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MEANDERING POINTS OF TWO-DIMENSIONAL
BROWNIAN MOTION

By MICHIO SHIMURA

§1. Introduction and the result.

Let Z,)=(X,#), Y1), weW, —co<t< oo, be the two-dimensional standard
Brownian motion with Z,(0)=0 on a probability space (W, B, P). Let U denote
the set of all unit vectors in R?. For every u in U we set a half-plane
H(u)={x=R*|lu-x=0}, where u-x denotes the inner product. For u, and u,
in U we consider the random set of all two-sided meandering times of the
Brownian motion :

MUy, Us)={—co<t<<0|?h>0 such that Z (s)e Hu,)+Z ,(t) for t—h<"s<t
& Z,(s)eHu,)+Z,(t) for t<¥s<t+h}.

In this paper we will prove the following theorem.

THEOREM 1. For every u, and u, in U with u,+ u,, we have M(t;, u,)=@
almost surely (a.s. for abbreviation).

Our problem arises from the following observation. By a result of Evans
[2] we have dimHM,(w,, u,)=1—n/2r—=n/2x=0 a.s.. Here we note that, in
such a critical case, we do not know from the result whether the set is empty
or not (a.s.). Indeed, both cases may occur: Obviously H,(u, u)+@ a.s.;
Mp(u, —u)=¢@ a.s. from Dvoretzky, Erdés and Kakutani [1] on the nonexis-
tence of points of increase (decrease) for the one-dimensional Brownian motion.
So, it may be interesting to see if the set is empty or not (a.s.) for u,+u,.
By Theorem 1 we answer the problem. As will be shown in the following
sections, the proof of Theorem 1 in [1] still works to ours by some modification.

The paper is organized as follows. In §2 we give preliminaries to our
proof of Theorem 1. We show in §3 two lemmas which play key role in §4,
where the proof of Theorem 1 is given.
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§2. Preliminaries.

We may take in Theorem 1 u,=(0,1) and wu,=(—sin@, cosf), 0<f<,
without loss of generality. We write M,=M,(u,, u,). Besides the xy co-
ordinate system we set the x’y’ one in which the y’-axis is directed toward
the vector u,. We put Z,()=(X,(#), Yi®) in this system. Note that each of
the processes X,(-), Y,(:), Xi(-) and Y(-) is the one-dimensional standard
Brownian motion. For —oo<s<¢{<co we define

Y, [s, t]=min{Y ,(u)|s<u <t} and Y,[s, t]=max{¥,(u)|sSu<t}

(Y.ls, t], Yi[s, t], etc are defined in the same way).
We put

A={weW|3*<[0, 1] such that Y ,[1—2,t]1=Y () & Y,@&)<Y,[¢, t+2]}.

It is easy to see that Theorem 1 follows if we have P(A)=0. For n=1 and
1<k<2n we set

v

semfommie [oa 2]

& nlh Hanft 4]

Then A=\5-,\UL,A?. Here we note a modification made in the definition of
the sets A and A? from those given in (5.5) and (5.6) in [1]. Such a change
will be necessary to treat the case u,+*u,. Put

F=SHw)=25-11.(47),

where 1,(A) is the indicator function on a set A (£W). Since P(A)SP(Sr=1)
for all n, we will prove as in [1]

Zw[k_l, E}
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in §4 to get Theorem 1.

§3. Two lemmas.

Before showing the lemmas we list some formulas which will be used often
later. Put

@;(&):(;Zt—ylzgjexp<—;—:>dx for >0 and £20.

It is well-known that, for >0 and £<0,

@.D P(Yw[—t, 0128)=P(¥ [0, 1]126)=0(—§)
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((3.1) also holds by replacing the process Y by another one, e.g., the Y’). It
holds from the inequalities 1—x<exp(—x)<1 for x=0 the following:

(3.2) 0ue)=(2) " Fax=(2)"e tor e20

and

(3.3) @t(s)g(%)”zgj@—-;;)dxgem)-ws for 0<E< (301",
Moreover

2 2

(3.4) 1—<1)L(5)<(%)”25:x exp(— —%)dx=<;2t~)”2exp<—~§?> for £21.

Let f(s)xXs™* (s—c) denote
0<liminf,..s¢f(s)<limsup;..s*f(s)<oo.
Firstly we show the following lemma.
LEMMA 1. We have P(A})Xn™' (n—oo).

Proof. Set H™dE, dn)=P(Y,[0,1/n]ledé & Y,[0,1/n]-Y(1/n)&dn).
Since the Brownian motion has independent and stationary increments, the fol-
lowing identity holds:

Pean=P(Yo[r—2 0|20, 2] &
o Horsd)alL o)

0 (o 1 , 1 - .
=[' [ P(vo|5—2 0]z&)P(rifo, 2— - |zn)Hrdz, dn).
Therefore, together with the scaling relation H"(d&, dy)=H'(n'/*d§, n*’*dy), we
conclude from (3.1), (3.2) and from (3.3) the following:

pans” [ oo —pamag, aps 20 (" en e, dy)
and

0

PUAZ( [ 000~ H e, dn)

_gl/2

1
drn

0 0 .
S—(en)”zg—(sn)”z & H(dE, d)

v

(note O<S;Siwlén[H‘(d$, dn)<<>0). This proves the lemma.
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Let G(4, 6), 0<4, 9, denote the probability
P(Y,[0,1]12z—4 & Yi()z1 & Y,[0, 112V ,(1)—0 & Y,(1)=—1).
Next we show the following lemma.

LEMMA 2. There exists a positive constant K such that the following holds:

(3.5) G4, 0)=K46 for every 04, 6<1.

Proof. Let us consider the case 0<f#=<r/2. Take the point A where the
lines y=—2 and y’=—1 cross each other. Note that the x’ co-ordinate of A,
say a, is less than —1.73. Let B denote the point of intersection of the lines
y=—4 and y’=1, and put by b its x co-ordinate. Take a disc D of diameter
1/2 contained in the region {z=(x, y)|x<b}N\{z=(x’, y")|a<x’<0}. Then, an
elementary geometric consideration, together with the independence and the
stationarity of increments of the Brownian motion, lead us to the following
estimate (see Figure 1 below):

x:b y y/=1 x/
y'=—4
y'=-1

yl
1o
*Z o(0)=05 x
Zo0)=
‘A
r ~ y=——2
Z,)
y=Y (1)
< 1/ /// // Y=Y ()5
AN/ T

Figure 1
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a1
]g—A & XW[O, 7]@ &

G, 5)>P(1_/,’,,[0, %

Zu,(—%—)eD & zw[% 1]gyw(1)—5 & -3V, (D=—2 &

b )l A s o o 2z
() o (D)etsxar)e(r.fo Har.()-o
—B—ngw(-zl->§——2——y & X0, %]éb—x).

Put min{b—x|(x, y)€D}=b" (>0) and min{—2—y|(x, y)€D}=¢, Then,
noting max{—3—y|(x, y)€D}=c—1/2, we have

@6 G, >P(rif0, 5 |z—4 & Xifo, 7]za &
D)D) H o (s 8 v (l)se o
|0, %]éb’)
(say I]). In terms of conditional probability
per(i Fz- o o & 2. (3)emifo 3z

(say I,I,). Making use of the fact that Z~w(t)=Zw(1/2—t)—Zw(1/2), —oo<Lt< 00,
is also a standard Brownian motion, we have

J=P(.[o, %]g—a & —céYw(%)§—;——c &

%ufo. gJarx(g))=r(rafo g Jz-o)p(-esrulz)s g &

)?w[o, -;—]éb’“l—Xw(‘%—)‘}_/w[O, %];—5)

(say JiJ.). Then, by (3.1), (3.2) and by (3.3) we get I,=<4 (4—+0) and J,<d
(0—+0). Moreover, it follows from the limit theorem of conditioned Brownian
motion (see, Shimura [3]) both I, and I, tend to positive numbers as 4—+0
and d—-0 respectively. Hence we have (3.5) from (3.6).

We can show (3.5) for the case n/2<f0<r in a similar way, so we omit it
here.
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§4. Proof of Theorem 1.

In this section K, K,, -~ will denote some positive constants. Note that
P(A})=P(A?) for 1<k<2n, because the Brownian motion has stationary incre-
ments. Then we have from Lemma 1

4.1 E(SE)=2%,P(AD) =2n(K,/n)=2K,<co.

Set Bp=Ap—\J%1A7, and denote by C} the event
k;;{wew,;_zw[i_z, J_*l]qw[f_—_l_, L] or
n n n'n
v 2 Lsnl L, 2
n ' n n’ n
Let F}(x) denote the conditional probability distribution function

e[t 2 e 0 2 e (5 Hsic)

Note that Bp=CpNA} and that C} is an event given in terms of Z,(s),
—oo<s<k/n. Then, making use of the independence and the stationarity of
the increments, we have

pp=pen(iT N Jarrop(vifo, 2~ Tz —x).

Then, as was shown in [1] (7.23), we conclude from (3.1), (3.2) and from (3.4)
the following :
1/n)t/2

G-
4.2) P(B;L)<2P(C;:)So’ xdFp(x)
for every k and j satisfying
(4.3) 1=<k<n with P(Bp)=2/n® and 6logn+1<;7<2n—Fk

(note P(B})=P(A})=2/n? for almost all n by Lemma 1).
Noting BN AR ;=CENAFNAL;, we have

(4 P(BINAR)ZP(CE [ —2, kzl]gzw[kgl,ﬂ&
Z,[k 1 k]éz[k k+1]&
o R CT,
g [R=1 ki1 [hdiml k4] o
"w[n’n]:_w[n’n]
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r AL ey (B (1) e (Y

Z,[H] 1 k+]]<y,[k+j,'k+?]l'—l+2]>

n n n
>p(or & vfg-n SR [ ] &
Y,[le__l -ki]g}_f [k k+] 1] & Y;J(k%—r]l'—l)_m}(%)g(]:l>1/z &

Y. [k k+j— l] v [k—l-] —1 k+]}&y (k+,];_1>~yw<£")

n n - n

- ]—1)1/2 & X,[k-f-]—l’ k+]]§z,’,,[k+], k+j—1 +2])
n n n n n

R Eer B ()l 44
arEH) (21"

(say L,-L,-L;). We apply the independence and the stationarity of the incre-
ments repeatedly to get the following estimate of L, :

IIA

@5 L>pep|d (x)P(yf[ ' 1]>_ &Yr(] 1) (] 1>uz&

o A e

F—1\2 ,[] 1 f]< /[i j—1 ]

& Yo n) ( ) &Y n n=}‘/wn’n+2)

Gin-1/n)1/2
>Pep),

aFHG((2p) x =17 P(Y o0, 115 -1 &

YL0,11=—1 & Y,’,,(l)gl)P(}_’,’,, 0, 2— %]g—Zn'”z).
By (3.1), (3.2) and by (3.3)
P(z;,[o, 2 71{]2——271‘”2);(11‘”2 (n—c0),

and by (3.4)
L,=L;=PY [0, 1]<—(G—D")<n"* for j=6logn+1.

Then it follows from (4.4), (4.5) and from Lemma 2 the following:
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(4.6)  P(BENARL)>K,

n iln-1/n)t/?2
P(Ck)gzj Y X dFp(x)—2n" for j=6logn+1.

7—1
Therefore, from (4.2) and (4.6) we have
4.7) P(AR | B> Ky(j—1) ' —n"!

for every k and ; satisfying (4.3) (see (7.24) in [1]).
Once we have (4.7), we can show in the same way to [1] p.115 the
following :

E(S%1S2=1)>K,logn for all n,

from which, together with (4.1), we conclude (2.1). This proves the theorem.

Concluding Remark. Suppose that u,=u, (=u). Then G(4, 6)=0 for every
4 and 0, because the processes Y and Y’ are coincident. So, in the case, we
note that the right hand side of (4.5) vanishes and that, as a result, we do
not have lim,.-E(S%,|S?=1)=co which would lead an contradictory assertion
MU, u)=@ a.s..
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