).

The points in T,N\L(P(K,) ) have the forms exp(adz)-P(K,) such that z=
StiweKye, (1;=R). We can write down then their coordinates (¢,) by Lemma
4.1 and Proposition 3.7. Namely they are the permutations of the (¢,) as below.
The number of the points is 135 from Proposition 3.5, and P(K,) is a single
point in T, which commutes with all the points and also has the distance
24/15% from them.

(to, t, to, t&, t., ts5, o, ¢ )  permutations

/2, 0, 0, 0, 0, 0, 0, 0) 1
/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8) 1
(7/8, 3/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8) 28
(7/8, 3/8, 3/8, 3/8, 1/8, 1/8, 1/8, 1/8) 35
(1/4, 1/4, 174, 1/4, 0, 0, 0, 0) 35
(3/4, 1/4, 1/4, 1/4, 0, 0, 0, 0) 35

Since the correspondence L is bijective, we can introduce the structure of
the symmetric space II into [7t. If we also use L instead of L', then L? is
the identity map of II\UITE.

PROPOSITION 4.3. The correspondence L gives the polarity of II, i.e., L
satisfies (1) and (ii):

(i) L*=1 on ITUIT*,

(i) PeL(Q)= Q= L(P).

Proof. The result (ii) is easy from Lemma 4.1.

We are going to prepare some facts from Lemma 4.4 to Corollary 4.15 in
order to analyze the structure of the intersection L(P)NL(Q). The goal is
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Corollary 4.15. The explicit classification by this is listed up in §5.

LEMMA 4.4. Let QI commute with all points in T,. Then all isometries
exp(adz), z&%,, leave Q fixed.

Proof. Any point in T, has the form a-P(K,) where a=exp(ad Xt;e.Kse,),
LER. Put y=1-2P(K,). If Q commutes with T,, one has 7-(a™'Q)=a'-Q
because Q(a-P(K,))=(a-P(K,))Q. On the other hand, we have y-Q=@Q from
P(K,)eT, and also have y(e,K,e,)=—e,Kse, since 7 is the geodesic symmetry
at P(K,). Hence it holds that 7-(a™'-Q)=(ra~'r ") -(y-Q)=exp(ady X (—t,)e. Kse.)
‘Q=a-Q. We obtain then a'-Q=y-(a'-Q)=a-Q. This implies a*-Q=0.
Since ¢, is arbitrary, a-Q=@ holds.

LEMMA 4.5. If Q&I commutes with all poinisin Ty, there exists an element
x in T,NX such that Q=P(x).

Proof. Let @ commute with T, and let Q=g -P(K,), g&G. Put y=gKkK,,
then we have Q=P(y). The set {ge;K,e,|i=0,1, ---, 7} generates a Cartan
subalgebra ¥, of @ such that y=3,CG(y). On the other hand, since all iso-
metries expt(ade;K,e,), t=R, leave Q fixed by Lemma 4.4, we obtain ¢;K,e;=
Go(y)PG(y) for each 7. Hence the Cartan subalgebra T, spanned by {e;Ke,}
is contained in G(y)PG.(y). Since G(y)PG,(v) is a compact simple Lie algebra
so(16) with the rank8, both ¥, and ¥, are Cartan subalgebras also in
Go(v)PBy(y). Therefore there exists an element 2 in the Lie subgroup
exp(ad (Gy(v)PGy(y))) of G such that AT,=F, Then, for x=hysIT,N¥, we
obtain P(x)=P(hy)=h-P(»)=P(y)=Q.

LEMMA 4.6. If Q€ll commutes with all points in T, and also has the
distance 2+/157 from P(K,), there exists an element k<Iso(P(K,)) such that kT,
=%, and Q=P(kK)).

Proof. Let Q satisfy the above assumption. Then the line L(P(K,)) con-
tains Q and also does P(K,) because P(K,)=exp(r/2ad K,)-P(K,). Hence there
exists an element g<Iso(P(K))) by Proposition 3.8 such that Q=g-P(K,). Since
the Lie algebra of the isotropy group at P(K,) is G,(K,)PG.(K,), one has
g68(K,) Pg®.(K,) (denoted by I(Q)) as the isotropy algebra at Q. We show
next G (K)NI(Q)DgT T, I(Q)DI, holds by the same reason as the proof
of Lemma 4.5. Since g-P(K,)=P(K)) is equivalent to gy=7g where y=1-2P(K,),
one has y(gx)=grx=—gx for x&%,. This gives &,(K,)Dg%, Let U(Q), denote
the identity component of the subgroup U(Q) of G. This group is compact.
Take an element x&g%, (resp. y&%,) such that its centralizer in & is equal
to g%, (resp. ¥,). Define a differentiable function F on U(Q), by F(h)=B(x, hy)
where B is the Killing form of . If F has an extremal value at h,=U(Q),,
one obtains for any z=WW(Q) (where 1(Q) is the Lie algebra of U(Q),)
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0:{%3(;;, (expt(adz))hoy)} 0=B(x, [z, hey])

t=

=—B([x, hy], 2).

Hence we have [x, ho,y]=0 because [x, h,y]€W(Q) and B is non-degenerate in
WQ). The first property can be derived from x, hoy€EG®,(K)NI(Q) and so by
[x, hoy]1E=(By(K)PG(EKNNI(Q) (=WQ)). Now [x, hy]=0 gives hT,=gT,.
Put k=h3'g, then one has %k%,=%, and k<lso(P(K,)). Finally it holds that
P(RK;)=h3'-P(gKy)=h3'-Q=0Q.

We define two sets S and S, by

S={QeIl |QP=PQ and d(P, Q)=2+/15x for all P=T,},
So={Q&T,|QP(K,)=P(K,)Q and d(P(K,), Q)=2+/157}.

Since @S has the form Q=P(x) for some x=3%F, from Lemma 4.5, we
define the map f: S—T, by

f(P(x)=exp(x/2ad x)- P(K).

One can see from Lemma 4.7 that f is well-defined and injective. Furthermore
Lemma 4.8 asserts that f(S)=S, holds.

LEMMA 4.7. For x, ye3,, P(x)=P(y) holds if and only if f(P(x))=f(P(y))
holds.

Proof. Let e(x)=exp(ad x). Then, P(x)=P(y)=e(rnx)=e(ry) (because e(mx)
=1-2P(x))=e(rnx/2)e(—ynx/2)=e(ry/2)e(—yny/2) (because x, y=T,CG,(K;) and
r=1-2P(K,)) © e(rx/2)re(—nx/2) = e(ny/2)ye(—my/2) & e(mx/2)- P(K,) = e(7y/2)-
P(K)ef(P(x))=f(P(y)) hold.

PROPOSITION 4.8. f(S)=S, holds.

Proof. We show first f(S)DS,. S, contains P(K,) because P(K;)=
expr/2(ad K,)-P(K,). Take any point Q@ in S,. Since any element in I, is
transitive to a point in &(/I) by the affine Weyl group of &, there exists an
element g=Iso(P(K,)) such that g-T,=T, and g-P(K,;)=Q. This g also satisfies
P(gK,)eS. In fact, for P€T, one has PP(gK,=g(g ' -P)P(K,)g '=gP(K,)
(g7*-P)g~' (because g~ '-P=T, and P(K,S)=P(gK,P. Moreover the
distance is given by d(P(gK,), P))=d(P(K,), g7'-P)=2+/15n. Hence we obtain
f(P(gK,)) = expr/2(adgK,)- P(K,) = gexpn/2(ad K,)- P(K,) (because g 'Iso
(P(K,)))=g-P(K;)=Q. This means f(S)DS,.

Next the converse f(S)CS, is shown. For any Q&S, there exists an
element k<lIso(P(K,)) by Lemma 4.6 such that £%T,=%, and Q=P(kK,). One
has then f(Q)=expr/2(adkK,)-P(K,)eT, and also has f(Q)=*Fk-P(K,) because
k~'elso(P(K,)). This gives the commutativity of P(K;) and f(Q), from
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P(K,)P(K,)=P(K,)P(K,). The distance is: d(P(K,), f(Q))=d(P(K,), k-P(K,)=
d(P(K,), P(K;)=2+/15%. Hence we obtain f(Q)CS,.

LemMMA 4.9. For QES, two identities hold:
J(@Q)=P(K,)+(1—2P(K,))Q,
Q=P(K,)+(1—2P(K,))f(Q).

and

Proof. The Lie algebra ®& has three involutive automorphisms {1—2P(K,)},
i=1,2,3. They are commutative with one another and satisfy the identity

(I1=2P(K.))A—=2P(Ky))1—2P(K,))=1.

For any Q=S we can take an element k<Iso(P(K,)) by Lemma 4.6 such that
kZ,=%, and Q=P(kK,). Since f(Q)=P(kK,) also holds, one obtains

(I-2P(K))A-2Q)1-2f(Q)=1.

This gives the above identities.
Two following lemmas can be proved easily by Lemma 4.9 and by U(Q)=

Iso(P(K,))NIso(Q).
LEMMA 4.10. For QS, UQ)=U(f(Q)) holds.

LEMMA 4.11. Let gelso(P(K,)) and P, Q=S. Then g-P=Q holds if and
only if g-f(P)=f(Q) holds.

The study of the intersection L(P)NL(Q) is equivalent, by Proposition 4.3,
to that of all lines passing through P and Q. By the transitivity of points and
lines in /I, we may take then P(K,) and P&T, as such two points. Hence we
define, for each P<T,, the subset N(P) of Il by

NP)={Qell|P(K,)e L(Q) and P=L(Q)}.

PROPOSITION 4.12. Let V, and V, be maximal flat tori of Il and let both
pass through P(K,) and P. Then there exists an element z€W(P) such that

exp(ad z)- V,=V,.
Proof. This is the same proof as Lemma 5.9 [2] essentially.

LEMMA 4.13. For each P€T,, N(P)={g-Q|Q<S and gcU(P),} holds where
U(P), is the identity component of U(P).

Proof. Take any Q& N(P). The line L(Q) has the rank 8 as a symmetric
space because its type is G(8,8). Hence there exists a maximal flat torus V of
IT such that P(K,), P€V and VCL(Q). Since we can find an element geU(P),
by Proposition 4.12 such that g-V=T,, we obtain g-Q&S. This gives Q=g
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(g-Q)=g™"-S. Conversely let Q=S and geU(P),. Since P(K,), P L(Q) holds
from the definition of S, one has P(K,), P€ L(g-Q).
For each P=T, we define the subset Ny(P) of II by

NoP)={g-Q|QES, and g&U(P)},

and we also define the map f: N(P)—Ny(P) by f(g-Q)=g-f(Q) where N(P) is
in Lemma 4.13 and f appears in Lemma 4.7.

LEMMA 4.14. f 1s a diffeomorphism for each PET,.

Proof. First the bijectivity of f is shown. Let Q,, Q.S and g,, 8.€
U(P). Then it holds that: f(gl : Ql):f(gz' Q)=g83'8:1 f(Q)=f(Q)=g7' g1 Q1=
Q. (by Lemma 4.11)&g,-Q,=g,-Q,. Next let C be any connected component
of N(P) and then there exists a point Q in CNS by Lemma 4.13. Since U(Q),
NU(P)=U(f(@))yNU(P), holds from Lemma 4.10, the components C and f(C)
are homogeneous spaces with the same type U(P)/(U(f(Q))NU(P),). Fur-
thermore they have the same differentiable structure induced from I/ because
the identity g-f(Q)=P(K,)+(1—2P(K,))g Q) holds for gU(P),.

COROLLARY 4.15. The analysis of the set of all lines passing through P(K,)
and PET, can be reduced to the classification of the orbit No(P) of S, by U(P),.

Let Il be the Lie algebra of the isotropy group Iso(P(K,)) at P(K;). In the
following definition we use the roots A4 of the symmetric space II (=the
restricted roots of & to T,NG(P(KL))).

W,={z€W|[x, [x, z]]=4>)*z for xE3,},
S;={Q&T,|Q=exp(ad x)- P(K,) with Ax)exZi},
W&)={zell|[z, T,]={0}}.

Note that 0&4. In the case of I[I=EFE,/Ss(16), W(Z,)={0} holds and 4 is the
same as the roots of & For P<T,, the Lie algebra of U(P), is given gene-
rally by

WP)=WIT)DIM,,

where the index A runs over the positive roots 1 such that P&S; (cf. [6], p.
64). We denote the set of such roots 2 by A(P).

Set 4y={2=4|S5,CS;}. If P satisfies A(P)C4,, P is said to be in the
general position with respect to P(K,) (in the sense of the projective plane).
If P satisfies A(P)N\(4—4,)+ @, P is said to be in the singular position. Since
one has here 4,=@ and W(&,)={0}, that P is in the singular position is equi-
valent to that P is a singular point with respect to P(K,).
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Remark. 1f II=CP,, it holds that S,={P(K,)} and 4,=4. Hence all points
except P(K;) itself are in the general position with respect to P(K,). This
asserts that two distinct points are contained in one and only one line. If 1=
E./S0(10)X S0O(2) or E,/SO(12)xS0(3), we have 4, @ and d—4,#@. Then,
the singular position can be characterized by the shortest closed geodesics or
by 3-dimensional tori with the minimal volume respectively (cf. [2], [3]).

DEFINITION. (i) Two distinct points P and @ in /] are said to be in the
general position if P is a regular point with respect to @ in the sense of the
symmetric space. If not so, they are said to be in the singular position. (ii)
Two distinct lines L(P) and L(Q) are said to be in the general (resp. singular)
position if and only if P and @ are in the general (resp. singular) position.

THEOREM 4.16. [T is a projective plane in the wider sense:

(1) For two distinct points there exist exactly 135 lines passing through them
if the points are in the gemeral position. If in the singular position, the set of
such lines becomes one of the 65 cases, except for the cases (9) and (67), given in
the table of §5.

(ii) The correspondence L asserts the duality of (i) for two distinct lines.

Proof. The second (ii) is a direct consequence from Proposition 4.3. We
show (i). By the transitivity we may take P(K,) and P&T, as two distinct
points. Then, from Corollary 4.15, the set of lines passing through them is
diffeomorphic to the orbit No(P) of S, by U(P),. Especially, if the points are
in the general position, N(P)=S, holds because the group exp(ad(T,)) leaves
S, fixed. In the table of §5, (9) is the case that P(K,)=P and (67) is the case
that P(K,) and P are in the general position.

§5. The classification of N,(P).

In this section we list up the results of the classification of N(P) for P
SUT), where we set S(/I)=exp(ad&(/I))-P(K;). The orbit Ny(P) of S, is
determined by the isotropy group U(P),. By the similar proof to Proposition
2.8 [8], we can see that U(P), is also determined by the fundamental roots 2,
and the highest root —a, such that {1,, —2,}C {4}, where WP)=WE)PZU;.
Hence we calculate the 2° cases of U(P), and classify Nyo(P). The results are
obtained by direct calculations. The number of the kinds of orbits is 67 if we
count the cases (9) and (67).

For PeS(I), let R(P) denote the set of the fundamental or the highest
roots 4, such that PES;. We can then construct from R(P) a subdiagram
D(P) of the extended Dynkin diagram of &. In the notation of R(P), the
number 9 stands for —4, and the star * means being empty.
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Example.

O—L

0—0—0
R(P)=(9,1,2,%,4,5,6,7, )& 3, 2 2 A 2s A
D(P)

the representative point P:
P=exp(adz)-P(K,) with z=(x;+x5)/2.

Let 5 denote the family of all subsets R of {—2,, 4, -, 4s}. Set 5=
{REE|RD{—2Ay, A, A4, 2;}} and 5,=5—5; respectively. For two distinct
points P, Q& S(II), we consider the subdiagrams D(P), D(Q) and the sets R(P),
R(Q) of roots. Then we add the following facts to the results of the classifica-
tion : '

(i) Let R(P), R(Q) €5, or R(P), R(Q)EE, hold. Then D(P) and D(Q)
have the same figure, as sets of points, if and only if the orbits N,(P) and
Ny(Q) are diffeomorphic to each other by some isometry of 1.

(ii) If R(P)DR(Q) holds, the orbit Ny(P) contains Ny(Q) as a totally geo-

desic submanifold.

In the table we list in turn:

(i) the set R(P) of the roots 4, such that P€S,,,

(ii) the Lie algebra U(P) of U(P),,

(iii) the types of all connected components C of the orbit Ny(P),

(iv) the number of components with the same type as each C,

(v) the number of points of CNS,.

Note that the representative point P satisfying a given R(P) can be obtained
easily by the same way as the above example.

(NOTATIONS). T™ is an n-dimensional torus. [ stands for one-dimensional
center of Lie algebras. A;, B,, C, and D, mean the Lie algebras or the Lie
groups with such types respectively. G°(4,4)=SU®)/S(UMA)XU4), G#(2,2)=
Sp(4)/Sp2)X Sp(2), G(m, n)=SO(m~+n)/SO(m)XSO(n), AI8)=SU(8)/SOB) and
CI4)=Sp4)/U(4).

Table
( l ) R:(gy *, 2) 31 4; 5) 6: 7) 8) H A7@I
G°4,4), AIG)XT!
(1,1 : (63,72)
(2) R:<9y ]-) *, 3) 4) 5; 67 71 8) . Ct@Bl

GH(2,2), CI4)xG(2,1)
(1,1 : (27,108)
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(3) R=(91,2,%4,56,7,8) : 2B,D,
{one point}, G(4,1)xXG(4,1), G(S )X G(3,2)XG(2,2), G3,1)XB,
(1,1,1,D : (1, 10, 60, 64)
(4) R=(0,1,23,%5,6,7,8) : 2B,
G4, 1), G4, 1)xGH4, 1), G@3, 2)><G(3 2)
(2,1,1) : (5,25, 100)
(5) R=(91,2734,+6,7,8) : ISB.DD,
G(2,1), T'XGG5,1), G4,2), G(2 1DXG4,2), T'XG(2,1)XG(3, 3)
(1,1,1,1,1) : (3,12, 15, 45, 60)
( 6 ) R:(g; 1) 2; 3: 4" 5) *; 7’ 8) : D4EB[
T, G(6,2), G4,4), G4, HXT!
(1,1,1,1) : (2,28, 35,70)
(7) R:(gr 1’ 21 3» 4’ 5’ 6: *) 8) : B4
G@B, 1), GG5,4)
1,1 : (9, 126)
(8) R=(9,1,2,3,4,5,6,7,%) : 2D,
‘ {one point}, D,, G(4,4)xX G4, 4)
(L1, D : (1,64,70)
(9)  R=(9,1,2,3,45,6,7,8) : D,
G(8,8)
D : (135)
(10) R=(9’ 1? 27 3; 4; 5’ *, 7r *) : D4
{one point}, G(6,2), G(4,4)
2,1,3) : (1,28, 35)
(11) R:(g) 1’ 2) *» 4) 5: *, 7; 8) . ZDZ@[
{one point}, T, G(2,2), G3,1)XG(3,1), G(2,2)XG(2,2),
G@3, D)X GG, 1)><T1 G(2, 2)><G(2 2)XT!
1,2,2,2,1,1,1) : (1,2,6,16, 18, 32, 36)
(120  R=(9,%2,3,4,56,7,% : 2DyPI
fone point}, G(4,2XG(4,2), DxT', D, G(3,3)X G, 8)XT!
(1,1,1,1,1) : (1, 30, 32, 32, 40)
(13)  R=(9,%2%4,5,6,7,8) ; 2B,B2l
{one point}, G(4, XG4, 1), GB3,2)XG(3,2), B.xT",
GG, DX G(3,2)XT*
(1,1,1,2,1) : (1,10, 20, 32, 40)
(149 R=(091,2,%4,%6,7,8) : 2I6B.BD,

{one point}, G(2,1), 7%, G(2,2), T*XG(8,1), G(2,1)XG(2,2),
T'}XG(2,1)XG@E, 1), T*XG(2, 1)><G(2 2)
1,2,1,1,2,1,2,1) : (1,3,4,6,8,18, 24, 36)
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(15) R=(9,1,2,%,4,5,6,7,%) : 3D,
{one point}, D,, D,XG(2,2), D2><G(3 1), G2,2)XG(2,2)XG(2,2)
(3,1,1,2,1) : (1,8, 24, 32, 36)
(16> R:(Q: 1; 2: 3} 4) *, 6) 7: *) B 21@03
{one point}, T', T'XG(5,1), G4,2), T'XG(3,3), T'XG4,2),
T*XG(3,3)
1,1,1,2,1,1,1) : 1,2, 12, 15, 20, 30, 40)
17y R=(9,1,%,3,4,%,6,7,8) : IP3B,
G2, 1), T'XG2,1), G2, 1)XG(2,1), G2,1)XG(2,1)XG(2, 1),
T'XG2, 1)XG2,1)XG2,1)
3,3,31L1) : (3,6,9,27,54)
<18) R:(*’ *) 2’ 3) 4) 5: 6) 7: 8) : A’l
G°(4,4), AI®)
L1 : (63,72)
(19) R:(gy *; *y 3) 4) 57 6) 7) 8) : C4®[
GH(2,2), CI4), CI4)xT*
(1,1,1) : (27, 36,72)
(200  R=(x,1,2,%4,56,7,8) : 2B,DB,
{one point}, G(4,1)XG(4,1), Bg, B;xG(2,1), G3,2)XG(3,2)XG(2,1)
(1,1,1,1, 1) : (1, 10, 16, 48, 60)
21)  R=(+1,2,3,4,+6,7,8) : ISB,DB,
T, G2,1), G4, 1), G@3,2), T'XG4,1), G2,1)XG4, 1),
G2, 1)XG@3,2), T'XG(2, 1)><G(3 2)
(14,1,1,1,1,1,1,1) : 2,3,5, 10, 10, 15, 30, 60)
(22) R=(9,1,2,3,4,%,6,* 8) : B,®D,
G2, 1), GG5,1), G4,2), G2, l)><G(4 2), G2, 1)XG(3,3)
1,2,1,1,1) : (3,6, 15,45, 60)
(23) R:(*: 1) 2} 3) *, 5: 6» 7) 8) : B2@D2
{one point}, G(3,1), G4,1), G4,1)XG@3,1), G@3,2)XG(3,1),
G@3,2)XG(2,2)
(1,1,2,1,1,1) : (1,4,5, 20,40, 60)
(24) R(*12345 %7,8) : Bs®I
, G(6,1), G(5,2), G4,3), G(4 HXT
(1 1 1,1,1) (2,7,21,35,70)
(25)  R=(+,1,2,3,4,5,6,%8) : D,
{one point}, G(7,1), G(5,3), G(4 4)
(1,1,1,1) (1,8,56,70)
(26) R=(x,1,2,3,4,5,6,7,%) : 2B,

{one point}, B,;, G4,3)xXG4, 3)

(L1, D (1,64,70)
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27) R=(9,%,2,%,4,5,6,7,%) : 2D, P21
{one point}, D,, G(2,2)XG(2, 2) D, XT?, D, XT? G(2,2)XG(2,2)XT*
(3,2,1,4,1,1) : (1,8, 12, 16, 16, 24)
(28) R=(9,%,2,%,4,%,6,7,8) : B4l
{one point}, G(2,1), T? G(2, 1)><T2 G2, 1)XT*
(3,4,6,6,1) : (1,3,4,12,24)
(290 R=(9,1,2,%,4,5,%7,%) : 2D,
{one point}, G(2, 2) G@, 1)><G(3 1), G(2,2)xG(2,2)
(,2,4,3) : (1,6,16,18)
3B0)  R=(9,%2,3,4,5%,7,%) : DI
{one point}, G(5,1)XT"*, G4, 2) G@3,3)XT!
(3,1,4,3) : (1,12, 15, 20)
@l R=0,1,2,%4,%6,7,%) : D.®31

{one point}, T*, T?, G(2,2), G(3 DXT?, G@2,2)XT*, G2,2)XT?,
GE, HXT?, G2,2)XT?

(3,2,1,2,4,1,1,2,1) : 1,2,4,6,8,12,12, 16, 24)
(32) R=(9,1,%,3,4,%,6,%,8) : 3B,

G2, 1), G2, 1)XG(2, 1) G2, 1)>< G2, HXGE, 1)

9,3,3) : 3,9,27)
(33) R=(x,%23,4,5,6,7,%) : 2D,

{one point}, G(4,2)XG(4,?2), D3, G(3,3)XG(@3,3)

(1,1,2,1) : (1, 30, 32, 40)
(34) R:(*) *7 *, 3) 4) 5) 6) 7; 8) : C4

G"2,2), CI4

1,3 : (27, 36)
(35  R=(9,%%%4,56,78) : 2B,PI

{one point}, G(4,1)xXG4, 1), B,, G(3,2)XG(@3,2), B:XT7,
G@B,2)XG(3,2)XT!

(1,1,2,1,1,1) : (1, 10, 16, 20, 32, 40)
(36) R=(%1,2,%4,56,7,%) : 2D,®B,
{one point}, D,, D,XG(2,1), G(2 2)XG(2,2)xXG2, 1)
(3,331 : (1,8,24,36)
@7 R=(%1,2,%4,%6,7,8) : 2B,P2I

{one point}, T, G(2,1), T?, G(2,1)XT*, G2,1)XG2,1),
G2, HXG2, l)><T1 G(2, l)><G(2 DXT*
1,2,3,1,4,2,2,1) : 1,2,3,4,6,9,18, 36)

(38 R=(%,1,2,3%5,%7,8) : B,®D,PI
{one point}, T, G(2,1), G(3,1), G(2,2), GG, 1)XT*, G(2,1)XG(3,1),
G2, 1H)XG2,2), G2, 1HXGE,DHXT, G2, 1)XG2,2)XT*
1,2,2,2,1,1,2,1,1,1) : 1,2,3,4,6,8,12,18, 24, 36)
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(39) R=(x,1,2,3,4,%,6,7,%) : B,P21
{one point}, T, G4,1), G@3, 2) GA, D)XT?, G@B,2)XT*, G(3,2)xT*
1,2,2,2,2,2,1) : (1,2,5, 10, 10, 20, 40)
(40) R=(x,1,2,3,4,%,6,%,8) : B.DB,
{one point}, G(2,1), G(4,1), G(S 2), G(22,1)xG#4, 1),
G(2,1)XG(3,2)
2,1,3,1,1,3) : (1, 3,5, 10, 15, 30)
(41) R=(%,1,2,3,%,5,6,7, %) : 2D,
{one point}, G(3,1), G(3, 1)><G(3 1), G2,2)XG(3, 1), G2,2)xG2,2)
(1,4,2,2,1) : (1,4, 16, 24, 36)
(42) R=(x,1,2,3,4,5, %, %, 8) : D,pI
{one point}, T*, G(5,1), G4, 2), G(3,3), G4,2)XT*, G(3,3)xXT!
(1,1,2,2,1,1,1) : (1, 2,6, 15, 20, 30, 40)
(43)  R=(x,1,2,3,4,5,6, %, %) : B,
{one point}, G(6,1), G(5,2), G(4 3)
2,1,1,3) : (1,7,21,35)
(44)  R=(9,%,2,%,4,5,%,7, %) : D21
{one point}, T2, G(,2), G(3, 1)><T1 G(2,2)X T*
(7,1,4,8,3) : (1,4,6,8,12)
(45)  R=(9,%,2,%,4,%,%,7,8) : 51
{one point}, T*, T? T® T¢ T°
(7,4,12,6,1,1) : (1,2,4,8,8,16)
(46)  R=(x,* % %,4,5,6,7,8) : 2B,
{one point}, G4, 1)XG#4,1), Bz, G(3,2)xG(3,2)
(1,1,4,3) : (1,10, 16, 20) i
(47)  R=(9,%,x%,%4,56,7,%) : 2D,DI
{one point}, D,, G(2,2)XG(2, 2) D, XT*!, G(2,2)XG(2,2)XT!?
(3,6,1,3,1) : (1,8,12,16, 24)
(48) R=(,1,2,%,4,%,6,7,%) : B, &3I
{one point}, T, G(2,1), T?, G(2 DXTY, G2, 1)XT?, G@2,1)XT?
(3,6,4,3,6,3,1) : (1,2,3,4,6,12,24)
(49  R=(x,1,2,3,%,5,%,%8) : D21
{one point}, T*, G3,1), G(2,2), GB,1)XT*, G(2,2)XT?,
G3, 1)XT? G@2,2)XT?
3,4,4,2,4,2,1,1) : (1,2,4,6,8,12, 16, 24)
(60)  R=(x,1,2,%4,5,%,%,8) : 2B.BI

{one point}, T7, G(2,1), G2, 1)XT"*, G(2,1)XG(2,1),
G2, 1DXGE, HXT!
(3; 31 81 21 4y 3) . (1, 2, 3, 6, 9, 18)
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(1)  R=(x,1,2,3,%,5,6,%,%) : B,®D,
{one point}, G(2,1), G(3,1), G(Z 2), G2, 1H)XGGB, 1), G2,1)XG2,2)
(5,2,4,1,4,3) (l 3,4,6,12, 18)
(52) R=(x,1,2,3,4, %6, % *) : B,®I
{one point}, T, G(4 1), G, 2) G@, )XTY, G@B,2)xXT!
3,1,4,4,1,3) (125101020)
(53)  R=(%,1,2,3,4,5, %%, %) : D,
{one point}, G(5,1), G4, 2), G(3 3)
(3,2,4,3) (1,6, 15,20
(54) R=(9,%,2,%,4,%,%7, %) 4]
{one point}, 7%, T*
(11, 24,3) (1,4,8)
(85)  R=(%,1,%,3,%,5,%%38) 41
{one point}, T*, T? T3, T*
(7,16,12,4,1) (l 2 4 8}62 -
(56) R=(x,x,%,%,4,5,6,7, %) 2D2
{one point}, D,, G(2,2)XG(2,2)
3,12,3) : (1,8,12)
57 R=(x,1,2,%,4, 6, %, %) B.®21
{one point}, T*, G(2,1), T? G(2 DXT!, G@2,1)XT*
(7,8,8,1,8,3) (1,2,3,4,6,12)
(58) R=(x,1,2,3,*,5, *, %, %) Dz@l
{one point}, T!, G(@3,1), G(2, 2) G@3, 1)XT!, G2,2)XT*
(7,2,8,4,4,3) (1,2,4,6,8,12)
(59) R=(x,1,2,%,4,5, %, %, %) : 2B,
{one point}, G(2,1), G2, 1)><G(2 1)
9,12, 10) (1,3,9
(60) R:(*} 1) 2: 3’ 4: *’ *’ *; *) BZ
{one point}, G(4,1), G(3,2)
(5,610 s
(6l)  R=(x,1,%3,%,5,%%%) 31
{one point}, T, 7%, T°
(15, 24,12, 3) 1,2,4,8) -
(62) R (* ]- 2; *y4 * *I *) *) Bl@[
{one point}, T, G(2,1), G2, 1)><T‘
(15,6, 16, 10) : 1,2,3,6)
(63> R:(*’ 1) 2: 3) *l *; *) *ﬁ *) DZ
{one point}, G(3,1), G(2,2)
(11, 16, 10) (1,4,6)
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(64) R:(*) *) *y *7 *7 *) 6: *r 8) : Bl
{one point}, G(2,1)
(27, 36) : 1,3)
(65) R:(*J *) *I *’ *) 5’ *} *’ 8) : 21
{one point}, T*, T?
(31, 32, 10) B 1,2,4)
(66) R:(*} 1} *! *) *I *) *) *! *) : I
{one point}, T!
(63, 36) : 1,2)
(67)  R=(x, %, %, %, %, %, %, %, %) : 0
{one point}
(135) : 10
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