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ON PSEUDO-PRIMALITY OF THE 2/ι-TH POWER

OF PRIME ENTIRE FUNCTIONS

BY JIAN YONG QIAO

1. Introduction

In [8] Guo Dong Song and Jue Huang proved the following theorem:

THEOREM A. Let go(z) be a pseudo-prime entire function, and n(^3) be an
odd number. Then F(z)=-g*(z) is also pseudo-prime.

They used a prime entire function sm^£C O S 2 to show that there exists a
prime entire function go(z) such that gln(z)(n^l) is not pseudo-prime. Because
the order of smzecosz is infinite, in [8] the authors naturally proposed the fol-
lowing question (1): Does there exist an entire function go(z) which is prime
and of finite order such that gftz) is not pseudo-prime?

In this paper we shall give an affirmative answer to above question (1).
That is, there exists an entire function go(z) which is prime and of finite order
such that gl(z) is not pseudo-prime. Further we shall prove that the prime
entire functions of which the 2w-th power are not pseudo-prime are only some
special periodic functions.

We assume that the reader is familiar with the fundamental concepts of
Nevanlinna's theory and adopt with their usual meaning, classical symbols such
as miχy a, /), n(r, α, /), N(r, a, /), T(r, /), M(r, f) etc, (see [4]).

2. Main results

THEOREM 1. Let H(w) be an odd transcendental entire function. Suppose
that the order of H(sinz) is finite. Put Ha(z)=(cos z)-(H(smz)-{-2a). Then the set

E={a<=C; Ha(z) is not prime)

is at most countable set.

Remark 1. It is easy to choose a transcendental entire function h(w) such
that
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In Theorem 1, we choose H(w)—wh(w2). Obviously H(w) is an odd trans-
cendental entire function and

ΠE l 0 g, l 0 gf ( r ' H) =m totoBWr, h)
r-oo log log r r-oo log log r

From Theorem 2 of paper [5] we know that the order of Hismz) can not be
larger than μ. Therefore, by Theorem 1 Ha(z) is a prime entire function of
finite order for any a&E. But

is not pseudo-prime. This is an affirmative answer to question (1).

THEOREM 2. Let F(z) be a right-prime entire function and F2n(z) is not
pseudo-prime for some natural number n. Then there must exist a transcendental
entire function h(w) such that

F(z)=cos(az+b)h(sin(az-\-b)), (a and b are constants).

Remark 2. From above Theorem 2 we can easily know that for a right-
prime entire function F(z), F2n(z) is pseudo-prime for some natural number n
if and only if F\z) is pseudo-prime.

3. Some lemmas

To prove Theorem 1 and 2 we need some lemmas. At first, we prove the
following Lemma 1 which is similar to Lemma 3 of paper [6].

LEMMA 1. Let h(w) be a single-valued regular function in 0< | w |<oo. Then
there is a countable set E(ZC such that any two common roots wu w2 of the
simultaneous equations

— ) = t

(1)

satisfy
1 1

(2)
w2

for any constant t(^C) provided that a&E.

Proof. Put
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l—^); A=C-({0, 1, -

We choose open sets {C<}?=i of i4 such that

(Π) k(w) is univalent in d(i=l, 2, •••);
(ΠI) {&<»; MiGC i )=f l i is a disk ( ί = l , 2, •••).

Put

(3)

I={(i,j)€ΞNxN; DinDjΦ0 and

Put E=C—E0, E is obviously a countable set and

(4)

We choose any two common roots wu w2 of simultaneous equations (1). By
the same method as in the proof of Lemma 3 of paper [6] we have

1) There is a (/, / ) e / such that a^DiίλDj and

Wi—qiia), w2=qj(a) (5)

2) rί(a)=r'j(a) (6)

By (3) and (4) we see

Qi\

By (6) and (7) we easily obtain

( ) +

By (5) Lemma 1 is proved.
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LEMMA 2 [3]. Let f{z) be an entire function of exponential type a and
periodic on the real axis with period 2π. Then f(z) is of the form

/(*)= Σ ake
ikz (nrgσ).

k = -n

LEMMA 3[3]. Let f(w) be an entire function of order p<l/2 and g(z) an
entire function. Then f(g{z)) is periodic if and only if g{z) is periodic.

LEMMA 4 [3]. Let f(w) be an entire function and g(z) a polynomial of degree
n^2. If f(g(z)) is periodic then g{z) must be a quadratic polynomial.

LEMMA 5[4]. Let f(z) be an entire function. Then

where v(a) stands for the least order of almost all a-point of f{z).

LEMMA β[2]. All entire solutions of functional equation

are of the form
f(z)=co$θ(z) and g(z)=smθ(z)

where θ{z) is any entire function,

4. Proof of theorems

Proof of Theorem 1. Put

h(w)——z HI---.— L
2w \ 2ιw /

Then h{w) is a single-valued regular function in 0<|w|<oo, and

<f. (8)

Because w—0, oo are essential singularities of h(w), by Picard's theorem there
is a constant b such that h(w)=b has infinitely many roots {&*}JU, hence we
have

T{r, h(eiz))^N(r, by h(eίz))+O(l)

r, eίz)+S(r, eiz). (9)

Taking, n sufficiently large, by (9) we have

T{r, eiz)=o(T(r, h{eiz))) (r->oo). (10)

Because h(eίz) is an entire function of finite order, by the theorem of paper
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[1] and (10) it is easily seen that there is not two distinct values a such that

N(r, -a(eίz+e-iz)+t, h(eiz))<am(r, h(eu)) (11)

for sufficiently large value of r, any t^C and any α€Ξ(0, 1/2). Therefore,
there is a countable set EλCiC such that the conclusion of Lemma 1 holds for
a$Eu and further there is a sequence rn=rn(a)(rn—>oo) such that the following
inequality holds

N(rn, -a{eiz+e-iz)+t, h(eiz))>am(rn, h{eiz)) (12)

for any ίeC.
Hence we have

N(rn,t,Ha)^am(rn,h(eiz)). (13)

Put E2=Eί\j{0}. We shall prove EdE2.
Assume a&E2, let Ha(z)=f(g(z)). We discuss the following five cases.
a) Suppose that / and g are transcendental entire functions. Since the

order of Ha(z)=f(g(z)) is finite, by Pόlya's theorem the order of f(w) is zero.
Hence f'(w) has infinitely many zeros {wn}°Z=1. Since Hί(z)=f'(g(z)) g'(z), by
(8) any root of g{z)—wn is also a common root of the simultaneous equations

w >
(14)

By Lemma 1 any two roots zlf z2 of (14) satisfy

Hence z2—-^I^&TΓ or z2-\-zx—2kπ (k is an integer). This implies

n(r, wn, g)£(χ+0(X))-r (r->oo).

By the second fundamental theorem, g(z) is an entire function of exponential
σ^4/π. Since Ha(z) is periodic, by Lemma 3 g(z) is periodic. It is easily seen
from (15) that the period of g{z) is 2Nπ with an integer N. By Lemma 2

(16)

We discuss three subcases.
a2) α_i=0. Then

Hence we have
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Then its right hand side is regular at u/=0, while the left hand side is not
regular. This is a contradiction.

a2) aί=0. Discussing Ha(—z) and treating it by the same method as in
case aO we can obtain a contradiction.

a3) α i α ^ O . By (1), (14) and (16) the two roots w'n, w'ί, of α ^ u Γ ^ ' ^ + αo
-{-aίιv

ι/N=wn satisfy

Obviously we see w'nw'ί=:(a-i/'axY
r, thus we have

By (17) and (18) we have

This implies a-1=aίe
ii2kπ/N:> with an integer k. Thus

2 a 1 e c o s

Therefore

is an even function. But

Ha(z+kπ)=(-l)k(cosz)(H((-l)k sin z)+2a).

Thus the fact that H(w) is an odd function implies H(w)=0. This is a con-
tradiction.

b) Suppose that / is a transcendental entire function and g is a polynomial
with degree n ^ 2 . Since Ha(z) is periodic, by Lemma 4 g(z) is a quadratic
polynomial. Put

g{z)—b{z—c)2jrd (b, c and d are constants).

Then Ha{zJrc)—f{bz2jrd) is an even function. That is

(cos(z+c))(H(sm(z+c))^2a)=(cos(-z+c))(H(sm(--z+c))+2a).

Put z—π/2. Then we have

—sin c(H(cos z)-h2α)=sin c(H(
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The fact that H(w) is an odd function and a$E2(aφ0) implies

C—kπ (k is an integer).

By the same reason as in the case a3), Ha(z-\-c) is not even function. This is
a contradiction.

c) Suppose that / is a polynomial with degree n>2 and g is a trans-
cendental entire function. Since Ha(z) is periodic, by Lemma 3, g(z) is periodic.
We discuss two subcases:

Ci) Suppose that / ' has only one zero wx. Put f/=b(w—w1)
n~1 with a

constant b and a natural number n > l . Thus we see

f ( l ) + f a ( )

Therefore we have

N(r, t, Ha)=nN(r, wu g). (19)

By the discussion in case a)

N(r, wlfg)=O(r) (r->oo). (20)

Then (20) (19) and (10) imply

N(r,t,Ha)=o{jn(r,h{eu))) (r-oo).

This contradicts (13).
c2) Suppose that / ' has at least two zeros wlf w2. By the same discussion

as in the case a), g(z) must be of the form (16). From the discussion of case
&i), a2) and a3) we obtain a contradiction.

d) Suppose that / is a meromorphic (not an entire) function and g is an
transcendental entire function. Let w0 be a pole of / . Since Ha{z)—f{g{z))
is an entire function, g(z) does not assume w0. By Picard's theorem / has only
one pole. Put

f(w)=f1(w)/(w-woy and g(z)=wo+e*w,

where f1 is a transcendental entire function, f1(wo)Φθ, p is a natural number
and Q(z) is an entire function. Since the order of Ha{z)—f{g(z)) is finite, by
Pόlya's theorem the order of fx is zero. Now

(w—Wo)f[(w)—pf1(w)
1 w

It is easily seen that (w—wo)f[(w)—pf1(w) is not a polynomial. Thus f\w) has
infinitely many zeros \wn}°S. By the discussion in case a), g(z) must be an
entire function of exponential type. Thus we have

g(z)=wo+eaz+b (a and b are constants).
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By (15) it is easily seen that a=i/N with an integer N. Since

f(g)=tf2(w)/wpl°e^/N\ f2=f1(w0+ebw)/epb

and

thus we have

Then w=0 is a essential singularity of the left hand side, while w—0 is a pole
of the right hand side. This is a contradiction.

e) Suppose that / is a rational function (not a polynomial) and g is a
transcendental meromorphic (not entire) function. Let w0 be the pole of /. Put

a n d

Then f(g)=fi(gi). This case can be reduced to the case c) or d).
From a) to e) we know that if a&E2 then Ha{z) is prime Hence EcE2.

Theorem 1 is thus proved.

Proof of Theorem 2. Since F2n{z) is not pseudo-prime, there exist a trans-
cendental meromorphic function / and transcendental entire function g such
that F2n(z)=f{g(z)). By the same method as in the proof of Theorem 1 of
paper [8], it is easily seen that / can not be meromorphic. It is obviously
that / must have zeros. Because if not, f1/2n is a transcendental entire func-
tion and F(z)=μfι'2n°g(z){μ2n—l). This contradicts that F{z) is right-prime.
For the same reason as in the proof of Theorem 2 of paper [7], the following
three cases may occur.

a) Let f(w)=k2n(w) with some transcendental entire function k(w). Then
F(z)—μk(g(z))(μ2n—l), which is a contradiction.

b) Let f(w)=(w—Wι)pk2n(w) with wx^Cy a natural number p<2n and a
transcendental entire function k(w). Then obviously g(z)=w1+Sq(z) with a
transcendental entire function S(z), a natural number q and 2n\pq. Thus we
obtain

This is a contradiction.
c) Let f(w)—(w—wι)

Pι{w--w2)
P2k2n{w) with wlf w2^C, a transcendental

entire function k(w) and two natural number plt p2<2n. At first

| < t t and | 2 < n . (21)
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Obviously g(z)=w1+Sq

1^(z) and g(z)=w2+Sq

2Kz), where S^z) and S2(z) are two
transcendental entire functions, qx and q2 are two natural numbers satisfing

2n\p1q1 and 2n\p2q2 (22)

By Lemma 5, v(wι)=v(w2)=2. Thus q1=q2=
:2. By (21), (22) we obtain pi=p2

— n. It is easily seen that

|
w2—w1 w1—w2

By Lemma 6, there exists an entire function θ{z) such that

Thus we obtain

F(z)=μi(w2— w^cos Θ(Z)-$\Ώ θ{z)'k(w2-\-(wι—w2)ύn2θ{z)) (μ2n=l).

Put h{w)=μi(w2—wι)wk(w2+(w1 — w2)w2). Then

F(z)=cos θ(z) - /z(sin θ(z)).

Since F(z) is right-prime, we have θ{z)—az-\-b with constants a and &. Theorem
2 is thus proved.
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