INSTABILITY OF SPHERES WITH DEFORMED RIEMANNIAN METRICS

By Shukichi Tanno

§ 1. Introduction.

Let (M, g) be a compact Riemannian manifold. Then (M, g) is said to be unstable, if the identity map id_M of (M, g) is unstable as a harmonic map; that is, the Jacobi operator J coming from the second variation of the energy functional at id_M has negative eigenvalues. The standard sphere (S^m, g_0) of constant curvature 1 is unstable for $m \ge 3$. Furthermore, unstable, simply connected compact (irreducible) symmetric spaces were determined (Smith [10], Nagano [5], Ohnita [7], Urakawa [17]).

In this note, as a class of homogeneous Riemannian manifolds which are not symmetric nor Einstein, we study $(S^m, g(t))$ with m=2n+1. Here g(t) is defined as follows: For m=2n+1, we have the Hopf fibration $\pi:(S^m,g_0)\to (CP^n,h_0)$, where (CP^n,h_0) denotes the complex projective n-space with the Fubini-Study metric of constant holomorphic sectional curvature 4. Let ξ be a vector field on S^m which is tangent to the fibers and of unit length. ξ is a Killing vector field with respect to g_0 and the 1-form η dual to ξ with respect to g_0 defines a canonical contact structure on S^m . Then a 1-parameter family of Riemannian metrics g(t) on S^m is defined by

(1.1)
$$g(t) = t^{-1}g_0 + t^{-1}(t^m - 1)\eta \otimes \eta$$

where $0 < t < \infty$ (Urakawa [16], Tanno [13]). With respect to these Riemannian metrics, the volume element is unchanged.

We prove the following.

THEOREM. For $m=2n+1 \ge 3$ and $t \in (t_0(m), \infty)$, $(S^m, g(t))$ is unstable, where $t_0(m)=[[(m^2-4)^{1/2}-1]/(m^2-5)]^{1/m}$ and $t_0(3)=0.67\cdots < t_0(m)<1$. For each eigenfunction f corresponding to the first eigenvalue m of the Laplacian of (S^m, g_0) ,

$$f\xi + \big[\{m-2t^m + \big[(2t^m-1)^2 + m^2 - 1\big]^{1/2}\}/2(m-1)\big] \nabla_{\mathtt{grad}\ f}\xi$$

is an eigen vector corresponding to the negative eigenvalue $\mu(t)$ (cf. (3.4)) of the Jacobi operator J(t).

Received March 12, 1987

§ 2. Preliminaries.

Let η be a canonical contact structure on S^m , $m=2n+1\geq 3$, and ξ be its dual with respect to $g=g_0$. In this section, we write g instead of g_0 for simplicity. Then (ϕ, ξ, η, g) is a Sasakian structure, where $\phi=-\nabla \xi$. The structure tensors satisfy the following relations:

$$\phi \xi = 0, \quad \eta \cdot \phi = 0, \quad \eta(\xi) = 1,$$

$$\phi \phi X = -X + \eta(X)\xi,$$

$$g(X, Y) = g(\phi X, \phi Y) + \eta(X)\eta(Y),$$

$$(\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X,$$

where X and Y are vector fields on S^m .

If m=4r+3, then we have Killing vector fields $\xi_{(\alpha)}$, $\alpha=1, 2, 3$, which are orthonormal and satisfy

$$\begin{split} & [\xi_{(\alpha)}, \, \xi_{(\beta)}] = 2\xi_{(\gamma)}, \\ & \phi_{(\alpha)}\xi_{(\beta)} = -\phi_{(\beta)}\xi_{(\alpha)} = \xi_{(\gamma)}, \\ & \phi_{(\alpha)}\phi_{(\beta)} - \xi_{(\alpha)} \otimes \eta_{(\beta)} = -\phi_{(\beta)}\phi_{(\alpha)} + \xi_{(\beta)} \otimes \eta_{(\alpha)} = \phi_{(\gamma)}, \end{split}$$

where (α, β, γ) is a cyclic permutation of (1, 2, 3), and $\phi_{(\alpha)}$ and $\eta_{(\alpha)}$ are defined analogously.

Let λ_k be the k-th eigenvalue of the Laplacian Δ acting on functions on (S^m, g) with multiplicity $\nu(k)$. Then

Spec
$$(S^m, g) = \{\lambda_k = k(m+k-1); k=0, 1, 2, \dots\}$$

 $\nu(0)=1$, $\nu(1)=m+1$ and $\nu(k)=_{m+k}C_k-_{m+k-2}C_{k-2}$ for $k\geq 2$. Let V_k denote the eigenspace corresponding to the eigenvalue λ_k . Then we have the orthogonal decomposition of V_k ;

$$V_{b} = V_{b-b} + V_{b-b-2} + \cdots + V_{b-b-2\lceil b/2 \rceil}$$

where $\lceil k/2 \rceil$ is the integral part of k/2, and for $\varphi \in V_{k,\,\theta}$

$$L_{\xi}L_{\xi}\varphi+(k-2p)^{2}\varphi=0$$

holds for $\theta=k-2p$, $0 \le p \le \lfloor k/2 \rfloor$ (Tanno [13], p. 182). Here L_{ξ} denotes the Lie derivation by ξ . Let $\varphi \in V_{k,0}$. Then $L_{\xi}L_{\xi}\varphi=0$ implies $L_{\xi}\varphi=0$ and φ is constant along each fiber of the Hopf fibration.

If m=3, then $V_{2,0}$ is 3-dimensional and V_1 is 4-dimensional. By $\{f_{(l)}\}$ we denote a base of V_1 or $V_{2,0}$ (cf. [15], p. 122).

PROPOSITION 2.1. The vector space of all Killing vector fields on (S^3, g) is

spanned by vector fields dual to

(2.1)
$$\eta_{(1)} = \eta, \quad \eta_{(2)}, \quad \eta_{(3)},$$

$$(2.2) 2f_{(l)}\eta + df_{(l)} \cdot \phi f_{(l)} \in V_{2,0}, l=1, 2, 3.$$

These 1-forms are coclosed eigen 1-forms corresponding to the eigenvalue 4 of the Laplacian.

The vector space of all conformal Killing vector fields on (S^3, g) is spanned by vector fields dual to (2.1), (2.2) and

(2.3)
$$f_{(l)}\eta + df_{(l)} \cdot \phi$$
 $f_{(l)} \in V_1$, $l=1, 2, 3, 4$.

These 1-forms in (2.3) are closed eigen 1-forms corresponding to the eigenvalue 3 of the Laplacian.

Proof. As for eigen 1-forms, see Lemma 2.5 and Proposition 3.1 in [15]. Here, we identified $\nabla_\xi df$ with $df \cdot \phi$ for $f \in V_{k,0}$. A direct method to see that 1-forms in (2.2) define Killing vector fields is to use $\phi = -\nabla \xi$ and the differential equation

$$\nabla_k \nabla_j \nabla_i f + 2 \nabla_k f g_{ij} + \nabla_j f g_{ik} + \nabla_i f g_{jk} = 0$$

satisfied by $f \in V_2$ (cf. Obata [6], Tanno [12]). To verify that 1-forms in (2.3) define conformal Killing vector fields, we use the fact that each f in V_1 satisfies $\nabla_i \nabla_j f = -fg_{ij}$.

Let $\mathfrak{X}M$ be the set of all smooth vector fields and Λ^1M the set of all smooth 1-forms on a smooth manifold M. By Q we denote the Ricci operator;

$$Q: \mathcal{X}M \to \mathcal{X}M \qquad (X=(X^j) \to QX=(R^i_jX^j)),$$

 $Q: \Lambda^1M \to \Lambda^1M \qquad (w=(w_k) \to Qw=(R^i_jw_k)),$

where (R_{jk}) denotes the Ricci tensor of a Riemannian manifold (M, g).

Let $J: \mathcal{X}M \to \mathcal{X}M$ be the Jacobi operator of the identity map as a harmonic map of (M, g) onto (M, g) (Smith [10]). By the natural correspondence between $\mathcal{X}M$ and Λ^1M , in the following we use $J = -\Delta - 2Q: \Lambda^1M \to \Lambda^1M$.

 $Q{=}2I$ holds on (S^3,g) , where I denotes the identity. If w is one of 1-forms in (2.1) and (2.2), then $Jw{=}0$ holds. If w is one of 1-forms in (2.3), then $Jw{=}-w$ holds. The index $\mathrm{Ind}(id)$ is equal to 4 and (2.3) gives a base for the space of eigen 1-forms corresponding to the negative eigenvalues of J. The nullity $\mathrm{Null}(id)$ is equal to 6 and (2.1) and (2.2) give a base for the nullity space of J. The decomposition in Proposition 2.1 is naturally related to the changing eigen 1-forms of J corresponding to the deformation (1.1) of the Riemannian metrics on S^3 . This situation is explained in Theorem 3.8 in the next section.

The following (i) \sim (v) are proved in [15];

(i) If $\Delta f + \lambda f = 0$ holds on (S^m, g) , then

$$\Delta(f\eta) = -(\lambda + 2m - 2)f\eta + 2df \cdot \phi,$$

$$\Delta(df \cdot \phi) = 2\lambda f\eta - (\lambda + 2)df \cdot \phi + 2\nabla_{\varepsilon}df.$$

- (ii) If w is $f\eta$ or $df \cdot \phi$, where $f \in V_1$ for (S^m, g) , then $L_{\xi}L_{\xi}w = -w$ holds.
- (iii) Let $f \in V_{2,0}$ for (S^m, g) . Then,

$$L_{\xi}L_{\xi}(f\eta)=L_{\xi}L_{\xi}(df\cdot\phi)=0.$$

(iv) For a function f on (S^m, g)

$$\phi^{rs}\nabla_r(f\eta_s) = (m-1)f,$$

$$\phi^{rs}\nabla_r(\phi_s^h\nabla_h f) = \Delta f - L_{\varepsilon}L_{\varepsilon}f.$$

- (v) On $(S^m, g(t))$ with (1.1) the inverse $(g(t)^{rs})$ of $(g(t)_{sj})$, the Christoffel's symbols $\Gamma(t)^i_{jk}$, the Ricci curvature tensor $(R^{(t)}_{jk})$ and the Laplacian $\Delta^{(t)}$ are given by
- (2.4) $g(t)^{rs} = tg^{rs} t(1 t^{-m})\xi^r \xi^s$
- (2.5) $\Gamma(t)_{jk}^{i} \Gamma_{jk}^{i} = (1 t^{m})(\phi_{j}^{i} \eta_{k} + \phi_{k}^{i} \eta_{j}),$
- (2.6) $R_{jk}^{(t)} = R_{jk} 2(t^m 1)g_{jk} + (t^m 1)(m + 1 + (m 1)t^m)\eta_j\eta_k,$
- (2.7) $\Delta^{(t)}w = t\Delta w t(1 t^{-m})L_{\varepsilon}L_{\varepsilon}w 2t(t^m 1)(\phi^{rs}\nabla_r w_s)\eta,$
- (2.8) $\Delta^{(t)} \eta = -2(m-1)t^{m+1} \eta,$
- (2.9) $\Delta^{(t)}\eta_{(\alpha)} = -\lceil 2(m-3)t + 4t^{1-m} \rceil \eta_{(\alpha)} \qquad \alpha = 2, 3,$

where $w \in \Lambda^1 S^m$.

§ 3. The Jacobi operator J(t).

LEMMA 3.1. The Ricci operator $Q^{(t)}$ on $(S^m, g(t))$ satisfies the following;

$$Q^{(t)}\eta = (m-1)t^{m+1}\eta$$
,
 $Q^{(t)}w = t(m+1-2t^m)w$,

for $w \in \Lambda^1 S^m$ such that $w(\xi) = 0$.

Proof. By (2.4) and (2.6) we obtain

(3.1)
$$R^{(t)} = t(m+1-2t^m) \delta_i^r + (m+1)t(t^m-1)\xi^r \eta_i,$$

from which proof is completed.

LEMMA 3.2. The Jacobi operator J(t) on $(S^m, g(t))$ is given by

(3.2)
$$f(t)w = -t\Delta w + t(1 - t^{-m})L_{\xi}L_{\xi}w + 2t(t^{m} - 1)(\phi^{rs}\nabla_{r}w_{s})\eta$$
$$-2t(m + 1 - 2t^{m})w - 2(m + 1)t(t^{m} - 1)w(\xi)\eta$$

for $w \in \Lambda^1 S^m$.

Proof. (3.2) follows from (2.7), (3.1) and the definition of J(t). q.e.d.

LEMMA 3.3. Let $f \in V_1$ for (S^m, g) and put

$$(3.3) w(t) = f \eta + a(t) df \cdot \phi,$$

where

$$a(t) = {m-2t^m + [(2t^m-1)^2 + m^2 - 1]^{1/2}}/{2(m-1)t^m}$$
.

Then, $J(t)w(t) = \mu(t)w(t)$ holds on $(S^m, g(t))$, where

(3.4)
$$\mu(t) = 2t^{m+1} + t^{1-m} - t - t \lceil (2t^m - 1)^2 + m^2 - 1 \rceil^{1/2}.$$

Proof. $J(t)w(t) = \mu(t)w(t)$ is verified by direct calculation, using (3.2), $\nabla_j \nabla_i f = -fg_{ij}$, and relations (i), (ii) and (iv) in § 2. q. e. d.

LEMMA 3.4. With respect to $\mu(t)$ of (3.4), $\mu(t) < 0$ holds for $t \in (t_0(m), \infty)$, where $t_0(m)$ satisfies

$$t_0(m)^m = \lceil (m^2 - 4)^{1/2} - 1 \rceil / (m^2 - 5)$$

and $t_0(3) < t_0(m) < 1$. For example, $t_0(3) = 0.676 \cdots$, $t_0(5) = 0.708 \cdots$, $t_0(7) = 0.746 \cdots$, etc.

Proof. The solution $t_0(m)$ of $\mu(t)=0$ is obtained by calculation. For 1 < t, $\mu(t) < 0$ is verified by taking the squares of the both sides of

$$2t^{m+1}+t^{1-m}-t< t\lceil (2t^m-1)^2+m^2-1\rceil^{1/2}$$
.

LEMMA 3.5. Let $f \in V_{2,0}$ for (S^m, g) and put

$$(3.5) w(t) = 2f \eta + t^{-m} df \cdot \phi.$$

Then, J(t)w(t)=0 holds on $(S^m, g(t))$. Furthermore, w(t) is coclosed and w(t) defines a Killing vector field.

Proof. J(t)w(t)=0 is verified by (3.2) and relations (i), (iii) and (iv) in § 2. Coclosedness of w(t) is verified by (2.4), (2.5) and $\xi f=0$. To verify that w(t) defines a Killing vector field, it suffices to apply the classical integral formula:

$$\langle Jw, w \rangle + \langle \delta w, \delta w \rangle = (1/2) \langle L_X g, L_X g \rangle$$

where \langle , \rangle denotes the global inner product and X denotes the vector field corresponding to w.

LEMMA 3.6. η on $(S^m, g(t))$ or $\eta_{(\alpha)}$ on $(S^{4r+3}, g(t))$ satisfies the following;

- (i) $J(t)\eta = 0$,
- (ii) $J(t)\eta_{(\alpha)}=4t(t^m-2+t^{-m})\eta_{(\alpha)}$ $\alpha=2, 3.$

Proof. (i) corresponds to the fact that ξ is a Killing vector field with respect to g(t) for any $t \in (0, \infty)$. To verify (ii), we apply (2.9) and Lemma 3.1 to $J(t)\eta_{(\alpha)}$.

Summarizing the above we obtain the following.

THEOREM 3.7. $(S^m, g(t)), m=2n+1 \ge 3$, is unstable for $t \in (t_0(m), \infty)$, where $t_0(m)^m = \lceil (m^2-4)^2-1 \rceil/(m^2-5)$ and

$$t_0(3) = 0.67 \cdots < t_0(m) < 1$$
.

1-forms given in (3.3) are eigen forms corresponding to the negative eigenvalue $\mu(t)$ of J(t).

The contravariant from of (3.3) is obtained by using (2.4); the result is given in the Theorem in the introduction.

If m=3, by the deformation $g \to g(t)$, the eigen forms of J(0) given in Proposition 2.1 are changing as follows;

THEOREM 3.8. On S^3 , as $g \rightarrow g(t)$

- (i) η remains to be an eigen form corresponding to the eigenvalue 0 of J(t),
- (ii) $\eta_{(\alpha)}(\alpha=2, 3)$ are eigen forms corresponding to the eigenvalue $4t(t^3-2+t^{-3})$ of J(t), which vanishes only at t=1,
- (iii) $2f\eta + t^{-3}df \cdot \phi$, $f \in V_{2,0}$, is an eigen form corresponding to the eigenvalue 0 of J(t),
- (iv) $4t^3f\eta + \{3-2t^3+[(2t^3-1)^2+8]^{1/2}\}df \cdot \phi$, $f \in V_1$, is an eigen 1-form corresponding to the eigenvalue $2t^4+t^{-2}-t-t[(2t^3-1)^2+8]^{1/2}$ of J(t).

COROLLARY 3.9. Null(id)=6 for (S^3 , g), Null(id)=4 for (S^3 , g(t)) with t near 1 and $t \neq 1$, and Null(id) ≥ 8 for (S^3 , $g(t_0(3))$).

Remark. To understand the situation of the negative eigenvalue of J(t), it may be helpful to know the range of the sectional curvature $K_{(t)}(X,Y)$ of $(S^m,g(t))$. The range is given by the following;

(3.6)
$$t^{m+1} \leq K_{(t)}(X, Y) \leq t(4-3t^m)$$
 for $t < 1$

$$(3.7) t(4-3t^m) \le K_{(t)}(X, Y) \le t^{m+1} \text{for } t > 1.$$

In fact, with respect to a *D*-homothetic deformation $g \to g^*(\alpha) = \alpha g + (\alpha^2 - \alpha)$ $\eta \otimes \eta$, the sectional curvature $K^*_{(\alpha)}(X, Y)$ satisfies

$$1 \le K^*_{(\alpha)}(X, Y) \le H$$
 for $\alpha < 1$,
 $H \le K^*_{(\alpha)}(X, Y) \le 1$ for $\alpha > 1$,

where $H=(4-3\alpha)/\alpha$ (cf. Lemma 6.4, (12.1) of [11]). We put $\alpha=t^m$. By a homothetic change $g^*(\alpha) \to t^{-m-1}g^*(t^m)$, we get g(t). Then, the inequalities (3.6) and (3.7) are verified.

For example, if m=3, then $(S^3, g(t_0(3)))$ is δ -pinched, where $\delta=0.1005\cdots$.

Remark. As for stability or instability of (harmonic mappings of) various Riemannian manifolds, see Howard [1], Howard and Wei [2], Leung [3], [4], Nagano [5], Ohnita [7], Okayasu [8], Pan [9], Urakawa [17], [18], Xin [19], and so on.

REFERENCES

- [1] R. Howard, The nonexistence of stable submanifolds, varifolds, and harmonic maps in sufficiently pinched simply connected Riemannian manifolds, Mich. Math. Journ., 32 (1985), 321-334.
- [2] R. HOWARD AND S. W. WEI, Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc., 294 (1986), 319-331.
- [3] P.F. Leung, On the stability of harmonic maps, Lect. Notes Math., 949, Springer-Verlag, 1982, 122-129.
- [4] P.F. LEUNG, A note on stable harmonic maps, Journ. London Math. Soc., 29 (1984), 380-384.
- [5] T. NAGANO, Stability of harmonic maps between symmetric spaces, Lect. Notes Math., 949, Springer-Verlag, 1982, 130-137.
- [6] M. OBATA, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Sem. Diff. Geom., Kyoto, 1965, 101-114.
- [7] Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math. Journ., 38 (1986), 259-267.
- [8] T. OKAYASU, Prinching and nonexistence of stable harmonic maps, preprint.
- [9] Y. Pan, Some nonexistence theorem on stable harmonic mappings, Chinese Ann. Math., 3 (1982), 515-518.
- [10] R.T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc., 47 (1975), 229-236.
- [11] S. TANNO, The topology of contact Riemannian manifolds, Illinois Journ. Math., 12 (1968), 700-717.
- [12] S. Tanno, Some differential equations on Riemannian manifolds, Journ. Math. Soc. Japan, 30 (1978), 509-531.
- [13] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tohoku Math. Journ., 31 (1979), 179-185.
- [14] S. TANNO, Some metrics on a (4r+3)-sphere and spectra, Tsukuba Journ. Math., 4 (1980), 99-105.
- [15] S. Tanno, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian manifolds (Kaigai Pub.), Tokyo, 1983, 115-128.
- [16] H. URAKAWA, On the least positive eigenvalue of the Laplacian for compact

- group manifolds, Journ. Math. Soc. Japan, 31 (1979), 209-226.
- [17] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Comp. Math., 59 (1986), 57-71.
- [18] H. Urakawa, Stability of harmonic maps and eigenvalues of the Laplacian, to appear in Trans. Amer. Math. Soc.
- [19] Y.L. XIN, Some results on stable harmonic maps, Duke Math. Journ., 47 (1980), 609-613.

DEPARTMENT OF MATHEMATICS
TOKYO INSTITUTE OF TECHNOLOGY