
K. ATSUYAMA
KODAI MATH. J.
11 (1988), 403—424

THE CONNECTION BETWEEN THE SYMMETRIC SPACE

E8/Ss(16) AND PROJECTIVE PLANES

BY KENJI ATSUYAMA

§ 0. Introduction.

Simple Lie groups are already classified, and they have four kinds of infinite
series of classical types and have ήve exceptional types. H. Freudenthal wrote
many papers to obtain the geometrical and intuitive image of the exceptional
Lie groups (cf. [5]). We have now the same aim as his. Our methods to solve
the problem were first devised by B. A. Rozenfeld [7], but he didn't succeed
completely in explaining the all cases which contain the exceptional Lie groups.
For lack of the associativity in Cayley algebras, his explanations were incom-
plete (cf. [5]). To justify his assertions, we gave first a unified construction
of real simple Lie algebras which were easy to handle directly [1]. Namely we
made representative spaces for the exceptional Lie groups. Three symmetric
spaces with the types £IΠ, EYl and EW in the E. Cartan's sense were next
constructed explicitly as orbits of some projections in the sets of endomorphisms
of the Lie algebras. We asked whether several similar properties to projective
planes hold in the symmetric spaces by regarding the antipodal sets as lines
[2], [3]. In this paper we continue to study the type E8/Ss(16), where Ss(16)
=Spin(lβ)/Z2, and we assert that this space is also a projective plane in the
wider sense of Theorem 4.16.

§ 1. A construction of real simple Lie algebras.

The coefficient field is the field R of real numbers. Composition algebras
are classified and have the seven following types:

real complex quaternion Cayley

division

split

R C Q

Cs Qs

Let Mn be the nXn matrix algebra with coefficients in R. Set t r ( X ) =
(*nH \-Xnn)/n for X=(xtj)(ΞMn and let T: X->XT be the transposed oper-
ator. E is the unit matrix of Mn. If ϊ̂ is a composition algebra, it has the
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usual conjugation —: a->ά and has an inner product (a, b)—{ab-\-ab)/2 for
a, 6e9l. Let 2ϊ(1)(g)Mn®2ί(2) denote the tensor product over R of these alge-
bras. If the confusion does not occur, we write aXs simply instead of α®X(g)s,
where a^Ψ'\ SGΞ2IC2) and Z e Λ P . 2ί(1)®Mn(g)2i(2) has the following operations
except for the addition.

the product : (aXs)φYt)=abXYst,

the involution : aXs —> dXτs ,

the trace : Tr(aXs)=atτ(X)Es.

Let Wl be the linear subspace of 3lcl)®A/n®2ϊC2) such that any element in 3R
has the value 0 for the trace Tr and also has the skew-symmetric form for the
above involution. We denote by Der2ίc ί ) the Lie algebra of inner derivations
Da>b of 3t(<), where Z>α.&(Φ=[[fl, W, c]-3(α, b, c) for a, b, c<=%^ if we put
[a, b~\—ab—ba and (α, 6, c)—(ab)c—a(bc).

Let L(2ΪC1), M n , 9ίC2)) be the vector space Der$ c l ) ©$i0Der2I C 2 ) (direct sum).
This becomes a Lie algebra by the following anti-commutative product [1] :

t h e L i e P r o d u c t o f D e r ϊ l ( < > ( ί==

0

(2)

(3) For x=

[x, y]=

and y=bYt in 3R,

, Y)(s, t)Da,b+(xy-yx-Tr(xy-yx))+(X, , b)Ds>t,

where D^^ΌerΨ^ and (Z, F ) = t ( )
If we restrict the composition algebras 2ϊci) to R, C, Q or (£, then the Lie

algebra L(2ϊcl\ M n , ^ίC2)) becomes a compact real Lie algebra. It is generally
simple. For instance, £ 8 =L(®, A/3, (£) holds:

R

C

Q

e

xv C

Λ2 A2®A2

C 3 i4 6

F 4 E6

Q e

C 3 F 4

Z71 Z7"

R

C

Q

R

B or

An-

Cn

D

1 A,

C

An-!

.-lΘA.-i

c n

(n=3)

The Killing form B of L(9I(1\ M n , 2IC2)) can be given by

B(D^+aXs+D<2\ D™+aXs+D™)

c l ) , Z)c l ))+c0(α, a)(Z, X)(s, s)+c2B™(D™, D™),
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and

ct=c0/48 (/=1,2),

where J D
( 1 ) +βZs+I> C 2 ) eL(m c l ) , Mn, Sίc2)) and d t =dim2ϊ c i ) . There are two

remarks for the coefficients c0, cx. (i) Since the inner product (X, X) contains
1/n in its definition, the factor (n —2)d1d2-\-4:(d1

Jrd2—2) is essential in c0. (ϋ)
B^ denotes the Killing form of Der(S. In the case of 9IC<)=J?, C or Q, we
also use £ c i ) instead of the Killing form of Der2ϊc ί ) because R, C or Q can be
realized as subalgebras of (£ naturally.

A basis of 6 which we use usually is given explicitly.

a basis: e0, eu ••• , eΊ,

rules of product:

eieJ— — eJeι (t, j^l and iΦj), eιeι— — eQ (/^

0̂ is the unit element,

the conjugation — : e0 — > eQt eτ — > —ex ( l^z '^

Then R, C or Q can be generated by the bases {eQ}, {e0, ex) or {e0, elt e2, e3}
respectively.

§2. A construction of symmetric spaces Π.

We construct some symmetric spaces on which the exceptional Lie groups
act, by making use of the compact exceptional Lie algebras L(2lcl), M3, %c2:>).

Set ®=Z,(»C1>, M 3, 2IC2)) simply. Let 3S be the subset of ® such that any
element x in 36 satisfies the identity

(ad *)((ad x)2+l)((ad %)2+4)=-0,

where adx is the adjoint representation of ® and 1 means the identity trans-
formation of ©. The eigenspaces of adx, for each xe36, can be given by

) 2 2r=-ί 2 z} , (? = 1, 2).

For XG36 we define three transformations Pi(x) of @ by

P0(A:)=l+5/4(ad %)2+l/4(ad x)4,

Λ(x)=-4/3(ad x ) 2 - l/3(ad x)4,
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+l/12(ad xf.

These satisfy Pi(x)Pi(x)=Pi(<χ)t P4(*)PΛ*)=0 (i*/) and
Namely each Pt(x) is the projection of © onto ©*(#). Therefore © has a direct
sum decomposition ©=@o(;c)0©1(;c)0®2(;c). Then (®o(x)0®2U))©®iO) is a
Cartan decomposition with respect to the involutive automorphism l—2P1(x)
(=expπ(adx)).

/0 0 0\

Example. Let ®=L(6, M 3, 6) and take KMo 0 1 in

\0 - 1 0/
eigenspaces {©*(*)} can be given by the following.

Then the

12a 0 0\

®o(AΊ): Der(S0 0 - α 6 ©Derg

\0 -& - J
/ 0 ^ 6Λ /0 a, αΛ

β^/fx): -6χ 0 0 0 L 0 0

\-b2 0 0/ \αa 0 0/

/0 0 0\ /0 0 0\

®2(/fi): 0 0 a © 0 α 0

\0 α 0/ 0 0 - α /

dimension

14+64+14=92,

100+28=128,

14+14=28,

where a, aί} a2 (resp. b, bu b2) are linear combinations of eoζ
eo0eo and e^βj), i, j=l, 2, ••• , 7.

έ?t a n d (resp.

We now construct a symmetric space Π in the set End ® of endomorphisms
of ®. The action of the adjoint group G of ® on End® is defined by g h=
ghg'1 for g^G and ΛeEnd®. Let Π be the orbit of the projection Px(Kι) by
G under this action, i.e., Π={g-P1(K1)\g^G}. Note that g-P^K
Then the eigenspace ®ι{gKx) can be regarded as the tangent space at
of 77, and the eigenspace ®o(^^i)Θ©2(^7iίi) can also be regarded as the Lie
algebra of the isotropy group at Pλ{gKx) (cf. [2], Proposition 2.4). When we
introduce a G-invariant Riemannian structure into Π by restricting the Killing
form B of © to each tangent space ®ι{gKx)f the adjoint group G equals to the
identity component of the isometry group of Π. If © is a compact exceptional
Lie algebra, Π is simply connected from [4], p. 411.

PROPOSITION 2.1. Π is a compact symmetric space in which each point Pλ{gKx)
has the geodesic symmetry l—2P1(gK1). The type of Π can be given by the
table:



R

C

Q

6

SYMMETRIC SPACE

R

RP2

CP2

QP2

&P2

c
CP2

CP2XCP2

Gc(4, 2)

Em

Es/Ssilβ)

Q <£

QP2 <£ft

Gc(4,2) Em

G(8,4) EM

EM EM

407

), G(8,4)=SO(12)/SΌ(8)xSO(4) αwd fAe first
column contains four planes from the real projective plane to the Cay ley plane.

Proof. We can obtain the table by the direct calculation.

One has an involutive automorphism

in the matrix algebra M\ This can be extended easily to the Lie algebra
©=L(2I ( 1 ), M 3, 2lc2)) by

Denote this extended map by β again. Then β^expπiadKi) and Pλ(Kι)=
(1—j8)/2 hold. Hence the orbit of β by G is the same as Π essentially. We
notice moreover that all the symmetric spaces in Proposition 2.1 are constructed
by a single transformation β of M 3 and the spaces in the first column have the
structure of projective planes. Therefore one can expect that the remaining
symmetric spaces may have the similar structure. For each point P in Π we
will regard later the antipodal set L(P) of P as a line and investigate Π from
the viewpoint of projective planes. All lines are transitive one another (see
Proposition 3.8 in the case of Π=EW).

PROPOSITION 2.2. L(JP) is a compact connected symmetric space. The follow-
ing table gives the type of L{P) in each case: Sn is an n-dimensional sphere.

R

C

Q

e

R*

S1

s2

S4

S8

c
s2

S2XS2

Gc{2,2)

G(8,2)

Q

S4

Gc(2f 2)

G(4,4)

G(8,4)

6

S8

G(8,

G(8,

G(8,

2)

4)

8)
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§3. A maximal flat torus in 77.

In the remaining sections, let ®=L(g, M\ 6) and Π=E8/Ss(16) (=EW).
For simplicity we write P(x) instead of Px(x). We analyze here the structure
of the integer lattice of a maximal flat torus and study the subset of 77 which
consists of all points commuting with P(Kχ).

Define three elements {Kt} in 3£C@ by

/ 0 0 1\ / 0 1 0\

K2=i 0 0 0 , Kz= - 1 0 0 ,

\ - 1 0 0/ \ 0 0 0/

where the unit element e0 and the notation ® are omitted. Let ^ 0 be the 8-
dimensional abelian subspace of 9ft spanned by {K2y exK2eu •••, e7K2e7}, and set
To={exp(adz)-P(K1)\z^%o}> To is a maximal flat torus in 77 passing through
P{Kλ). Then, with respect to %ύt © has a root space decomposition

©=^oΘΣ®^ (over C).

The 240 roots are given, with respect to the operation &a(^jaieiK2el), at

by

±2(at±aj)i

••• +ε 7α 7)ί ( ε t = ± l and the product εi€2 •*• e7=l) ,

where i=V— 1. A fundamental root system consists of

Λi=—2(a1—a2)ί, λ2=—2(a2—az)i}

λz——2(az—a4)i} λ4=—2(a4—a5)i,

λ5~—2(a5—a6)i, λ6——2(a6—aΊ)i,

Λ=-2(αβ+α7),/

^ 8 = — ( α 0 — a i—a2— α 3 — α4—«5— aβ+aΊ)i.

The highest root is λ9=-2(aQ-\-a1)L Then ^ 9 = 2
holds and the extended Dynkin diagram becomes

"~*Λ9 Λi A2 Λ3 Λ4 Λ5

Define an 8-dimensional simplex in £ 0 by
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This contains the origin of %0, and any point in 77 is conjugate to some point
in exp (ad ©(77)) P(Kι). Let xt denote the vertex of ©(77) which corresponds to the
root λt, then the coefficients of the vectors {xi/π\i=l, 2, ••• , 8}, with respect
to the basis {eiK2et\i=0, 1, — , 7}, can be given by the table:

Xι/π

1

2

3

4

5

6

7
8

0

1/4

1/3

3/ 8

2/ 5

5/12

7/16

5/12

V 2

1

1/4

1/6

1/8

1/10

1/12

1/16

1/12

0

2

0

1/6

1/8

1/10

1/12

1/16

1/12

0

3

0

0

1/8

1/10

1/12

1/16

1/12

0

4

0

0

0

1/10

1/12

1/16

1/12

0

5

0

0

0

0

1/12

1/16

1/12

0

6

0

0

0

0

0

1/16

1/12

0

7

0

0

0

0

0

-1/16

1/12

0

Remark. The Lie algebras of the isotropy group at the points exp(adx t)
P{KX) in 77 have respectively the types (1) AΊ®I, (2) d®Blf (3) 2B2®D2,
(4) 2B2, (5) 7 © 5 1 0 £ s , (6) #407, (7) B4 and (8) 2D4, where / is a one-dimension-
al center. If x 9 =the origin 0, one has (9) D8.

LEMMA 3.1. Let z^%0- Then exp(ad^) is the identity transformation of ®
if and only if each fundamental root λ% satisfies λι(z)^2πZi, where Z is the
integer ring.

Proof. Assume that exρ(ad^)=l and take a non-zero element gλ^%λ for
each root λ. Since gλ=exp(adz)gχ=(expλ(z))gλ holds, we see expλ(z)=l. This
m e a n s λ(z)<^2πZi. W e n e x t s h o w t h e c o n v e r s e . S i n c e a n y r o o t λ c a n b e
w r i t t e n a s Λ = Σ w Λ ( W i ^ Z ) , w e h a v e exp(adz)g λ=(exp λ(z))g χ = ( λ (

Then we see that mι—2) m2—3,For the highest root λ9, set ?^~
ms—2 by the above. The integer lattice
exρ(adz)=l}.

in

PROPOSITION 3.2.

the vertexes of ©(77).
= {2nίmίxί

Jr ••• +2n8m8x8

is defined by £ =

holds, where {xτ} are

Proof. Assume that z e 2 0 satisfies exp(ad^)=l and set * = Σ £ t * i (
From Lemma 3.1, there exists an integer nτ(=Z for each i such that /ίt(zi)=2πnι.
Since λi(xμ)=θ(iφj) and λi(xii)—π/mι hold, we obtain ζi—2nimι. Conversely,
let z~'Σi2nimιxι (n^Z). Then λj{zi)—^Σi2nimiλj{xii)=2njπ holds. This shows
exp(ad^)—1 from Lemma 3.1.

We rewrite Proposition 3.2 by making use of the basis {eiK2et} of
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Then we obtain the following where z=yΣtieiKieι

P R O P O S I T I O N 3.3. Let z e £ 0 . Then ZELZ holds if and only if z satisfies ( i )

or (ii):
(i) ti^πZ, for each i, and Σ
(ii) ti—π/2^πZ, for each i, and

®I(Λ:) is the tangent space at P{x) of 77.

LEMMA 3.4. Let Z G S ^ J C ) . Then exp(adz) leaves P(x) fixed if and only if
exp(ad2z)=l holds in ©.

Proof. Put β(z)=exp(adz) simply. Assume that e{z)-P{x)—P{x). Then
we obtain e(z)P(x)=P(x)e(z). Hence it holds that e(-z)=e((l-2P(x))z)=
{l—2P{x))e{z){l—2P{x))—e{z) because 1—2P{x) is the geodesic symmetry at
P(x) in 77. This identity implies e(2z)=l. We next show the converse. Since
e(2z)=l gives e(z)=e(-z), we have e{z)=e{-z)=e{{l-2P(x))z)=(l-2P{x))
e(z)(l-2P(x)). Therefore e(z)P(x)=P(x)e(z) holds.

PROPOSITION 3.5. Let Z G ^ 0 . Then exp(a.dz)-P(K1)=P(K1) holds if and
only if z satisfies (i) or (ii) where π/2Z—{nπ/2\n^ΞZ) :

(i) ti^π/2Z, for each i, and Σ>
(ii) ti-π/4ϊΞπ/2Z, for each i, and

Proof. One obtains this from Proposition 3.3 and Lemma 3.4 because

LEMMA 3.6. Let zeSΛ/Q. The point exp(adz) P(/ί1) commutes with P(KX)
if and only if exp(ad2z)'P(K1)=P(K1) holds.

Proof. This is the same as Lemma 3.4 [3] essentially.

PROPOSITION 3.7. Let z e l o . The point exp(adz) PC/TO commutes with
P(AΊ) if and only if z satisfies (i) or (ii):

(i) ti^π/iZ, for each i, and ^U^π/2Z9

(ii) ti-π/S^π/iZ, for each i, and Σ>tt^π/2Z.

Proof. This can be derived easily from Proposition 3.5 and Lemma 3.6.

Let L{P{Kλ)) denote in Π the antipodal set associated to P(KX)9 and Ω be
the submanifold of Π of which points are the middle points of the shortest
closed geodesies with the initial point P(KX).

PROPOSITION 3.8. The subset of all points in Π commuting with P{KX)
becomes two connected submanifolds L(P(KΊ)) and Ω. They are totally geodesic
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and compact.

Proof. Take ze<5(77). If exp(adz)-P(jKΊ) commutes with P(Kλ), z=x1 or
x8 holds from Proposition 3.7, where *i and χ8 are the vertexes of ®(/7).
Hence, the points commuting with P{KX) form two orbits 42 and L(P(KX)) since
they are transitive to exp(ad*i)-P(/ifi) or exp(ad*8) P(ίfi). The types as
symmetric spaces are SO(16)/U(8) and G(8,8) respectively. Note that P(K3)-
exp (ad Λ:8) PC/id) holds. The distance between P(AΊ) and L{P{KX)) can be given
by

[\-B(r(f), Ϋ(t))y2dt=[\-B(x8, x8))1/2dt=2VΪ5π,
Jo Jo

where .5 is the Killing form of @ and 7'(ί)=expί(adΛ:8) P(A:1) is the shortest
geodesic from P(KX) to P(K3).

Remark. If 77 is another exceptional type in Proposition 2.1, we have the
following table where the values mean the distance from P(Kt):

<£P 2 Em EVI EM

Ω SO(10)/t/(5) (SO(12)/£/(β))XS2 SO(16)/£7(8)

^ ^ ) G(8,4) G(8,8)
3V2τr 2V~6;r βπ

§4. 77 as a projective plane in a wider sense.

We introduce two geometrical objects, points and lines, into 77 in order to
study 77 from the viewpoint of projective planes. Let P<=77. Then we call
the antipodal set L(P) a line (associated with P) and call P a point again in the
sense of the projective geometry. The incidence structure is defined by the
inclusion relation.

Let 77L denote the set of all lines of 77. First we show that the corres-
pondence L from 77 to 77L defined by L: P-+L(P) gives the notion of the
polarity to 77 (Proposition 4.3) and next analyze the structure of the inter-
section L(P)Γ\L(Q). Finally we assert that 77 is a projective plane in the
wider sense of Theorem 4.16.

(NOTATIONS), T O is the maximal flat torus defined in § 3 and contains
P(JCι). £o is its Lie algebra at P{KX) spanned by the basis {eiK2eι}, and
dim %0=8 holds. ®i(/fi) is the tangent space at P(/d) of 77 and contains £ 0 .
The subset 36 of © is defined in § 2. G is the identity component of the iso-
metry group of 77. Let Iso(P) denote the isotropy group at P in 77 with
respect to G. Set ί/(0)=Iso(P(/iΓ1))nIso(0) for QCΞΠ. H(Q) is the Lie algebra
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of U(Q). The distance between P and Q is denoted by d(P, Q). The notation
^ means the equivalency.

LEMMA 4.1. L(P)={QEΞΠ\PQ=QP and d(P, Q)=2VΪ5π} holds.

Proof. We can prove this by Proposition 3.8 and by the transitivity of
points in 77.

LEMMA 4.2. The correspondence L : Π-+ΠL is a bijective map.

Proof. The definition of L gives the surjectivity. So we show that L is
injective. From the transitivity of points in Π, it is sufficient to see that
L(P(K0)=L(Q), for QCΞΠ, implies P(Kί)=Q. Assume L{P{KX))-L{Q). Then
there exists an element αeIso(P(AΊ)) such that a-Q^T0. Hence one has
L{P{Kx))-L{a'Q). This means d(a>Q, L(P(K1)))=2VΪ5π) but such a point in
To is P{Kι) only. In fact this holds by the following assertion and then one
obtains a-Q=P(Kί), i.e., Q=P{KX).

The points in JPOΠLCPCKΊ) )have the forms exp(ad*)•/>(#!) such that z—
'ΣιtιπeiK2eι (tt^R). We can write down then their coordinates (tt) by Lemma
4.1 and Proposition 3.7. Namely they are the permutations of the (tt) as below.
The number of the points is 135 from Proposition 3.5, and P(KX) is a single
point in T o which commutes with all the points and also has the distance
2Vϊ5π from them.

( U , U , U , U , U , U , U , t7 ) permutations

(1/2, 0 , 0 , 0 , 0 , 0 , 0 , 0 ) 1

(5/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8) 1

(7/8, 3/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8) 28

(7/8, 3/8, 3/8, 3/8, 1/8, 1/8, 1/8, 1/8) 35

(1/4, 1/4, 1/4, 1/4, 0 , 0 , 0 , 0 ) 35

(3/4, 1/4, 1/4, 1/4, 0 , 0 , 0 , 0 ) 35

Since the correspondence L is bijective, we can introduce the structure of
the symmetric space Π into ΠL. If we also use L instead of L~\ then L2 is
the identity map of Π\jΠL.

PROPOSITION 4.3. The correspondence L gives the polarity of Π, i.e., L
satisfies (i) and (ii):

(i) L 2 = l on Π\JΠL,
(ii)

Proof. The result (ii) is easy from Lemma 4.1.

We are going to prepare some facts from Lemma 4.4 to Corollary 4.15 in
order to analyze the structure of the intersection L(P)Γ\L(Q). The goal is
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Corollary 4.15. The explicit classification by this is listed up in § 5.

LEMMA 4.4. Let Q^Π commute with all points in To. Then all isometries
exp(adz), z^%0, leave Q fixed.

Proof. Any point in To has the form α PC/Q where α = e
Put γ=l-2P(K1). If Q commutes with To, one has γ-{a'ι'Q)=a"ι'Q

because Qίa-PiKJ^ia-PiK^Q. On the other hand, we have γ-Q=Q from
P ( A Ί ) G T 0 and also have γ{eιK2eι)— — eιK2eι since γ is the geodesic symmetry
at P{KX). Hence it holds that γ (a~1'Q)=(γa-ίγ-1)'(γ'Q)-exp(aάγΣl(-tz)eιK2eι)
-Q=a-Q. We obtain then a'1'Q=γ-(a-1'Q)=a-Q. This implies a2-Q = Q.
Since tt is arbitrary, a-Q=Q holds.

LEMMA 4.5. If Q^Π commutes with all points in To, there exists an element
x in £0Π3e such that Q=P(x).

Proof. Let Q commute with To and let Q—g-P^), g^G. Put y=gKίf

then we have Q=P(y). The set {gβiKiβili^O, 1, ••• , 7} generates a Cartan
subalgebra ϋ£i of © such that 3/eI 1 c® 0 () ; ). On the other hand, since all iso-
metries expt(d.deiK2eτ), t^R, leave Q fixed by Lemma 4.4, we obtain eiK2βi^
®o(y)(B®2(y) for each i. Hence the Cartan subalgebra £ 0 spanned by {eίK2eι}
is contained in &0(y)φ®2(y). Since ®o(y)φ®2(y) is a compact simple Lie algebra
so(16) with the rank 8, both £ 0 and %1 are Cartan subalgebras also in
®o(y)0B®2(y). Therefore there exists an element h in the Lie subgroup
exp(ad(®o(3O0®2(:y))) of G such that h%1=%0. Then, for χ=:hy^%0Γ\dίf we
obtain

LEMMA 4.6. // Q^Π commutes with all points in To and also has the
distance 2-s/TBπ from P(Kr), there exists an element k^lso(P(Kι)) such that k%0

=%0 and Q=P(kK2).

Proof. Let Q satisfy the above assumption. Then the line L{P(Kλ)) con-
tains Q and also does P(K2) because P(K2)=exp(π/2diάKs)'P(K1)m Hence there
exists an element gelsoCPCίQ) by Proposition 3.8 such that Q—g-P(K2). Since
the Lie algebra of the isotropy group at P(K2) is ®0(K2)(B®2(K2), one has
£®oCK2) (Bg®2(K2) (denoted by 3(0)) as the isotropy algebra at Q. We show
next ®i(iϊ"i)Π3(0)O^S:oW3:o. 3(<2)D£o holds by the same reason as the proof
of Lemma 4.5. Since g-P^K^—P^) is equivalent to gγ=γg where γ=l—2P(K1)f

one \\a.$γ(gx)—gγx=— gxίov χ(Ξ%0. This gives ®1(K1)'Dg%0. Let U{Q\ denote
the identity component of the subgroup U(Q) of G. This group is compact.
Take an element x&g%0 (resp. y^^0) such that its centralizer in © is equal
to g%0 (resp. %o). Define a differentiable function F on U(Q\ by F(h)=B(x, hy)
where B is the Killing form of ©. If F has an extremal value at ho

one obtains for any ^GlI(Q) (where 11(0) is the Lie algebra of U(Q)0)
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=\~B(x, (expf(ads))λo:y)}t_o=β(x, |>, hoyl)

Hence we have [x, Ao:y]=O because [x, /zo;y]^U(Q) and 5 is non-degenerate in
U(Q). The first property can be derived from x, /z0^^©i(^i)Π3(0) and so by
lx, /zo^]e(©o(^i)Θ@2(^i))Π3«?) (=U«?)). Now [x, Ao:y]=O gives / ι o ^o=^o.
Put k = hγg, then one has &£o=£o and £eIso(P(ΛΓi)). Finally it holds that

We define two sets S and 5 0 by

S={QΪΞΠ\QP=PQ and <Z(P, Q)=2VI5rc for all P G T 0 } ,

and

Since Q e S has the form Q—P{x) for some xe5£0 from Lemma 4.5, we
define the map / : S-^T0 by

One can see from Lemma 4.7 that / is well-defined and injective. Furthermore
Lemma 4.8 asserts that f(S)=S0 holds.

LEMMA 4.7. For x, 3>e£0, P(*)=P(;y) holds if and only if f(P(x))=f(P(y))
holds.

Proof. Let eU)=exp(adx). Then, P(x)=P(y)<=$e(πx)=e(πy) (because e(πx)
= l-2P(x))<=>e(πx/2)e(-γπx/2)=e(πy/2)e(-γπy/2) (because x, ̂ e l o C β i f f i ) and

e(πx/2)γe(-πx/2) -
hold.

PROPOSITION 4.8. f(S)=S0 holds.

Proof. We show first /(S)ZDS0. 5 O contains P(/f8) because
expπ/2(adK2)'P(K1). Take any point ζ? in So. Since any element in 5t0 is
transitive to a point in ©(77) by the aίϊine Weyl group of %0, there exists an
element gelso(PCKi)) such that g'TQ=T0 and g-P(KB)=Q. This g also satisfies
P(gK2)^S. In fact, for P G T 0 one has PP{gKι)=g{g-ι-P)P{Kt)g-ι=gP(Kt)
(g~1'P)g~1 (because g~ι-P^T, and P(K2)tΞS)=P(gK2)P. Moreover the
distance is given by d{P(gK2)y P))=d(P(K2), g-1-P)=2^/j5π. Hence we obtain
f{P{gK2)) = expflr/2(ad£/Q•/>(#!) = gexpπ/2(adϋC2) P(/£Ί) (because ^ ^ e l s o
(PiK^g.PiK^Q. This means f(S)ΏS0.

Next the converse f(S)dS0 is shown. For any Q e S , there exists an
element &eIso(P(/fi)) by Lemma 4.6 such that ££ o =£o and Q-P{kK2). One
has then /((5)=exp7r/2(ad^/ί2) P(/ί 1)GT 0 and also has f(Q)=k-P(K3) because

. This gives the commutativity of P(Kλ) and /(<?), from
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The distance is: diPiKt), f{Q))=d{P{Kι)i

O, P(K3))=2VΪ5π Hence we obtain /(<?)CSO.

LEMMA 4.9. For Q^S, two identities hold:

and

Proof. The Lie algebra ® has three involutive automorphisms {l—2P(Kt)},
2 = 1, 2, 3. They are commutative with one another and satisfy the identity

For any Q^S we can take an element &eIsoCP(ϋfi)) by Lemma 4.6 such that
&£o=£o and Q=P(kK2). Since f(Q)=P(kKs) also holds, one obtains

This gives the above identities.
Two following lemmas can be proved easily by Lemma 4.9 and by £/(<?)—

LEMMA 4.10. For Q^S, U(Q)=U(f(Q)) holds.

LEMMA 4.11. Let ^elsoCPC^)) and P, Q^S. Then g-P=Q holds if and
only if g-f(P)=f(Q) holds.

The study of the intersection L(P)Γ\L(Q) is equivalent, by Proposition 4.3,
to that of all lines passing through P and Q. By the transitivity of points and
lines in 77, -we may take then P(Kλ) and P e T 0 as such two points. Hence we
define, for each F e T 0 , the subset N{P) of 77 by

N(P)={Q(ΞΠ\P(K1)<ΞL(Q) and P^L(Q)}.

PROPOSITION 4.12. Let VΊ and V2 be maximal flat tori of 77 and let both
pass through P(KX) and P. Then there exists an element ^eU(P) such that

Proof. This is the same proof as Lemma 5.9 [2] essentially.

LEMMA 4.13. For each P G T 0 , N(P)={g-Q\Qς=S and g<=U(P\} holds where
U(P)o is the identity component of U(P).

Proof. Take any Q^N(P). The line L(Q) has the rank 8 as a symmetric
space because its type is G(8,8). Hence there exists a maximal flat torus V of
77 such that P(Kx)y P e V and VcL(Q). Since we can find an element g^U(P)0

by Proposition 4.12 such that g-V = T0, we obtain g Q^S. This gives Q=g~ί-
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S. Conversely let QELS and gt=U(P)0. Since P(KX), P^L(Q) holds
from the definition of S, one has P(Kχ), P^L(g-Q).

For each P G T 0 we define the subset N0(P) of Π by

ΛΓo(P)=te QIQeS o and *e=[/(P)0},

and we also define the map / : N(P)-*N0(P) by f(g'Q)=g f(Q) where ΛΓ(P) is
in Lemma 4.13 and / appears in Lemma 4.7.

LEMMA 4.14. f is a diffeomorphism for each P e T 0 .

Proof. First the bijectivity of / is shown. Let Qlf Q2GS and glf g2^
ί/(P)0. Then it holds that: figrQ^fig^Q^gl'gi'fiQi^fiQύ^gl'gi'Qi^
Q2 (by Lemma 4.11)φ=>gvζ?1=<gv(?2. Next let C be any connected component
of N(P) and then there exists a point Q in CΠS by Lemma 4.13. Since U(Q)0

r\U(P)o=U(f(Q))onU(P)o holds from Lemma 4.10, the components C and /(C)
are homogeneous spaces with the same type U(P)0/(U(f(Q))0Γ\U(P)0). Fur-
thermore they have the same differentiate structure induced from Π because
the identity g-f(Q)=P(Kι)+(l~2P(K1)Xg'Q) holds for

COROLLARY 4.15. The analysis of the set of all lines passing through P(KX)
and P G T 0 can be reduced to the classification of the orbit N0(P) of So by U(P)Q.

Let U be the Lie algebra of the isotropy group Iso(P(/ΪΊ)) at P(KX). In the
following definition we use the roots λ^Δ of the symmetric space Π (=the
restricted roots of ® to

for

j = {QeT 0 |Q=exρ(adx) P(/fi) with

Note that OSΞJ. In the case of Π=E8/Ss(16), U(£0)={0} holds and Δ is the
same as the roots of ©. For P G T 0 , the Lie algebra of U(P)0 is given gene-
rally by

where the index λ runs over the positive roots λ such that P^Sχ (cf. [6], p.
64). We denote the set of such roots λ by Λ(P).

Set Jo"={λ^ά\SoClSλ}. If P satisfies ^ ( P ) c J 0 , P is said to be in the
general position with respect to P(Kλ) (in the sense of the projective plane).
If P satisfies Λ(P)Γ\(Δ—ΔQ)Φ0, P is said to be in the singular position. Since
one has here Δo—0 and U(£o)— {0}, that P is in the singular position is equi-
valent to that P is a singular point with respect to P(Kι).
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Remark, If 77=(£P2, it holds that S0^-{P(K3)} and Δ0=Δ. Hence all points
except P{Kχ) itself are in the general position with respect to P{KX). This
asserts that two distinct points are contained in one and only one line. If 77=
E6/SO(10)xSO(2) or E7/SO(12)xSO(3), we have A,Φ0 and Δ-ΔoΦ0. Then,
the singular position can be characterized by the shortest closed geodesies or
by 3-dίmensional tori with the minimal volume respectively (cf. [2], [3]).

DEFINITION. ( i ) Two distinct points P and Q in Π are said to be in the
general position if P is a regular point with respect to Q in the sense of the
symmetric space. If not so, they are said to be in the singular position, (ii)
Two distinct lines L{P) and L{Q) are said to be in the general (resp. singular)
position if and only if P and Q are in the general (resp. singular) position.

THEOREM 4.16. 77 is a projective plane in the wider sense:
( i ) For two distinct points there exist exactly 135 lines passing through them

if the points are in the general position. If in the singular position, the set of
such lines becomes one of the 65 cases, except for the cases (9) and (67), given in
the table of § 5.

(ii) The correspondence L asserts the duality of (i) for two distinct lines.

Proof. The second (ii) is a direct consequence from Proposition 4.3. We
show (i). By the transitivity we may take P(Kλ) and P e T 0 as two distinct
points. Then, from Corollary 4.15, the set of lines passing through them is
diffeomorphic to the orbit N0(P) of So by U{P\. Especially, if the points are
in the general position, iV0(P)=S0 holds because the group exp(adU(£0)) leaves
So fixed. In the table of § 5, (9) is the case that P(KX)=P and (67) is the case
that P(Kλ) and P are in the general position.

§ 5. The classification of NQ(P).

In this section we list up the results of the classification of N0(P) for P G
5(77), where we set S(Π)=exp(ad<3(Π))'P(K1). The orbit NQ(P) of 5 0 is
determined by the isotropy group U(P)Q. By the similar proof to Proposition
2.8 [8], we can see that U(P)0 is also determined by the fundamental roots λ%

and the highest root -Λ9 such that {λu -λ9}d{λ}, where U(P)=U(3:o)ΘΣUj.
Hence we calculate the 29 cases of U(P\ and classify N0(P). The results are
obtained by direct calculations. The number of the kinds of orbits is 67 if we
count the cases (9) and (67).

For PeS(77), let R(P) denote the set of the fundamental or the highest
roots λ% such that P^Sλi. We can then construct from R(P) a subdiagram
D(P) of the extended Dynkin diagram of (S. In the notation of R(P), the
number 9 stands for — λ9 and the star * means being empty.
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Example.

°.=(9, 1, 2, * ,4,5, 6, 7, * ) < = } _;i 9 jj4 jia

D(P)

the representative point P :

P = e x p ( a d z ) PCKΊ) with Z = ( X 8 + Λ ; 8 ) / 2 .

Let 5 denote the family of all subsets R of {— λ9, λlt ••• , λ8}. Set Ξs—

{R^.Ξ\RZ){— λ9, λ2, λA, λΊ}} and Ξr—Ξ—Ξs respectively. For two distinct
points P, QeS(77), we consider the subdiagrams D(P), D(Q) and the sets R(P),
R(Q) of roots. Then we add the following facts to the results of the classifica-
tion :

(i) Let R(P), R(Q)ΪΞΞS or R(P), R(Q)eίΞr hold. Then D(P) and D(Q)
have the same figure, as sets of points, if and only if the orbits N0(P) and
NQ(Q) are diffeomorphic to each other by some isometry of 77.

(ii) If R(P)Z)R(Q) holds, the orbit NQ(P) contains N0(Q) as a totally geo-
desic submanifold.

In the table we list in turn:
( i ) the set R(P) of the roots λx such that P^Sλi,
(ii) the Lie algebra U(P) of U{P\,
(iii) the types of all connected components C of the orbit N0(P),
(iv) the number of components with the same type as each C,
(v) the number of points of CΓ\S0.

Note that the representative point P satisfying a given R(P) can be obtained
easily by the same way as the above example.

(NOTATIONS). Tn is an n-dimensional torus. I stands for one-dimensional
center of Lie algebras. AΊ, Bn, C4 and Dn mean the Lie algebras or the Lie
groups with such types respectively. Gc(4,4)=Sί/(8)/5(/7(4)X/7(4)), G*(2,2)=
Sp(4)/Sp(2)XSp(2), G(m,n)=SO(m+n)/SO(m)xSO(n), AI(8)=SU(8)/SO(8) and
C/(4)=S/<4)/£7(4).

Table

~ U J i?=(9, *, 2,3,4,5,6,7,8) : Λ ® 7
Gc(4,4), A7(8)XTX

(1,1) : (63,72)

( 2 ) j?=(9,l,*,3,4,5,6,7,8) : <
G*(2,2), C7(4)xG(2,l)
(1,1) : (27,108)
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ΊJ) #=(9,1,2,*, 4,5,6,7,8) : 2B2®D2

{one point}, G(4, l)xG(4,1), G(3,2)xG(3,2)xG(2,2), G(3,1)X52

(1,1,1,1) : (1,10,60,64)

_ _ ^ ^ ^ ^ ^ 3 ^ , 5 , 6 , 7 , 8 ) : 2 ^

G(4,l), G(4,1)XG(4,1), G(3,2)xG(3,2)
(2,1,1) : (5,25,100)

(J) #=(9,1,2,3,4,*, 6,7,8) :

G(2,l), Γ x G ί ^ l ) , G(4,2), G(2,l)xG(4,2), T1xG(2, l)xG(3,3)
(1,1,1,1,1) : (3,12,15,45, 60)

ΊJ) #=(9,1,2,3,4,5,*, 7,8) : DA®I
T 1 , G(6,2), G(4,4), G(4,4)XT 1

(1,1,1,1) : (2,28,35,70)

(7) #=(9,1,2, 3,4, 5, 6,*,8) : BA

G(8,l), G(5,4)
(1,1) : (9,126)

( 8 ) #=(9,1,2,3,4,5,6,7,*) : 2£>4

{one point}, £>4, G ( 4 , 4 ) x G ( 4 , 4 )
(1,1,1) : (1,64,70)

~(~9) #=(9,1,2,3,4,5,6,7,8) : ^
G(8,8)
(1) : (135)

~(ΪO) #=(9,1,2,3,4,5, *, 7, *) ~~: A
{one point}, G(6,2), G(4,4)
(2,1,3) : (1,28,35)

(11) #=(9,1,2, *, 4,5, *, 7,8) : 2D2®I
{one point}, T\ G(2,2), G(3,1)XG(3,1), G(2,2)xG(2,2),
G(3,1) X G(3,1) X T\ G(2,2) X G(2,2) X T 1

(1, 2,2,2,1,1,1) : (1,2, 6,16,18, 32, 36)

(12) # = ( 9 , * , 2, 3,4,5,6,7,*) : 2DS®I
{one point}, G(4,2)XG(4,2), ftxT1, D3, G(3,3)xG(3,3)xΓ
(1,1,1,1,1) : (1, 30,32,32,40)

(13) # = ( 9 , * , 2,*, 4,5,6,7,8) : 2£ 2®2/
{one point}, G(4, l)xG(4,1), G(3,2)xG(3,2), B2XT\
G(3,2)XG(3,2)XT2

(1,1,1,2,1) : (1,10,20,32,40)

(14) #=(9,1,2, *, 4, *, 6,7,8) : 2I@B1®D2

{one point}, G(2,1), T 2 , G(2, 2), T ' x G ί S , ! ) , G(2, l ) x G ( 2 , 2),
T 1 X G(2,1) X G(3,1), T 2 X G(2,1) X G(2,2)
(1,2,1,1,2,1,2,1) : (1, 3,4,6,8,18,24, 36)
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(15)

7l6)

Λ=(9,l,2,*,4,5,6,7,*) : W2

{one point}, D2, Z)2XG(2,2), A>XG(3,1), G(2,2)XG(2,2)XG(2,2)
(3,1,1,2,1) : (1,8,24,32,36)

jR=(9,l,2,3,4,*,6,7,*) :
{one point}, T\ ΓxG(5, l) , G(4,2), TXXG(3,3), TxxG(4,2),
T2xG(3,3)
(1,1,1,2,1,1,1) : (1,2,12,15,20,30,40)

R=(9,1, *, 3,4, *, 6,7,8) ~ 7 0 3 ^
G(2,l), r x G ( 2 , l ) , G(2,1)XG(2,1), G(2,1)XG(2,1)XG(2,1),

(3,6,9,27,54)(3,3,3,1,1)

(18) /?=(*,*, 2,3,4,5,6,7,8)
Gc(4,4), ,47(8)

(1,1) (63,72)

#=(9,*,*, 3,4,5,6,7,8)

G*(2,2), C/(4), C/(4)XTX

(1,1,1)

C 4 φ/

(27,36,72)

(19)

(20) i?=(*,l,2,*,4,5,6,7,8)
{one point}, G(4, l)xG(4,1), B2

(1,1,1,1,1)

(21) ~ Λ=(*,i,2,3,4,*,6,7,8)
T\ G(2,l), G(4,l), G(3,2), TxxG(4,l), G(2,1)XG(4,1),
G(2,1)XG(3,2), T1XG(2,1)XG(3,2)
(1,1,1,1,1,1,1,1) : (2,3,5,10,10,15,30,60)

, S aχG(2,l), G(3,2)XG(3,2)XG(2,1)
(1,10,16,48,60)

(22)

(23)

(24)

(25)

(26)

#=(9,1,2,3,4,*, 6,*, 8) \ BX®DZ

G(2,l), G(5,l), G(4,2), G(2,1)XG(4,2), G(2,1)XG(3,3)

(1,2,1,1,1) : (3,6,15,45,60)

Λ=(*,1,2,3,*,5,6,7,8) :
{one point}, G(3,1), G(4,1), G(4, l)xG(3,1), G(3,2)xG(3,1),
G(3,2)XG(2,2)
(1,1,2,1,1,1) : (1,4,5,20,40,60)

R=(*, 1,2,3,4,5, *, 7,8)
T\ G(6,l), G(5,2), G(4,3), G(4
(1,1,1,1,1)

#=(*,1,2,3,4,5,6,*,8)
{one point}, G(7,1), G(5,3), G(4,4)

(1,1,1,1)

/?=(*, 1,2,3,4,5,6,7,*)
{one point}, J38, G(4, 3)xG(4, 3)

(1,1,1)

3) XT1

(2,7,21,35,70)

(1,8,56,70)

(1,64,70)
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(27)

(28)

(29)

(30)

J?=(9, *, 2, *,
{one point},
(3,2,1,4,1,1

i?=(9,*,2,*,
{one point},
(3,4,6,6,1)

Λ=(9,1,2, *,
{one point},
(5,2,4,3)

Λ=(9, *, 2,3,
{one point},
(3,1,4,3)

4,5,
Dt,

)

4,*,
G(2,

4,5,
G(2,

4,5,:

G(5,

6,7,
G(2

6,7,

.1),

*,7,

2),

*) :
,2)XG(2,2),

8)

*)
G(3

*,7,*)
1)XT\

21
D2XT\ D2

(1;

G(2,1)XT2,

, 1)XG(3

G(4,2), G(3,

XT2, G(2,2)XG(2,2)X72

, 8,12,16,16,24)

G(2,1)XT4

(1, 3,4,12,24)

2£ 2

G(2,2)XG(2,2)
(1,6,16,18)

3 ) X Γ

(1, 12,15,20)

(3ΪJ Λ=(9,l,2,*,4,*,6,7,*) :
{one point}, T\ T2, G(2,2), G(3,l)xTS G(2,2)XT1, G(2,2)xT2,
G(3,1)XT2, G(2,2)xT3

(3,2,1,2,4,1,1,2,1) : (1,2,4,6,8,12,12,16,24)

(32) #=(9,1,* , 3,4,*, 6,*, 8) : 3 ^
G(2,l), G(2,1)XG(2,1), G(2,1)XG(2,1)XG(2,1)
(9,3,3) : (3,9,27)

(33) /?=(*,*, 2,3,4,5,6,7,*) : 2D3

{one point}, G(4,2)xG(4,2), Ds, G(3,3)XG(3,3)
(1,1,2,1) : (1,30,32,40)

(34) /?=(*,*,*, 3,4,5,6,7,8) : C4

G f f(2,2), C/(4)
( U ) : (27,36)

(35) Λ=(9,*,*,*,4,5,6,7,8) : 2B2®I
{one point}, G(4,1)XG(4,1), B2, G(3,2)XG(3,2), B2xT\
G(3,2)XG(3,2)XTX

(1,1,2,1,1,1) : (1,10,16,20, 32,40)

736) Λ=(*,l,2,*,4,5,6,7,*) : 2
{one point}, D2t D2xG(2,l), G(2,2)XG(2, 2)XG(2,1)
(3,3,3,1) : (1,8,24,36)

737) #=(*,1,2,*,4,*,6,7,8) : 2
{one point}, T\ G(2,1), T2, G(2,1)XT\ G(2,1)XG(2,1),
G(2,1) X G(2,1) X T\ G(2,1) X G(2,1) X T2

(1,2,3,1,4,2,2,1) : (1,2,3,4,6,9,18,36)

738) # = ( * , 1,2,3, *, 5, *, 7,8) : BX@D2®I
{one point}, T\ G(2,1), G(3,1), G(2,2), G(3,1)XT\ G(2,1)XG(3,1),
G(2,1)XG(2,2), G(2,1)XG(3,1)XT1, G(2,1)XG(2,2)X7X

(1,2,2,2,1,1,2,1,1,1) : (1,2,3,4,6,8,12,18,24,36)
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(39) /?=(*, 1,2,3,4,*, 6,7,*) : B2®21
{one point}, T\ G(4,1), G(3,2), G & l J x T 1 , G(3,2)xT1, G(3,2)xT2

(1,2,2,2,2,2,1) : (1,2,5,10,10,20,40)

(40) /?=(*, 1,2,3,4,*, 6,*, 8) :
{one point}, G(2,1), G(4,1), G(3,2), G(2,1)XG(4,1),
G(2,1)XG(3,2)
(2,1,3,1,1,3) : (1,3,5,10,15,30)

(41) /?=(*, 1,2, 3,*, 5,6,7,*) : 2Ό2

{one point}, G(3,1), G(3,1)XG(3,1), G(2,2)XG(3,1), G(2,2)xG(2,2)
(1,4,2,2,1) : (1,4,16,24,36)

(42) /?=(*, 1,2,3,4,5, *, *, 8) : A φ T
{one point}, T1, G(5,1), G(4,2), G(3,3), G(4,2)XT\ G(3,3)xTx

(1,1,2,2,1,1,1) : (1,2,6,15,20,30,40)

"(43) /?=(*, 1,2, 3,4,5, 6,*,*) : ^
{one point}, G(6,1), G(5,2), G(4, 3)
(2,1,1,3) : (1,7,21,35)

Λ=(9,*,2,*,4,5,*,7,*) :
{one point}, T\ G(2,2), G(3,1)X7\ G(2,2)X72

(7,1,4,8,3) : (1,4,6,8,12)

"(45) J?=(9,*,2,*,4,*,*,7,8) : 5/
{one point}, T\ T\ T3, T4, T5

(7,4,12,6,1,1) : (1, 2,4,8,8,16)

(46) # = ( * , * , * , * , 4,5, 6,7,8) : 2B2

{one point}, G(4,1)XG(4,1), B2, G(3, 2)XG(3, 2)
(1,1,4,3) : (1,10,16,20)

"(47) i?=(9,*,*,*,4,5,6,7,*) : 2D 2 0/
{one point}, D2, G(2,2)XG(2,2), ftxΓ, G(2,2)xG(2,2)xTx

(3,6,1,3,1) : (1,8,12,16,24)

(48) Λ=(*,l,2,*,4,*,6,7,*) :
{one point}, T\ G(2,1), T2, G(2,1)XT1, G(2,l)xT2, G(2,1)XT3

(3,6,4,3, 6,3,1) : (1,2,3,4,6,12,24)

749) Λ=(*,l,2,3,*,5,*,*,8) :
{one point}, T1, G(3,1), G(2,2), G(3,1)XT\ G(2,2)xT\
G(3,1)XT2, G(2,2)XT2

(3,4,4,2,4,2,1,1) : (1,2,4,6,8,12,16,24)

750) /?=(*, 1,2,*, 4,5,*,*, 8) : 2B 1 0/
{one point}, T\ G(2,1), G(2,1)XT1, G(2,1)XG(2,1),
G(2,l)xG(2,l)xr x

(3,3,8,2,4,3) : (1,2,3,6,9,18)
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{one point}, G(2,1), G(3,1), G(2, 2), G(2, l)xG(3,1), G(2,1)XG(2, 2)
(5,2,4,1,4,3) : (1,3,4,6,12,18)

(52) /?=(*, 1,2,3,4,*, 6,*,*) : 5 2 0 7
{one point}, 7 \ G(4,1), G(3,2), G(4,l)xT\ G(3,2)X71

(3,1,4,4,1,3) : (1, 2,5,10,10,20)

(53) /?=(*, 1,2,3,4,5, *,*,*) : A
{one point}, G(5,1), G(4, 2), G(3, 3)
(3,2,4,3) : (1,6,15,20)

(54) /?=(9, *, 2, *, 4, *, *, 7, *) : 4/
{one point}, T2, T4

(11,24,3) : (1,4,8)

(55) ~RΞ(*, 1, *, 3, *, 5, *, *, 8) : 4/
{one point}, T\ T2, T8, T4

(7,16,12,4,1) : (1, 2,4,8,16)

(56) # = ( * , * , * , * , 4,5, 6,7,*) : 2D2

{one point}, D2, G(2,2)XG(2,2)
(3,12,3) : (1,8,12)

(57) Λ=(*,l,2,*,4,*76^vO :
{one point}, T1, G(2,1), T2, G(2,l)xT 1, G(2,1)XT2

(7,8,8,1,8,3) : (1,2,3,4,6,12)

(58) #=(*,1,2,3,*,5,*,*,*) : D2@I
{one point}, T\ G(3,1), G(2,2), G(3,l)xT x, G(2,2)xTx

(7,2,8,4,4,3) : (1,2,4,6,8,12)

"(59) /?=(*, 1,2, *, 4 , 5 ^ 7 ί ΐ ) : 2β^
{one point}, G(2,1), G(2,1)XG(2,1)
(9,12,10) : (1,3,9)

(60) /?=(*, 1,2,3,4, *,*,*,*) : 5 2

{one point}, G(4,1), G(3,2)
(5,6,10) : (1,5,10)

(61) /?=(*, 1,*, 3,*, 5, *,*,*) : 3/
{one point}, T\ T\ T3

(15,24,12,3) : (1,2,4,!

(62) /?=(*, 1,2,*, 4, *,*,*,*) : ^ © 7
{one point}, T\ G(2,1), G(2,l)xT 1

(15,6,16,10) : (1,2,3,6)

"(63) ^Ξ(^"l,2,3,*,*,v^j i A
{one point}, G(3,1), G(2,2)
(11,16,10) : (1,4,6)
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(64) Λ=(*, * , * , * , * , * , 6,*, 8) : Bί

{one point}, G(2,1)
(27,36) : (1,3)

(65) # = ( * , * , * , * , * , 5,*,*, 8) : 2/

{one point}, T1, T2

(31,32,10) : (1,2,4)

(66) i?=(*, 1, *, *, *, *, *, *, *) : /
{one point}, T 1

(63,36) : (1,2)

(67) R=(*, *, *, *, *, *, *, *, *) : 0

{one point}

(135) : (1)
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