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Introduction.

Bergman kernels are fundamental on Riemann surfaces and many investiga-
tions are given. N. Suita, in his paper [13], gave a formula between Bergman
kernels and capacities. J. Lewittes pointed out the following in [8]. If the
Gaussian curvature of Bergman metric vanishes at a point on a compact Riemann
surface, the surface is hyper-elliptic and the point is one of the Weierstrass
points. We shall investigate these theorems from another point of view. We
gave variational formulas of meromorphic differentials with certain boundary
behavior under a quasiconformal deformation (cf. [9]). In this paper, mero-
morphic differentials whose real parts are like differentials of potentials and
harmonic measures are treated. The functions whose differentials have the
boundary behaviors can be called slit mappings and have certain extremal pro-
perty. The variational formulas of the potentiallike differentials under a trivial
quasiconformal deformation shall give above mentioned Suita's formula. Further,
using them and Rodin's Riemann-Roch theorem [10], we obtain Lewittes' theorem
on an open Riemann surface of infinite genus. Finally we refer to Kusunoki's
meromorphic functions whose real parts are like harmonic measures in a neigh-
bourhood of the ideal boundary. In the case of planar surfaces it gives extremal
vertical slit mappings. The image region called extremal slit region has been
studied by many people since Kobe introduced (cf. [11]). Recently the covering
appearance by the extremal slit mapping on a Riemann surface of finite genus
are precisely grasped by M. Shiba [12]. However, in the case of infinite genus
it remains misty. Is the extremal slit mapping with n-poles almost n-valent on
a Riemann surface of infinite genus? We remark that it is affirmative if
Kerekjartό-Stoϊlow's boundary components are countable.
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§ 1. Preliminary results of variational formulas under quasiconf ormal
deformation.

We make use of the variational formula of certain meromorphic differentials.
It is obtained in [9], where the concerned Riemann surface is deformed
holomorphically with complex parameter. Let R be an arbitrary Riemann sur-
face, {Rc\ (R°=R) be Riemann surfaces with complex parameter t=u+iv which
varies about 0 and ht be a quasiconf ormal mapping from R to Rt whose Beltrami

coefficient μ(z, t)= \* satisfies the following condition *:

i . μ(zf t) is measurable and μ(z, 0)=0,
* ii. esssup \μ(z, t+ε)—μ(z, t)\£Mt\ε\,

iii. μ(z, t) is holomorphic with respect to t.

Let A be the real Hubert space of square integrable complex differentials whose
inner product is given by

<</, ω>=Real part of \UΛ*ω=Re(<7, ω),

where *ω denotes the harmonic conjugate differential of ω and ώ denotes the
complex conjugate of ω. The following subspaces of A will be used

λ is a complex harmonic differential},
Aeo={λ^A: λ is a closed differential which is orthogonal to Ah),
Γh={λ^Ah: λ is a real differential}.

We are concerned with a subspace represented by Ax=Γx

Jri*Γx

±, where Γx is

a subspace of Γh and * Γ / = { ω G Γ , : <<y, *ω>=0 for any σ<=Γx}. For a ^ e ί ' ,

take a parametric disk V1 about pt with local variable z. There exists a mero-

morphic differential φ^x with given singularity n+1 at pc which coincides

with an element in Ax+Aeo on /?£—Vs (cf. [9]). If φι

n,x satisfies the same con-
dition, φn.χ—ψn.χ is holomorphic and belongs to Ax+Aeo. Therefore φn.x—φntX

=i*(φn,χ—ψn,χ)^(Ax-\-Aeo)Γ^(i*Ax+*Aeo)={0}. Hence such a φι

n,x is uniquely
determined. When ht is conformal from V° to V1 and φ^x is regarded as hav-
ing the singularity with respect to the same local variable, φn.x'ht—φLx belongs
to Ax+Aeo, where Ax(Rt)°htQAx(R)+Aeo. For meromorphic differentials {φ1}
such that φtoht-"φ0^Ax+Aeθf we have shown that

converges to an element (̂ Ou (resp. (̂ Oo) i n Ax-\-Aeo in the norm sense as real
u (resp. v) tends to zero. Set {φt)i={{φt)uJri(φt)v)/2 and W\=<if)u--i(f\)/2.
The (0*)ί becomes a holomorphic differential. We have the following variational
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formulas.

THEOREM A. ([9] Theorem 2, 3, 4, 5) Let meromorphic differentials φι, ψι

satisfy that the poles of φ°,ψ° do not meet the support of μ and φ^ht — φ1,
o. Then

ψ}{((φt) ψ)

Further, when φι, φι are holomorphic and Ax=iΓh,

In particular,

, «&'>=-| w , ψ)ύ+ψ, iΦι)ύ

§2. Variation of the reference point of a reproducing differential.

We consider a specific kind of quasiconformal self mappings on R which
represent small displacement of a parametric disk. Take a point p on R and a
parametric disk V={z: \z\<2} about p. The local parameter z also denotes,
for covenience, the corresponding point on R. Consider a function h(z, t) on V:

ί z+t

h{z, ΐ)=

where |ί|<l/2.

Put
h(z, t) on V

identity on R—V.

Then ht is a quasiconformal self mapping on R and the Beltrami coefficient is

ί h

I ic
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1 and R-V.

This satisfies the condition *.
Now let φl—dgt^-i^dgt, where gt is a Green function on a hyperbolic Riemann
surface R with pole at t. For n^l there exists a meromorphic differential φι

n

(resp. 05J on an arbitrary Riemann surface R such that

dz
. ^n— ( _ ^ n + i ) i s a holomorphic differential on V,

\Z I) '

2. 0^ coincides with an element in iΓh+Λeo on R—V
(resp. φn coincides with an element in Γh-\-Λeo on R—V).

It follows that φι

n<>ht-φlζΞiΓh+Λeo, ψ^ht-ψ^Γ\+Λeo. We have the fol-
lowing.

LEMMA 1.

W)u=(»+l)jli+i ^ R-V and (^) 0 =/(n+l^ + 1 ^ i?-F.

Put

^ j z 0 i I / L i \ d o n 7_^jz0i_I/ L i
~ u u\(z-t-u)n+ι (z-t)n+1

Then ^ u and λυ are holomorphic differential on V. Remark that ht+u ht~
ι and

ht+iυ'hf1 are the identity on \z\>l and on i?— V. The Λu and ίυ converge to

holomorphic differentials (φn)u— , _ , n + 2 dz and (^^p— , ,xn+2 ^ o n 1̂ 1 > 1
\Z I) \Z I)

respectively as u, v-*0, hence they converge on V in the norm sense. Further
(φ^-φD/u and (φn+ιv-φn)/v converge to (φ^ and (φ^ on R—V respectively
and they coincide with elements in iΓh+Aeo on R—V. Therefore (φn+u—φn/u
(resp. (φ^-φ^/v) converges to (w + l ) ^ + i (resp. 2(n + l)^+i) on i?-{z=ί} as
real u (resp. t>) tends to zero. Thus we obtain the results.

As for φι

n} similarly we have

LEMMA 2.

(ί^)«=(w + l)0U on R-V and φn\=Kn + l)φUi on R-V.

By these Lemmas we have directly
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~L(φtn+i-ψ on R- V and (^) ? =-^( ί5Ui-^» + i ) on Λ-

Since (0k)t and (ψfoi are holomorphic differentials on R, we have (^n)ί=

IL~(φtn+i-φtn+i)=-(φtn)ι on /?. Now put K^ — ίφi-φi) for n^l . The Ώ

has a reproducing property.

LEMMA 3.

vt\—
dz

dn

(ω, K£)=-j-^w(t) for every holomorphic differential ω in Λ,

where ω—dw on V.

Proof. Let the real part of φi (resp. the imaginary part of φι

n) coincides
with a real differential σ (resp. τ)^Λeo on R—V. Then φ^—σΛ-i*^ on R—V
and

(ω, φt

n)=(ω, σ-\-i*σ)R—{ω, σ+i*σ)v+(ω, φn)v,

where principal integral is used. The first term vanishes, and

(ω, σ+i*σ)v=(*ω, *σ)v—i(ω, *σ)v=—2i(ω, *σ)F

=2i[[dw/\σ^2i[ w Re φι

n,

(<o, ^ V = l i m \\ dwΛ*φn
β-o jjv-vεao

=lim/\ wφi—A wφi,
ε^o j5cF-κε(θ) Jar r

where 7,(0= {̂  k -

Therefore

(ω, φn)v~(<o, σΉ-/*(7)κ=M wφt

n—2i\
Jdv T Jdv

On the other hand,

(α>, φι-n)—{ω, — *τ+2τ)Λ—(ω, —

=2(ω,

Jar γ n n\ dzn
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Thus (ft), Ki)=^-(t).

We write (/Γ4)i=-^((#)ι-(#)ι). It follows that

4ττ

For a Robin constant

s 4 St\dz\,
LIZ J | 2 | = l

we have

It follows by Theorem A that

Since K[—{φ[—φ[)/iπ—{φ[)-t/2π is the Bergman kernel from Lemma 3, we have
the following Suita's Theorem

T H E O R E M . [13]

For Kn(t)=(K£, K£) similar forms are established. The formulas which are
shown as Formula (9) in [9] for n — \ are settled for every natural number n.
As the proof was not given in [9], we note it here.

THEOREM 1. [9]

~Kn(t)=(KL

Proof. By Theorem A

= -2-~{<φ^ht-φl

-Kφ'n'h-φl, tfb+iiφϊ'ht-iφl, ψn>}.

Write φt

n=dΦt

n on V and φl^io+σ*, σ<^Γh, σύ<=Λeo on R— V. Since φl°ht—φl
<=iΓh+Λeo and φ^=i*φo

n=-*σ+i*σΛ on R-V, we have
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<φ'n'ht-φl Φΐ>=<φi'ht-φ°n, -*σ-i*σo}B

= -<φ'»>h,-φl, -*σ-i*σt >r+<Φtn ht-φi,

= -Re( (Φ^A,-ΦSXσ-tσ

where F'={z: |^|<l/3}. Clearly σ-iσ<1=*φl on 37, hence

<φιn°ht-φϊ, φl>=Rei\ {Φtn'ht-Φl)^Γ = -~Rtψτ

Similarly we have

Therefore

Further we have

THEOREM 2. [9]

-^Kn(t)=((Kί)lt (Ki)ι)=Kn+ι(t),

log Kn(t)=-rJ7-ί{Kn+1(t)Kn(t)-\(Kί+u K<i)\2}^0.

Proof. Remark that

By Theorem A,
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ψn)l, (ψn)i>\

Since ( ^ ) ^ ^ ) ί = 4 7 r / Q + 1 / n ! and (#»)*+($&'«)*=0, we obtain

The second formula is also obtained.

§3. The vanishing points of a second variation.

On a compact Riemann surface J. Lewittes showed that the point at which
the Gaussian curvature of the Bergman metric vanishes corresponds to the
Weierstrass point on hyper-elliptic Riemann surface. In this section, we shall
show that the similar statement holds on open Riemann surface of infinite genus.

For a divisor δ, take the following complex vector spaces of meromorphic
functions and differentials.

M<5)={/; i. / is a meromorphic function on R whose divisor is a multiple of δ,
ii. the differential df coincides with an element of Λeo in a connected

neighbourhood of the ideal boundary}.

D(δ)={φ; i. φ is a meromorphic differential whose divisor is a multiple of δ,
ii. it is square integrable in a neighbourhood of the ideal boundary,

iii. it has vanishing periods along cycles which divide a part of the
ideal boundary from a compact set containing the support of δ}.

Remark. These classes are the same in [10] which are given for identity
partition. Let A and B be disjoint integral divisors on R and δ=B/Λ. It is
known that

THEOREM B. [10]

dim M(l/3)=deg β + l - m i n (1, deg i4)-dim D(l/Λ)/D(δ).

Let K£φQ. The second formula in Theorem 2 shows that K£+ί is a con-

stant multiple of K£ if and only if ^ ^ - log Kn(t)=0. In this circumstances, for
d t d t dn+1 dn

a holomorphic differential ω=dw^A, we have w + 1 w(t)=0 if -j—^-w(t)=0.
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Hence D{tn+1)=D{tn). By Theorem B.

dim M(l/f n )=n + l -d im D{l)/D{tn),

dim M(l/tn+1)=nJrl + l-άim D{1)/D{tn+ί)=άim

This implies that there exists a meromorphic function / in M{l/tn+ί)—M{l/tn).
When Kn(t)=0, every differential in D{tn~ι) has zero of order n at t. Hence
D{tn~ι)=D{tn). Thus we have the following.

THEOREM 3.

// Kn(t)=0, then M{l/tn)^M{l/tn~ι).

If Kn(t)Φθ and J ^ - log Kn(t)=0, then M{l/tn+1)^M{l/tn).
otot

Remark. If there exists a meromorphic function / in M{l/tn)—M{l/tn~ι),
according to R. D. M. Accola [1] R becomes n-sheeted covering surface of the
extended complex plane by /. The / is constant on the harmonic boundary of
Royden's compactification R* of R, because Dirichlet potential vanishes on the
harmonic boundary (cf. [3]). If R is hyperbolic, then / is constant. This is
a contradiction. Hence R is parabolic. By Heins' theorem [5], the / covers
just n-sheets of the complex plane except for a set of capacity zero. The point

—2 d2

t is one of the branch points. Since Tjr .. - ^ - log Kλ{t) is the Gaussian curvaΓ

K^t) otot
ture of Bergman metric, we have the following

COROLLARY. [8] Let R be a non-planar Riemann surface. If the Gaussian
curvature of the Bergman metric has zero, then R is an {ultra) hyper-elliptic
Riemann surface of parabolic type. Conversely, if R is an {ultra) hyper-elliptic
Riemann surface of parabolic type, then the branch points coincide with the zeros
of the Gaussian curvature of the Bergman metric.

Proof. Since R is a non planar Riemann surface, Kι(t)Φθ. If the Gaussian
d2

curvature vanishes at t, ^ - log ^ ( 0 = 0 . Then K2{t)=cKι{t) and D{t2)=D{t).

Hence there exists a function in M{l/t2)—M{l/t). The R is an (ultra) hyper-
elliptic Riemann surface of parabolic type and t is the one of branch points.
Conversely, at the branch point tM{l/t2)^M{l/t) and D{t2)=D{t). Hence Kl=
cK[ and the Gaussian curvature vanishes at t.

Remark. This result can be also obtained from the equality of Lagrange
with respect to the Gaussian curvature of Bergman metric.

§ 4. A covering surface by an extremal slit mapping.

Y. Kusunoki [6] formulated the Riemann-Roch theorem which is similar
type of above cited theorem B and is related to extremal slit mappings. Let
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Λι—Γhm

J

ΓiΓhsey where Γhm denote the subspace of Γh which is called harmonic
measure and Γhse the subspace of harmonic semi exact real differentials (cf.
[2]). Consider the following real vector space of functions,

Mi( l/δ)={/ ;/ is a meromorphic function whose divisor is a multiple of 1/δ
and the differential df coincides with an element of Λι-\-Λeo

in a neighbourhood of the ideal boundary}.

As we have shown at the end of the last section, a function / in M(l/tn)~
M{l/tn~ι) is almost n-valence. So the following question is natural. Is a func-
tion / in M^l/p71)—M^l/p71"1) almost n-valence? In the case when R is of
finite genus, it is known that R is regarded as almost n-sheeted covering surface
over the extended complex plane with vertical slits by / (cf. [12]). As for the
case when R is of infinite genus, we point out the following.

PROPOSITION. Let R have at most a countable number of Kerekj άrtό-Stoϊlow7 s
boundary components. Then f in Mx{l/pn)—M^l/p71'1) takes values n-times except
for a countable number of vertical slits and points.

Proof. Suppose / takes a value w0 at least (n+l)-times. For p0, ••• pnEΞ
f~\wQ) there are neighbourhoods Vt of pi such that / is conformal on each Vt

to f{Vι)—{w) \w—wo\<ε\ for sufficiently small ε, where we may assume that
{pi} are different each other by proper choice of w0. Take a neighbourhood V
of p on which / takes each value of {w; \w\ >N>\wo\+ε} just n-times for
sufficiently large N. The real part of / (denoted by Re /) can be regarded as
a quasi-continuous function on Kuramochi's compactification R* of R and it
takes a constant value quasi-everywhere on each boundary component of R*—R
which corresponds to Kerekjartό-Stoϊlow's boundary component (cf. [7]). Let
R e / take the value ck quasi-everywhere on a boundary component Ak. Since
there are only a countable number of boundary components, the set Δ(s) of
boundary points on which R e / does not take the values {ck} is of Kuramochi
capacity zero. Therefore the family of rectifiable curves which converges to
points in Δ(s) from a compact set has an infinite extremal length (cf. [4]). Let
L be a family of rectifiable curves {/«} which tends to the ideal boundary from
\JVι such that Γ\cl{Re f(p); pGlaΓ\(R—Rm)} does not intersect any ck, where
{Rm} is a regular exhaustion of R and cl means closure of the set. The curves
{Ia\ tend to Δ(s) and the extremal length λ(L) must be infinite. Let lUίt be a
level curve of R e / such that i) Re f=u on lUtt, ii) there is no branch point of
/ on lUtt, iii) lUtl starts from Vx and —idf>0 along lUil. Since I m / strongly
increases along lu, t, lUιl has no cluster point in R except p. There are at most
n curves of {lUtl} which meet V. Hence there exists an ίUtl which tends to
the ideal boundary. If uΦck for any k, the lUft tends to Δ(s). We can find
such an lUll for each u in (| wo\ — ε, | wo\ +ε) except a countable number of points
and we denote it by lu. Set Lx — {lu\. The Lx is a subfamily of L. We can
take w=f(z)=u+iv as a local parameter at a point except branch points. For any
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admissible density p(w)\dw\ for Lu which satisfies that inf \\ p\dw\ lu

du£\ du\ pdv^iW p2dudv\\ dudv
| w 0 l - e / 2 J | w 0 ι - e / 2 Jlu UjR-ΌVt-V* JJR-ΌVi~V J

1/2

Remark that it dudv<oo because / has a finite Dirichlet integral in a
JJR-υvι-v

neighbourhood of the ideal boundary. This shows that the extremal length λ(Lι)

of Lγ is finite. Hence λ(L) is also finite by comparison principle. This is a

contradiction. Thus / is at most n-valence. Let A be the set of complex

numbers which / takes at most (n —l)-times. Suppose that there is a component

of A whose vertical projection B to the real axis is not a point. Level curves

Re f—x for x^B are not included in a compact set of R, if there is no branch

point on them. For almost every x^B, there exists a level curve tends to the

ideal boundary. This contradicts, as above argument, that the Δ(s) is of

Kuramochi capacity zero. Thus we have obtained the statement.
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