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Introduction.

Bergman kernels are fundamental on Riemann surfaces and many investiga-
tions are given. N. Suita, in his paper [13], gave a formula between Bergman
kernels and capacities. J. Lewittes pointed out the following in [8]. If the
Gaussian curvature of Bergman metric vanishes at a point on a compact Riemann
surface, the surface is hyper-elliptic and the point is one of the Weierstrass
points. We shall investigate these theorems from another point of view. We
gave variational formulas of meromorphic differentials with certain boundary
behavior under a quasiconformal deformation (cf. [9]). In this paper, mero-
morphic differentials whose real parts are like differentials of potentials and
harmonic measures are treated. The functions whose differentials have the
boundary behaviors can be called slit mappings and have certain extremal pro-
perty. The variational formulas of the potentiallike differentials under a trivial
quasiconformal deformation shall give above mentioned Suita’s formula. Further,
using them and Rodin’s Riemann-Roch theorem [10], we obtain Lewittes’ theorem
on an open Riemann surface of infinite genus. Finally we refer to Kusunoki’s
meromorphic functions whose real parts are like harmonic measures in a neigh-
bourhood of the ideal boundary. In the case of planar surfaces it gives extremal
vertical slit mappings. The image region called extremal slit region has been
studied by many people since Kobe introduced (cf. [11]). Recently the covering
appearance by the extremal slit mapping on a Riemann surface of finite genus
are precisely grasped by M. Shiba [12]. However, in the case of infinite genus
it remains misty. Is the extremal slit mapping with n-poles almost n-valent on
a Riemann surface of infinite genus? We remark that it is affirmative if
Kerékjart4-Stoilow’s boundary components are countable.
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§1. Preliminary results of variational formulas under quasiconformal
deformation.

We make use of the variational formula of certain meromorphic differentials.
It is obtained in [9], where the concerned Riemann surface is deformed
holomorphically with complex parameter. Let R be an arbitrary Riemann sur-
face, { R’} (R°=R) be Riemann surfaces with complex parameter t=wu-+:v which
varies about 0 and A, be a quasiconformal mapping from R to R* whose Beltrami
(he)s
(he).
i. p(2,t) is measurable and p(z, 0)=0,

* i esssup |z, t+e)—pz, =M, lel,
iii. p(z, t) is holomorphic with respect to ¢.

coefficient p(z, t)= satisfies the following condition x:

Let 4 be the real Hilbert space of square integrable complex differentials whose
inner product is given by

(g, wy=Real part of Sga/\*a‘):Re (0, w),

where *w denotes the harmonic conjugate differential of w and @ denotes the
complex conjugate of w. The following subspaces of 4 will be used

A,={A€A: 2 is a complex harmonic differential},
Ap={A€A: A is a closed differential which is orthogonal to 4,},
I'yn={A€4,: 1 is a real differential}.

We are concerned with a subspace represented by A,=1",+:*I",*, where I, is
a subspace of I, and *I",*={wel,: <o, *0)=0 for any 6= ";}. Fora p'ER!,
take a parametric disk V* about p® with local variable z. There exists a mero-

. . . . . . dz . -
morphic differential ¢4, . with given singularity gy at p* which coincides

with an element in A,+ 4, on R‘—V* (cf. [9]). If ¢}, , satisfies the same con-
dition, @4, ;—¢% - is holomorphic and belongs to A,+4,,. Therefore ¢4, .—¢i,
=i%@h, o — b, 2) E(A s+ Ae)N@* A, +*A,0)=1{0}. Hence such a @5 . is uniquely
determined. When A, is conformal from V° to V! and ¢, is regarded as hav-
ing the singularity with respect to the same local variable, @%, .h,—¢%, . belongs
to A+ A, where A, (R%)h,S A, (R)+Ae. For meromorphic differentials {¢*}

such that ¢’-h,—¢°=A,+ 4., we have shown that

¢t+u°ht+u°ht-‘—¢t ¢t+w°ht+w,ht—x_¢t)
u v
converges to an element (¢), (resp. (¢°),) in A,+ 4, in the norm sense as real

u (resp. v) tends to zero. Set (¢");=(¢"),+i(¢%),)/2 and (§*);=P")u—1($*)u)/2.
The (¢*); becomes a holomorphic differential. We have the following variational

(resp.
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formulas.
THEOREM A. ([9] Theorem 2, 3, 4, 5) Let meromorphic differentials ¢, $*

satisfy that the poles of ¢°, ¢* do not meet the support of p and ¢'-h,—¢?,
Prhy—Pte Aot Ao Then

a — 1 _

‘87<¢t°hz_¢0; ¢°>=7((¢‘)z, oY

jj_< toh,—ad°. PD= 1 t Y. t ALY

sis7 (9o hi— ", $= 51 @I+, @)
Further, when ¢, ¢ are holomorphic and A,=il",

a t 0 7,0 __l t AN
§"<¢ °ht—'¢ » ¢ >_ 2 (¢ ) (¢ )t)r

0* -5
W<¢t° ht‘¢0, ¢0>: _<(¢t)zy (¢t)i> .
In particular,

a ¢ N — 1 t ty. t LY.
=<8 §H=—5 (8", @)+, (8"}

a?
%<¢t, §b£>=2<(¢t)i: (¢t)l>~

§2. Variation of the reference point of a reproducing differential.

We consider a specific kind of quasiconformal self mappings on R which
represent small displacement of a parametric disk. Take a point p on K and a
parametric disk V={z: |z| <2} about p. The local parameter z also denotes,
for covenience, the corresponding point on R. Consider a function A(z, t) on V:

z+t lz]<1/2
h(z, )=1 2t(1—|z])+z 1/2<]|z|<1
z 1=z},

where |t]<1/2.

Put

{ h(z, t) on V
identity on R—V.

Then h, is a quasiconformal self mapping on R and the Beltrami coefficient is
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0 |z]| £1/2

_(h)s —tz
uz, )= . =) Ta—53 1/2<z|<1

0 1<|z| and R—V.

This satisfies the condition .

Now let ¢¢{=dg,+i*dg,, where g, is a Green function on a hyperbolic Riemann
surface R with pole at ¢. For n=1 there exists a meromorphic differential ¢}
(resp. ¢%) on an arbitrary Riemann surface R such that

1 ¢£,—(Z—:i;;+—l <resp. ¢%—(Zfdtz)n+_1) is a holomorphic differential on V,

2. ¢% coincides with an element in ¢/',+4,, on R—V
(resp. ¢ coincides with an element in I",+ 4, on R—V).

It follows that ¢heh,—@reil 4+ Aoy, Phehi—¢nsly+ 4. We have the fol-
lowing.

LEMMA 1.

(Pp)u=(n+1Dgh1 on R—V and (¢1)y=1(n+1)pr+1 on R—=V.

Proof. Put
Dt 1, 11
h= u u<(2*t—-u)"+‘ (z—1)"*1 )dz on V,
s $a—¢n 1 1 !
= v v((z—t—w)"“ (z—p)"* )dz on V.

Then 2, and i, are holomorphic differential on V. Remark that A,.,-h,”* and
hisws-h, ' are the identity on |z|>1 and on R—V. The A, and i, converge to
—(7"_{)%7(12 and (¢;)v—(’7<f—;—;%dz on lz|>1
respectively as u, v—0, hence they converge on V in the norm sense. Further
(pLre—¢h)/u and (@4 —¢L)/v converge to (¢5), and (¢%), on R—V respectively
and they coincide with elements in ¢/',+ 4, on R—V. Therefore (¢5*—¢%/u
(resp. (@5*—¢L)/v) converges to (n+1)@hLs, (resp. i(n+1)P4.) on R—{z=t} as
real u (resp. v) tends to zero. Thus we obtain the results.
As for ¢%, similarly we have

holomorphic differentials (¢%),

LEMMA 2.

@L)u=n+1)Pbsy on R—V and (Ph)y=i(n+1)¢%4, on R—V.

By these Lemmas we have directly
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(8= "L (g~ gt on R—V and (@hyi="5" @i~ g4 on R—V.

Since (¢%); and (¢%); are holomorphic differentials on R, we have (¢5)i=

|
";’1(¢;+1—¢z+l>=—<¢;>z on R. Now put Ki=-7—(gh—¢t) for nzl. The Ki

has a reproducing property.

LEMMA 3.

n

(o, K,i):zdgn—w(t) for every holomorphic differential @ in A,

where w=dw on V.

Proof. Let the real part of ¢ (resp. the imaginary part of ¢%) coincides
with a real differential ¢ (resp. )4, on R—V. Then ¢4t=0d+i*¢ on R—V
and

(@, ¢t)=(w, 0+i*0)r—(w, c+i*0)y+(0, ¢7)v,
where principal integral is used. The first term vanishes, and

(@, 6 +i*0)y=C*w, *o)y—i(w, *0)y=—2i(0, *o)y

=2i$5ydw/\a=2z’56v wRe ¢4,

V-V

—lim zg
e=0  JAV -Vt

where V.(t)={z; |z—t| <e}.

Therefore
(@, ¢ —(o, o-+i*ay=i] wpi—2] wReg:

2r d™w
— p__ AT
- Zgaqus”— n! dz" @.

On the other hand,

(0, Pp)=(w, —*t+iT)p—(®, —*t+iT)y+(®, ¢7),
=20, ")y +o, gv=—2] wimgi+| wig

. 2 d™w
:zgw ugh=—""220).
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Thus (@, Ki)= %(t}.

!
We write (K,f)zzi’;'(@;);—@;);). It follows that

(n+1)!
4z

(K9)= (¢£L+1~¢'§1+1)=K1€+1-

For a Robin constant
1

=5 gildal,

we have
1) —7(0)=<@behs— B}, Ji>/2m.

It follows by Theorem A that

0? -1

Eg{r(t)Zﬂ(@é)z, (69)3).

Since Ki=(¢i—¢})/4n=(P§);/2x is the Bergman kernel from Lemma 3, we have
the following Suita’s Theorem

THEOREM. [13]
az —_— t t
s 1= —2m (K}, K.

For K,()=(K%, K}) similar forms are established. The formulas which are
shown as Formula (9) in [9] for n=1 are settled for every natural number n=.
As the proof was not given in [9], we note it here.

THEOREM 1. [9]

a t AW
-é?'Kn(t)"‘(Kni (Kn)z)~

Proof. By Theorem A
(%)?K:, (KRD=(gh— b, ($4)1)—(h—ph, (P4):)
=—2%{<¢z=ht—¢z, Fa>+iih e hy—id3, G5

—i@hohy— @Y, IR+ ik o hy—ighh, iPId}.

Write ¢4,=d®% on V and ¢i=ic+0o, 61, 004 0n R—V. Since @heh,—@3
il + A, and ¢=i*¢5=—*g+i*g, on R—V, we have
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{Phche—@n, dr>=<@roh,—@5, —*0—i*GOr-y+<{Proh.— 93, &
=—L@hoh— @5, —*o—*Goov+{Phoh,—¢n, &
=—LPLeohi—@8, —*o—i*Goor+<{Phoh— @S, ¢

=—Re|, @4h—0p0—io)+Re| ~ (@hn—

where V'={z:|z|<1/3}. Clearly o—z'ao=*¢,°, on @V, hence

Ghohi— g, FD=Rei  (@heh—0p-S5 =~ TR

Similarly we have

. . — —2
Ko hy—ighy, Pa>= —n{i Re:

<¢£L°ht ¢n; l¢n>— Rel‘ (@t ht Qg);
Gdteh L0 o 2m o h O
l¢n° L—Z(/’ny ZSbn>— 7l n°My 5.
Therefore
0 dr dr
).\ — oh ., — — — (Ut h,—
(S, (K= {Re 4 (@b~ O —Re 5 Whehy

-2 Dtk — 00— Im Loy —
+7Im dz"(Q" hi—®@2)—:Im dz"(w" h,—T

_nl @ d"
T4z ot dz*

Further we have

—— (@b =T heh)= (¢‘

THEOREM 2. [9]
az t —
atatK =KD, (KD)=Knii(D),

log K,(t)=

L
atat K1)

Proof. Remark that
0°

By Theorem A,

O Wheh—UY),

barv
n>V

n>V v’

(d¥h=¢r)

7

)

n K.

Ko OKn(@)— [ (K1, K217} 20.

e K== 2() T (e b g8, -+ hi— 1, D
— i@ he— @R, 1P +<ihe hu—igh, i)}

n°h£_d)2)-

367

D) ¢n,
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& »
T K O=2(5) (<8 B0+, B4

— (B, ()i>+<GPh)e, (L))
1\2
=2() (K@ B+, @)

n1\2
=(5) K@—@h Bi—~@ho
PP B+ @)

Since (@h)i—(¢Ph)i=4n K, /n! and (¢5)i+(4):=0, we obtain

o
oot

The second formula is also obtained.

A K (=K1, Kivr).

§3. The vanishing points of a second variation.

On a compact Riemann surface J. Lewittes showed that the point at which
the Gaussian curvature of the Bergman metric vanishes corresponds to the
Weierstrass point on hyper-elliptic Riemann surface. In this section, we shall
show that the similar statement holds on open Riemann surface of infinite genus.

For a divisor J, take the following complex vector spaces of meromorphic
functions and differentials.

M(6)={f;i. f is a meromorphic function on R whose divisor is a multiple of g,
ii. the differential df coincides with an element of A, in a connected
neighbourhood of the ideal boundary}.

D(d)={¢;i. ¢ is a meromorphic differential whose divisor is a multiple of J,
ii. it is square integrable in a neighbourhood of the ideal boundary,

iii. it has vanishing periods along cycles which divide a part of the

ideal boundary from a compact set containing the suppert of d}.

Remark. These classes are the same in [10] which are given for identity
partition. Let A and B be disjoint integral divisors on R and d=B/A. It is
known that

THEOREM B. [10]

dim M (1/0)=deg B+1—min (1, deg A)—dim D(1/A)/ D(5).
Let Kt+#0. The second formula in Theorem 2 shows that K},, is a con-
log K,(t)=0. In this circumstances, for

wt)=0  if d:n w(t)=0.

stant multiple of K} if and only if aaa
a holomorphic differential w=dws/4, we have ddz" "
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Hence D(**")=D(t"). By Theorem B.
dim M (1/t*)=n+1—dim D(1)/D(t"),
dim M (1/t**")=n--141—dim D(1)/D("*")=dim M (1/t")+1.

This implies that there exists a meromorphic function f in M1/t"*)—M(1/t").
When K,(t)=0, every differential in D(t"~*) has zero of order n at t. Hence
D(@*-*)=D(™). Thus we have the following.

THEOREM 3.
If K,(t)=0, then M(1/t")2M (1/t*7*).
2
If K,()+0 and %log K,()=0, then M(1/t**)2M1/t").

Remark. 1If there exists a meromorphic function f in M1/t")—M1/t"™),
according to R.D.M. Accola [1] R becomes n-sheeted covering surface of the
extended complex plane by f. The f is constant on the harmonic boundary of
Royden’s compactification R* of R, because Dirichlet potential vanishes on the
harmonic boundary (cf. [3]). If R is hyperbolic, then f is constant, This is
a contradiction. Hence R is parabolic. By Heins’ theorem [5], the f covers
just n-sheets of the complex plane except for a set of capacity zero. The point

. . . -2 . .
t is one of the branch points. Since mé—f-a?bg K,(t) is the Gaussian curva-
ture of Bergman metric, we have the following

COROLLARY. [8] Let R be a non-planar Riemann surface. If the Gaussian
curvature of the Bergman metric has zero, then R is an (ultra) hyper-elliptic
Riemann surface of parabolic type. Conversely, if R is an (ultra) hyper-elliptic
Riemann surface of parabolic type, then the branch points coincide with the zeros
of the Gaussian curvature of the Bergman metric.

Proof. Since R is a non planar Riemann surface, K,(¢)+0. If the Gaussian
2

curvature vanishes at ¢, %log K, (t)=0. Then K,#)=cK,(t) and D(t*)=D(t).
Hence there exists a function in M (1/t*)—M(1/t). The R is an (ultra) hyper-
elliptic Riemann surface of parabolic type and ¢ is the one of branch points.
Conversely, at the branch point tM(1/t2)2M (1/t) and D(#*)=D(t). Hence Ki=
c¢K! and the Gaussian curvature vanishes at t.

Remark. This result can be also obtained from the equality of Lagrange
with respect to the Gaussian curvature of Bergman metric.

§4. A covering surface by an extremal slit mapping.

Y. Kusunoki [6] formulated the Riemann-Roch theorem which is similar
type of above cited theorem B and is related to extremal slit mappings. Let
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A=I"y+il s, where I, denote the subspace of I, which is called harmonic
measure and [ ., the subspace of harmonic semi exact real differentials (cf.
[2]). Consider the following real vector space of functions,

M,(1/0)={f; f is a meromorphic function whose divisor is a multiple of 1/d
and the differential df coincides with an element of A,+/4,,
in a neighbourhood of the ideal boundary}.

As we have shown at the end of the last section, a function f in M1/t*)—
M(1/t*-') is almost n-valence. So the following question is natural. Is a func-
tion f in M;(1/p™)—M,(1/p™"*) almost n-valence? In the case when R is of
finite genus, it is known that R is regarded as almost n-sheeted covering surface
over the extended complex plane with vertical slits by f (cf. [12]). As for the
case when R is of infinite genus, we point out the following.

PROPOSITION. Let R have at most a countable number of Kerékjdrtd-Stoilow’s
boundary components. Then f in M,(1/p™)—M,(1/p""") takes values n-times except
for a countable number of vertical slits and points.

Proof. Suppose f takes a value w, at least (n+1)-times. For p,, - pnE
f~Yw,) there are neighbourhoods V, of p; such that f is conformal on each V,
to f(Vy)={w; |w—w,|<e} for sufficiently small &, where we may assume that
{p;} are different each other by proper choice of w, Take a neighbourhood V
of p on which f takes each value of {w;|w|>N>|w,|+¢} just n-times for
sufficiently large N. The real part of f (denoted by Re f) can be regarded as
a quasi-continuous function on Kuramochi’s compactification R* of R and it
takes a constant value quasi-everywhere on each boundary component of R*—R
which corresponds to Kerékjarté-Stoilow’s boundary component (cf. [7]). Let
Re f take the value ¢, quasi-everywhere on a boundary component A,. Since
there are only a countable number of boundary components, the set A(s) of
boundary points on which Re f does not take the values {c,} is of Kuramochi
capacity zero. Therefore the family of rectifiable curves which converges to
points in A(s) from a compact set has an infinite extremal length (cf. [4]). Let
L be a family of rectifiable curves {/,} which tends to the ideal boundary from
UV, such that Nc/{Re f(p); p=l.N(R—R,)} does not intersect any c,, where
{Rn} is a regular exhaustion of R and ¢/ means closure of the set. The curves
{{4} tend to A(s) and the extremal length A(L) must be infinite. Let /,., be a
level curve of Re f such that i) Re f=u on /[, ,, ii) there is no branch point of
f on I, iii) /,,, starts from V, and —idf>0 along [, .. Since Im f strongly
increases along [, ,, {,., has no cluster point in R except p. There are at most
n curves of {/,,,} which meet V. Hence there exists an /,,, which tends to
the ideal boundary. If u#c, for any k%, the [,,, tends to A(s). We can find
such an /,,, for each u in (|w,|—e, |w,|+¢) except a countable number of points
and we denote it by /,. Set L,={l,}. The L, is a subfamily of L. We can
take w=f(z)=u1v as a local parameter at a point except branch points. For any
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admissible density p(w)|dw| for L,, which satisfies that inf {Sl pldwl; lueL,}zl,

lwol+e/2 lwol+e/2 1/2
sgg duég dus~ pdvg{ﬁ p"’dudv“ dudv} .
lwol-¢€/2 lwol-€/2 ly R-UV,-V R-yV;-V

Remark that SS dudv<oo, because f has a finite Dirichlet integral in a

R-UV, -V

neighbourhood of the ideal boundary. This shows that the extremal length A(L,)
of L, is finite. Hence A(L) is also finite by comparison principle. This is a
contradiction. Thus f is at most n-valence. Let A be the set of complex
numbers which f takes at most (n—1)-times. Suppose that there is a component
of A whose vertical projection B to the real axis is not a point. Level curves
Re f=x for x& B are not included in a compact set of R, if there is no branch
point on them. For almost every x& B, there exists a level curve tends to the
ideal boundary. This contradicts, as above argument, that the A(s) is of
Kuramochi capacity zero. Thus we have obtained the statement.
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