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INSTABILITY OF SPHERES WITH DEFORMED
RIEMANNIAN METRICS

By SHUKICHI TANNO

§1. Introduction.

Let (M, g) be a compact Riemannian manifold. Then (M, g) is said to be
unstable, if the identity map id, of (M, g) is unstable as a harmonic map;
that is, the Jacobi operator J coming from the second variation of the energy
functional at idy has negative eigenvalues. The standard sphere (S™, g,) of
constant curvature 1 is unstable for m=3. Furthermore, unstable, simply con-
nected compact (irreducible) symmetric spaces were determined (Smith [10],
Nagano [5], Ohnita [7], Urakawa [17]).

In this note, as a class of homogeneous Riemannian manifolds which are
not symmetric nor Einstein, we study (S™, g(t)) with m=2n+1. Here g(¢) is
defined as follows: For m=2n-+41, we have the Hopf fibration =: (S™, g, —
(CP™, h,), where (CP™, h,) denotes the complex projective n-space with the
Fubini-Study metric of constant holomorphic sectional curvature 4. Let & be a
vector field on S™ which is tangent to the fibers and of unit length. & is a
Killing vector field with respect to g, and the 1-form % dual to & with respect
to g, defines a canonical contact structure on S™. Then a l-parameter family
of Riemannian metrics g(f) on S™ is defined by

(L1 g)=t"'g+t7t" =1 X7

where 0<t<oo(Urakawa [16], Tanno [13]). With respect to these Riemannian
metrics, the volume element is unchanged.
We prove the following.

THEOREM. For m=2n+1=3 and t&(t,(m), o), (S™, g(t)) s unstable, where
tom)=[[(m2—4)2—17/(m*—5)1"™ and t,(3)=0.67---<t,(m)<1. For each eigenfunc-
tion f corresponding to the first eigenvalue m of the Laplacian of (S™, g),

fE+U{m—=2t"+[(@2t" —1)*+m* =112} /2(m—1) [V graa r€

is an eigen vector corresponding to the negative eigenvalue p(t) (cf. (3.4)) of the
Jacobi operator J(t).
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§2. Preliminaries.

Let n be a canonical contact structure on S™, m=2n+1=3, and & be its
dual with respect to g=g, In this section, we write g instead of g, for
simplicity. Then (¢, &, 5, g) is a Sasakian structure, where ¢=-—VE The
structure tensors satisfy the following relations:

$6=0, 7-¢=0, @=L,
PP X=—X+n(X)¥,

g(X, V)=g(@X, ¢1)+9(X)n(Y),
(Vxd)¥)=g(X, Y)é—n()X,

where X and Y are vector fields on S™.
If m=4»+3, then we have Killing vector fields &.,, a=1, 2, 3, which are
orthonormal and satisfy

e, 5(ﬂ>]:25<r> ’
¢<a)5(ﬁ):‘¢(ﬁ)§(a):€(r) »
95— @Npr=—9pPr+EH QN =0,

where (a, B, 7) is a cyclic permutation of (1, 2, 3), and @, and 7, are defined
analogously.

Let 1, be the A-th eigenvalue of the Laplacian A acting on functions on
(S™, g) with multiplicity v(k). Then

Spec(S™, g)={A,=k(m+k—1); k=0,1,2, -}

v(0)=1, v(1)=m~+1 and v(k)=p+:Cr—m+r-2Cr-s for £=2. Let V, denote the
eigenspace corresponding to the eigenvalue 4,. Then we have the orthogonal
decomposition of V' ;

V=Vt Vi st o +Vi boatera,
where [k/2] is the integral part of £/2, and for oV,
LeLep+(k—2pyp=0

holds for §=+k—2p, 0=p=<[k/2](Tanno [13], p. 182). Here L. denotes the Lie
derivation by & Let ¢V, Then L:L:=0 implies Lgp=0 and ¢ is con-
stant along each fiber of the Hopf fibration.

If m=3, then V, , is 3-dimensional and V, is 4-dimensional. By {f«,} we
denote a base of V, or V, (cf. [15], p. 122).

PROPOSITION 2.1. The vector space of all Killing vector fields on (S® g) is
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spanned by vector fields dual to

2.1) Nw=7 Mo Naon
2.2) 2fwn+dfawr-d  fwEVa, =1, 2, 3.

These 1-forms are coclosed eigen 1-forms corresponding to the eigenvalue 4 of the

Laplacian.
The vector space of all conformal Killing vector fields on (S°, g) is spanned

by vector fields dual to (2.1), (2.2) and
(2'3) f(l)’?+df<l)'¢ f(l)EVly l=1) 21 3’ 4'

These 1-forms in (2.3) are closed eigen 1-forms corresponding to the eigenvalue 3
of the Laplacian.

Proof. As for eigen 1-forms, see Lemma 2.5 and Proposition 3.1 in [15].
Here, we identified V¢df with df-¢ for feV,, A direct method to see that
1-forms in (2.2) define Killing vector fields is to use ¢=—V¢& and the differential
equation

VeV V42V f 8+, fgin+V. f25,=0

satisfied by feV,(cf. Obata [6], Tanno [12]). To verify that 1-forms in (2.3)
define conformal Killing vector fields, we use the fact that each f in V, satisfies
VN, f=—fgu g.e.d.

Let M be the set of all smooth vector fields and A'M the set of all
smooth 1-forms on a smooth manifold M. By Q we denote the Ricci operator;

Q: xXM—-xM (X=(X?) - QX=(R}X7)),
Q: AIM'—) AIM (w'—-—_(wk)—’Qw:(wak))r

where (R,;) denotes the Ricci tensor of a Riemannian manifold (M, g).

Let J: M — XM be the Jacobi operator of the identity map as a harmonic
map of (M, g) onto (M, g)(Smith [10]). By the natural correspondence between
XM and A'M, in the following we use J=—A—2Q: A*M — A*M.

Q=27 holds on (S? g), where I denotes the identity. If w is one of 1-forms
in (2.1) and (2.2), then Jw=0 holds. If w is one of 1-forms in (2.3), then Jw=
—w holds. The index Ind(id) is equal to 4 and (2.3) gives a base for the
space of eigen l-forms corresponding to the negative eigenvalues of J. The
nullity Null(Gd) is equal to 6 and (2.1) and (2.2) give a base for the nullity
space of J. The decomposition in Proposition 2.1 is naturally related to the
changing eigen 1-forms of J corresponding to the deformation (1.1) of the
Riemannian metrics on S% This situation is explained in Theorem 3.8 in the
next section.

The following (i)~(v) are proved in [15];
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(i) If Af+2f=0 holds on (S™, g), then
A(f)=—@A+2m—2)fn+2df - ¢,
Adf - §)=24fn—(A+2)df - ¢+2V.df .

(ii) If wis fy or df-¢, where feV, for (S™, g), then L;L.w=—w holds.
(iii) Let feV,, for (S™, g). Then,

LeLe(fn)=LeLe(df -$)=0.
(iv) For a function f on (S™, g)

V([ =(m—1)f,

O NG Vnf)=Af—LeLef.

(v) On (S™, g(t)) with (1.1) the inverse (g(t)™*) of (g(t);;), the Christoffel’s
symbols I'(¢)%,, the Ricci curvature tensor (R{) and the Laplacian A’ are
given by

(2.4) gty =tgr—t(l—t-™)§"¢,

(2.5) )= 5 =1—t™)(@in:+47,),

(2.6) RP=R;,—2(t™—1) g+t —1)(m+1+(m—1)t"n,1m,,
@.7) ADw=tAw—t(1—t"™) Le Lew—2t(t™ —1)(¢"V,w,)7,
(2.8) A®Vp=—2(m—1)t"*y,

2.9) ADY gy =—[2m—Nt+4" ™10y @=2, 3,

where we AS™.

§3. The Jacobi operator J(t).
LEMMA 3.1. The Ricci operator Q% on (S™, g(t)) satisfies the following ;
QPy=(m—1t"*"y,
QPuw=tim+1—2t")w,
for we A'S™ such that w(€)=0.
Proof. By (2.4) and (2.6) we obtain
3.1 R®i=t(m+1—-2t™)d+(m+1)tt™— 1§,

from which proof is completed.
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LEMMA 3.2. The Jacobi operator J(t) on (S™, g(t)) is gwen by
(3.2) JOw=—tAw—+t(1—t"™) L Lew+2t¢™—1)(¢"V,w4)n
—2t(m~+1—-2t")w—2(m+ Dt —w(&)7
for we A*S™.
Proof. (3.2) follows from (2.7), (3.1) and the definition of J(). q.e.d.

LEMMA 3.3. Let f€V, for (S™, g) and put
(3.3 wt)=fn+al)df-¢,

where
at)y={m—2"™+[Q2t™—1)+m>*—17"2} /2(m—1)t™.

Then, Jw(t)=p@)w() holds on (S™, g(t)), where
(3.4) p@)=2tm+ = — g [(2t™ — 1) F-mE—1]12,

Proof. Jtw(t)=p)w(t) is verified by direct calculation, using (3.2), V,V,f
=—fg,, and relations (i), (ii) and (iv) in §2. g.e.d.

LEMMA 3.4. With respect to p(t) of (3.4), p)<0 holds for te(t(m), ),
where t(m) satisfies
to(m)™=[(m*—4)"*—~1]/(m*—5)

and t\(3)<ty(m)<1l. For example, t,(3)=0.676---, 1,(5)=0.708---, #,(7)=0.746---, etc.

Proof. The solution t,(m) of u(t)=0 is obtained by calculation. For 1<z,
p®)<0 is verified by taking the squares of the both sides of

2™t L2 — 1) mP— 1],
LEMMA 3.5. Let f€V,, for (S™, g) and put
3.5) wt)=2fp+t""df-¢.

Then, J)w@)=0 holds on (S™, g(t)). Furthermore, w(t) is coclosed and w(t)
defines a Killing vector field.

Proof. Jityw(t)=0 is verified by (3.2) and relations (i), (iii) and (iv) in §2.
Coclosedness of w(t) is verified by (2.4), (2.5) and &f=0. To verify that w()
defines a Killing vector field, it suffices to apply the classical integral formula:

Jw, wy+<0w, dwr=(1/2<Lxg, Lxg>,

where { , > denotes the global inner product and X denotes the vector field
corresponding to w. q.e.d.
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LEMMA 3.6. 75 on (S™, g@) or N on (S¥7+3, g(t)) satisfies the following ;
(i) J#)n=0,
(i) JONo=4t" =24+  a=2,3.
Proof. (i) corresponds to the fact that & is a Killing vector field with

respect to g(¢) for any t=(0, o). To verify (ii), we apply (2.9) and Lemma 3.1
to J{)9car- q.e.d.

Summarizing the above we obtain the following.

THEOREM 3.7. (S™, g(t)), m=2n+1=3, is unstable for t<(t(m), ), where
to(m)™=[(m*—4)*~1]/(m*—5) and

10(3)=0.67--- <t,(m)<1.

1-forms given in (3.3) are eigen forms corresponding to the negative eigenvalue

() of J@).

The contravariant from of (3.3) is obtained by using (2.4); the result is
given in the Theorem in the introduction.

If m=3, by the deformation g— g(¢), the eigen forms of J(0) given in
Proposition 2.1 are changing as follows;

THEOREM 3.8. On S3, as g— g(t)

(1) % remains to be an eigen form corresponding to the eigenvalue 0 of J(t),

(i1) pr(a=2, 3) are eigen forms corresponding to the ergenvalue 41(t*—2+
t7%) of J(t), which vanishes only at t=1,

(iii) 2fn4t=df -, fEV,,o, is an eigen form corresponding to the eigenvalue
0 of J@),

(iv) 4tfp+{3—2t34[(2t°—1)*4-81'*}df - ¢, f€Vy, 1s an eigen 1-form cor-
responding to the eigenvalue 2t*-+t*—t—t[(2t*°—1)*+81"% of J(t).

COROLLARY 3.9. Null(1d)=6 for (S° g), Null(id)=4 for (S? g(t)) with t
near 1 and t+1, and Null(i1d)=8 for (S*, g(t,(3))).

Remark. To understand the situation of the negative eigenvalue of J(¢), it
may be helpful to know the range of the sectional curvature K,(X, Y) of
(S™, g@#)). The range is given by the following;

(3.6) "< KX, YV)StH(4—3t™) for t<1
3.7 4=3t" <KX, V)=tm for t>1.

In fact, with respect to a D-homothetic deformation g— g*(a)=ag+(a*—a)
7@ n, the sectional curvature K¥,(X, V) satisfies
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12K, (X, Y)SH  for a<l,
HZK%H,(X, V)1 for a>1,

where H=(4—3a)/a(cf. Lemma 6.4, (12.1) of [11]). We put a=t™. By a homo-
thetic change g*(a)—t ™ 'g*(t™), we get g(t). Then, the inequalities (3.6) and
(3.7) are verified.

For example, if m=3, then (S?, g(t,(3)) is d-pinched, where §=0.1005---.

Remark. As for stability or instability of (harmonic mappings of) various
Riemannian manifolds, see Howard [1], Howard and Wei [2], Leung [3], [4],
Nagano [5], Ohnita [7], Okayasu [8], Pan [9], Urakawa [17], [18], Xin [19],
and so on.
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