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MEANDERING POINTS OF TWO-DIMENSIONAL

BROWNIAN MOTION

BY MICHIO SHIMURA

§ 1. Introduction and the result.

Let Zw(t)=(Xw(t), Yw(t)), w^W, — oo<ί<co, be the two-dimensional standard
Brownian motion with Zw(0)=0 on a probability space (W, β, P). Let <U denote
the set of all unit vectors in R2. For every u in HJ we set a half-plane
H(u)={x^R2\u'X^0}, where ux denotes the inner product. For uλ and u2

in RJ we consider the random set of all two-sided meandering times of the
Brownian motion:

^iw(uu ι/2)={-cχD<ί<oo| 3/ι>0 such that Zw(s)e//(M 1)+Zw(0 for f—Λ<vs<f

& Zw{s)<=ΞH{u2)+Zw{t) for t<*s<t+h\.

In this paper we will prove the following theorem.

THEOREM 1. For every uλ and u2 in 'U with u1φu2, we have <3iiw(uu u2)—0
almost surely (a. s. for abbreviation).

Our problem arises from the following observation. By a result of Evans
[2] we have άim3ίw(uu n2)=l—π/2π—τr/2τr=0 a. s.. Here we note that, in
such a critical case, we do not know from the result whether the set is empty
or not (a.s.). Indeed, both cases may occur: Obviously 3iw{u, u)Φ0 a.s.;
3iw{u, —u)—0 a. s. from Dvoretzky, Erdδs and Kakutani [1] on the nonexis-
tence of points of increase (decrease) for the one-dimensional Brownian motion.
So, it may be interesting to see if the set is empty or not (a. s.) for u^u2.
By Theorem 1 we answer the problem. As will be shown in the following
sections, the proof of Theorem 1 in [1] still works to ours by some modification.

The paper is organized as follows. In § 2 we give preliminaries to our
proof of Theorem 1. We show in § 3 two lemmas which play key role in § 4,
where the proof of Theorem 1 is given.
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§ 2. Preliminaries.

We may take in Theorem 1 M X =(0, 1) and w2=(—smθ, cos#),
without loss of generality. We write Mw—<3ttw(uu u2). Besides the xy co-
ordinate system we set the xfyr one in which the y'-axis is directed toward
the vector u2. We put Zw{t)—{X'w{t)y Y'M)) in this system. Note that each of
the processes Xw(-), Yw(-)? X'w( ) and Y'w( ) is the one-dimensional standard
Brownian motion. For — oo<s<t<co we define

Ywls, f]=min{Yw(u)\s<u^t} and Ϋw[s, Q=m^x{Yw(u)\s<u^t}

(Y'wls, ί ] , Y'wίs, O> etc are defined in the same way).
We put

A={wt=W\*te=tO, 1] such that Yw[t-2, tjZY'w{t) & Y'Jf)<Y'Jίt, ί+2]}.

It is easy to see that Theorem 1 follows if we have P(Λ)=0. For n ^ l and
^2n we set

o k — l
2

&

Then A=Γ\n=i\Jk=iA%. Here we note a modification made in the definition of
the sets A and A% from those given in (5.5) and (5.6) in [1], Such a change
will be necessary to treat the case u^Φu^. Put

where 1W(A) is the indicator function on a set 4̂ (<=W). Since
for all n, we will prove as in [1]

^ EislisLir0 a s n—
in §4 to get Theorem 1.

§ 3. Two lemmas.

Before showing the lemmas we list some formulas which will be used often
later. Put

£ ) c for t>0 and

It is well-known that, for t>0 and

(3.1)
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((3.1) also holds by replacing the process Y by another one, e.g., the Y'). It
holds from the inequalities 1 — x<^exp(—x)^l for x^O the following:

(3.2)

and

( 9 \ i/2rξ/ r 2 \

ΊΪ) \Lι~^t)dx-{2πtyll2ξ f o r

Moreover

/ 2 \i/2f / r \ / 2 \ 1 / 2 / P \

(3.4) l-*,(β<(- ;r) L«xp(-^>x=(^-) exp(-l-) for

Let /(s)xs" α (s->c) denote

Firstly we show the following lemma.

LEMMA 1. We have PiA^xn*1 (n->oo).

Proof. Set Hn(dξ, dη)=P(Ywl0} l/n]<=d£ & Zίo[
Since the Brownian motion has independent and stationary increments, the fol-
lowing identity holds:

Therefore, together with the scaling relation Hn(dξ, dτj)=H\n1/2dξ, n1/2dη), we
conclude from (3.1), (3.2) and from (3.3) the following:

P ( Λ ΐ ) £ \ ° Γ Φ ί ( - ξ ) Φ 1 ( ~ ) H n ( d ξ d ) < Γ Γ
J - O o J -C5O

and

1 T$•„.,.

(note 0<\ \ \ξη\H\dζ, dη)<oo\ This proves the lemma.
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Let G(J, δ), 0 ^ Δ , δ, denote the probability

P(r;co, i ]^- i & r cDsα & r»[o, r^r^D-a & y

Next we show the following lemma.

LEMMA 2. There exists a positive constant K such that the following holds:

(3.5) G(Δ, δ)^KΔδ for every 0<Δ, δ^l.

Proof. Let us consider the case 0<#^τr/2. Take the point A where the
lines y — ~2 and y'— — \ cross each other. Note that the xr co-ordinate of A,
say a, is less than —1.73. Let B denote the point of intersection of the lines
y = — 4 and y'=l, and put by b its x co-ordinate. Take a disc D of diameter
1/2 contained in the region {z=(x, y)\x<b}Γ\{z=(x\ ^ / ) | α < x / < 0 } . Then, an
elementary geometric consideration, together with the independence and the
stationarity of increments of the Brownian motion, lead us to the following
estimate (see Figure 1 below):

Figure 1
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G{Δ, δ)>p(Y'w[θ, j]>-Λ & X'»[θ, y ] ^ α &

l)-3 & -3^Fω(l)S-2 &

Wi) r (i

Put min{ί>-x|(x, y)(^D}=b' (>0) and min{-2-3;|(x, j ) e ΰ ( = c , Then,
noting max{—3—>Ί(Λ:, 3))eZ)} = c—1/2, we have

(3.6) G(Δ, δ)>p(Σ'w[θ, j]>~Λ & X'w[θ, j]^a &

(say //). In terms of conditional probability

(say /i/a). Making use of the fact that Zw(t)=Zw(l/2-t)-Zw(l/2), -<χ><t<co,
is also a standard Brownian motion, we have

(say ΛΛ). Then, by (3.1), (3.2) and by (3.3) we get hxΔ (J^+0) and J.xδ
(δ->+0). Moreover, it follows from the limit theorem of conditioned Brownian
motion (see, Shimura [3]) both J2 and /3 tend to positive numbers as J->+0
and (5-^+0 respectively. Hence we have (3.5) from (3.6).

We can show (3.5) for the case π/2<θ<π in a similar way, so we omit it
here.
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§ 4. Proof of Theorem 1.

In this section Kίf K2, ••• will denote some positive constants. Note that
P(A%)=P(A?) for l<Lk<2n, because the Brownian motion has stationary incre-
ments. Then we have from Lemma 1

(4.1)

Set Bϊ=Aϊ—{JkjZ\Af, and denote by Cf the event

Let Fg(x) denote the conditional probability distribution function

!] * O-4
Note that B$=C%ΓΛA% and that C? is an event given in terms of Zw(s),
— co<is^k/n. Then, making use of the independence and the stationarity of
the increments, we have

Cj-l/7l)1/2

ΰCj-l/7l)1/2 foo

+ 1

o J(; -i/π)1

Then, as was shown in [1] (7.23), we conclude from (3.1), (3.2) and from (3.4)
the following:

(4.2)

for every k and j satisfying

(4.3) l£k<n with P(Bΐ)^2/n2 and

(note P(B?)=P(A?)^2/n2 for almost all n by Lemma 1).
Noting BϊΓΛAϊ+j=CtrΛAίniAJt+j, we have

(4.4) P(BtnAM^p(Cΐ & ϊ«{~2,
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Λk+j-1 k+jl γ,Vk+j 'fe+y-1 , O1\

p-i
H n '

vk_ k+j-ii vk+j-i
Laίn' n \-Lwl nn' n

A YΛk+j-ί k+jl Ak+j k+j-1

(say Li-Li-Li). We apply the independence and the stationarity of the incre-
ments repeatedly to get the following estimate of Li:

(4.5) L^PίCJttj'dί f M / ^ φ , - £ = ψ - * & Y'w(J^-)>(^~)m &

S>±\\sk)\ ClΓfι{X)Lτ[[— — I X, w — 1J jr \ L.wUJ) ^J = — J <•&
Jo \ \ 7 — 1 / / \

By (3.1), (3.2) and by (3.3)

P ( r φ , 2-^-]^-2n"1/2)xn-1/2 (n->oo),

and by (3.4)

L2=LZ=P(Yw[0, l ]<-(y-l) 1 / 2 )^n~ 3 for y

Then it follows from (4.4), (4.5) and from Lemma 2 the following:
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P(Cb) rovπ-i/TO1/2

(4.6) P(B%r\AZ+j)>K2

 ΓΓ'J xdFΐ(x)-2n-3 for j>6 log n + 1.
/ — 1 Jo

Therefore, from (4.2) and (4.6) we have

(4.7)

for every k and j satisfying (4.3) (see (7.24) in [1]).
Once we have (4.7), we can show in the same way to [1] p. 115 the

following:

E(S?n\S^l)>KJogn for all n,

from which, together with (4.1), we conclude (2.1). This proves the theorem.

Concluding Remark. Suppose that uλ=u2 (=«). Then G(J, δ)=0 for every
Δ and δ, because the processes Y and Yf are coincident. So, in the case, we
note that the right hand side of (4.5) vanishes and that, as a result, we do
not have limn_oJ£(S?n|S2^1)=cχ> which would lead an contradictory assertion
3lw(u, u)—0 a. s..
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