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INSTABILITY OF SPHERES WITH DEFORMED

RIEMANNIAN METRICS

BY SHUKICHI TANNO

§ 1. Introduction.

Let (M, g) be a compact Riemannian manifold. Then (M, g) is said to be
unstable, if the identity map idM of (M, g) is unstable as a harmonic map
that is, the Jacobi operator J coming from the second variation of the energy-
functional at idjff has negative eigenvalues. The standard sphere (Sm, g0) of
constant curvature 1 is unstable for m^3. Furthermore, unstable, simply con-
nected compact (irreducible) symmetric spaces were determined (Smith [10],
Nagano [5], Ohnita [7], Urakawa [17]).

In this note, as a class of homogeneous Riemannian manifolds which are
not symmetric nor Einstein, we study (Sm, g(t)) with m=2n-\-l. Here g(t) is
defined as follows: For m=2n-{-l, we have the Hopf fibration π: (Sm, gQ) -»
(CPn, ft0), where {CPn, h0) denotes the complex projective n-space with the
Fubini-Study metric of constant holomorphic sectional curvature 4. Let ξ be a
vector field on Sm which is tangent to the fibers and of unit length, ξ is a
Killing vector field with respect to g0 and the 1-form η dual to ξ with respect
to g0 defines a canonical contact structure on Sm. Then a 1-parameter family
of Riemannian metrics g(t) on Sm is defined by

(1.1) g(t)=r1g0+r\tm-i)η®η

where 0<ί<oo (Urakawa [16], Tanno [13]). With respect to these Riemannian
metrics, the volume element is unchanged.

We prove the following.

THEOREM. For m=2n+1^3 and tG(tQ(m)f oo), (5m, g(t)) is unstable, where
ί o (m)=[[(m 8 -4) 1 / 8 - l ]/(m 8 -5)] 1 / m and ίo(3)=O.67 <ί o (w)<l. For each eigenfunc-
tion f corresponding to the first eigenvalue m of the Laplacian of (Sm, g0),

is an eigen vector corresponding to the negative eigenvalue μ(t) (cf. (3.4)) of the
Jacobi operator J(t).
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§ 2. Preliminaries.

Let η be a canonical contact structure on Sm, m=2n-{-1^3, and ξ be its
dual with respect to g^go. In this section, we write g instead of g0 for
simplicity. Then (φ, ξ, η, g) is a Sasakian structure, where φ——lξ. The
structure tensors satisfy the following relations:

g{X, Y)=g(φX,

where X and Y are vector fields on Sm.
If m = 4 r + 3 , then we have Killing vector fields £ ( α ) , α = l , 2, 3, which are

orthonormal and satisfy

where (α, j8, 7) is a cyclic permutation of (1, 2, 3), and 0C α ) and ηCa) are defined
analogously.

Let λk be the &-th eigenvalue of the Laplacian Δ acting on functions on
(Sm, g) with multiplicity v(ŷ ). Then

Spec(S™, g)={λk = k(m+k-l); k=0, 1, 2, •••}

v(0)=l, p( l )=m+l and v(k)=m+kCk-m+k-2Ck-2 for 6^2. Let 7 A denote the
eigenspace corresponding to the eigenvalue λk. Then we have the orthogonal
decomposition of V k

where [k/Z] is the integral part of k/2, and for

holds for θ = k-2p, 0 ^ ^ [ ^ / 2 ] ( T a n n o [13], p. 182). Here Lξ denotes the Lie
derivation by ξ. Let φ^Vk>Q. Then LξLξψ—Q implies Lξφ=0 and φ is con-
stant along each fiber of the Hopf fibration.

If m=3, then F2,o is 3-dimensional and Vx is 4-dimensional. By {/α)} we
denote a base of V1 or F2>0(cf. [15], p. 122).

PROPOSITION 2.1. The vector space of all Killing vector fields on (S3, g) is
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spanned by vector fields dual to

(2.1) VCΌ=ZV> 7C2)» ^(8),

(2.2) 2f«>η+df«yφ / ( O e 7 M , /=1, 2, 3.

1-forms are coclosed eigen 1-forms corresponding to the eigenvalue 4 0/

vector space of all conformal Killing vector fields on (S3, g) is spanned
by vector fields dual to (2.1), (2.2) and

(2.3) fωη+dfayφ f«^Vu /=1, 2, 3, 4.

l-forms in (2.3) αr# closed eigen 1-forms corresponding to the eigenvalue 3
of the Laplacian.

Proof. As for eigen l-forms, see Lemma 2.5 and Proposition 3.1 in [15].
Here, we identified lζdf with df φ for /eV Λ t 0 . A direct method to see that
l-forms in (2.2) define Killing vector fields is to use φ=—lξ and the differential
equation

satisfied by /e7 2 (cf . Obata [6], Tanno [12]). To verify that l-forms in (2.3)
define conformal Killing vector fields, we use the fact that each / in Vλ satisfies

Let 1 M be the set of all smooth vector fields and A1M the set of all
smooth l-forms on a smooth manifold M. By Q we denote the Ricci operator

Q : 3CM->3CM (X=(Xj) -> QX=(R)XS)),

Q : AxM-> ΛXM (w

where (RJk) denotes the Ricci tensor of a Riemannian manifold (M, g).
Let / : DCM-^ DCM be the Jacobi operator of the identity map as a harmonic

map of (M, g) onto (M, g) (Smith [10]). By the natural correspondence between
3CM and Λ1M, in the following we use J=-A-2Q: ΛλM-^ ΛXM.

Q—2I holds on (53, g), where / denotes the identity. If w is one of l-forms
in (2.1) and (2.2), then Jw=0 holds. If w is one of l-forms in (2.3), then Jw—
—w holds. The index Ind(zd) is equal to 4 and (2.3) gives a base for the
space of eigen l-forms corresponding to the negative eigenvalues of /. The
nullity Nulled) is equal to 6 and (2.1) and (2.2) give a base for the nullity
space of /. The decomposition in Proposition 2.1 is naturally related to the
changing eigen l-forms of / corresponding to the deformation (1.1) of the
Riemannian metrics on S\ This situation is explained in Theorem 3.8 in the
next section.

The following (i)~(v) are proved in [15]
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( i ) If Af+λf=0 holds on (Sm, g), then

Δ(fη)=-(i+2m-2)fη+2df φ,

A(df φ)=2λfη-(λ+2)df φ+2Vξdf.

(ii) If w is fη or df-φ, where / e V Ί for (5 m , g), then LξLζw — — w holds.
(iii) Let / G F M for (Sm, g). Then,

(iv) For a function / on (Sm,

(v) On (Sm, g(t)) with (1.1) the inverse (g(t)rs) of (g(ί).i), the Christoffel's
symbols Γ(t))k, the Ricci curvature tensor (R$) and the Laplacian Δ c o are
given by

(2.4) g(t)rs=tgrs-ta-rm)ξrξs,

(2.5)

(2.6)

(2.7)

(2.8)

(2.9) Δ c ί ) ) 7 c « ) - - [ 2 ( m - 3 ) ί + 4 ί 1 - ] ^ ( α ) α=2, 3,

where

§ 3. The Jacobi operator J{t).

LEMMA 3.1. The Ricci operator Q ( ί ) on (Sm, g(t)) satisfies the following;

for wtΞΛ'S171 such that w(ξ)=Q.

Proof. By (2.4) and (2.6) we obtain

(3.1) Λ c t ) ΐ = ί ( m + l - 2

from which proof is completed.
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LEMMA 3.2. The Jacobi operator ]{t) on (Sm, g(f)) is given by

(3.2) J(t)w = -tAw+ta-t-m)LξLξw+2t(tm-l)(φrsVrws)η

-2t(m+l-2tm)w-2(m+l)t(im-l)w(ξ)r)

for

Proof. (3.2) follows from (2.7), (3.1) and the definition of J{t). q.e.d.

LEMMA 3.3. Let f^Vx for (Sm, g) and put

(3.3) w(t)=fη + a(t)df-φ,

where

Then, J(f)w(t)=μ(t)w(t) holds on (Sm, g{t)), where

(3.4)

Proof. J(t)w(t)=μ(t)w(t) is verified by direct calculation, using (3.2), V/7t/
= —fgιj, and relations (i), (ii) and (iv) in §2. q.e.d.

LEMMA 3.4. With respect to μ(t) of (3.4), μ(t)<0 holds for fe(fo(m), oo),
where to(m) satisfies

and to@)<to(m)<l. For example, fo(3)=0.676 , ίo(5)=0.708 , ίo(7)=O.746 , etc.

Proof. The solution to(m) of μ(f)=0 is obtained by calculation. For l<t,
μ(t)<0 is verified by taking the squares of the both sides of

LEMMA 3.5. Let / G F 2 I 0 for (Sm, g) and put

(3.5) w(t)=2fη+fmdf'φ.

Then, J(t)w(t)=0 holds on (Sm, g(t)). Furthermore, w{t) is coclosed and w{t)
defines a Killing vector field.

Proof. J(t)w(f)=Q is verified by (3.2) and relations (i), (iii) and (iv) in §2.
Coclosedness of w(t) is verified by (2.4), (2.5) and £/=0. To verify that w(f)
defines a Killing vector field, it suffices to apply the classical integral formula:

<Jw, wy+<δw, δw>=(X/2KLxg, Lxgy,

where < , > denotes the global inner product and X denotes the vector field
corresponding to w. q.e.d.
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LEMMA 3.6. η on (Sm, g(t)) or ηia) on (S4 r + 3, g(t)) satisfies the following;

( i ) /(f)7=0,

(ϋ) /(0)?cα)=4ί(r-2+r m )) ? C α ) α = 2 , 3 .

Proof. ( i ) corresponds to the fact that ξ is a Killing vector field with
respect to g(t) for any ίe(0, oo). To verify (ii), we apply (2.9) and Lemma 3.1
to J{t)ηia> q.e.d.

Summarizing the above we obtain the following.

THEOREM 3.7. (Sm, g{t)), m = 2 n + 1 ^ 3 , is unstable for ίe(ίo(m), oo), i ^ π ?
to(m)m=l(m2-4)2-U/(m2-5) and

ίo(3)=0.67 <ίo(m)<l.

I-forms given in (3.3) αr£ β*ggn /orms corresponding to the negative eigenvalue
μ(f) of J(t).

The contra variant from of (3.3) is obtained by using (2.4); the result is
given in the Theorem in the introduction.

If m=3, by the deformation g—>g(t), the eigen forms of /(0) given in
Proposition 2.1 are changing as follows;

THEOREM 3.8. On S\ as g-> g(t)

( i ) η remains to be an eigen form corresponding to the eigenvalue 0 of J(t),
(ii) 27Cα)(α=2, 3) are eigen forms corresponding to the eigenvalue 4ί(ίs—2+

*~a) of J(t), which vanishes only at ί = l ,
(iii) 2fy]-\-t~3df-φ, / e y 2 i 0 , is an eigen form corresponding to the eigenvalue

0 of J(t),
(iv) 4J3fη + {3-2t3+l(2ts-l)2+8~]1/2}df φ, ft=Vlf ts an eigen l-form cor-

responding to the eigenvalue 2 ί 4 + ί " 2 - ί ~ ί [ ( 2 ί 8 - l ) 2 + 8 ] 1 / 2 of J(t).

COROLLARY 3.9. Null(td)=6 for (S3, g), Null(id)=4 for {S\ g(t)) with t
near 1 and tφl, and Null(id)^8 for (S3, g(ίo(3))).

Remark. To understand the situation of the negative eigenvalue of J(t), it
may be helpful to know the range of the sectional curvature Kcn(X, Y) of
(5 m , g{t)). The range is given by the following

(3.6) r + 1 ^ i f ( ί ) ( Z , Y)^t(4:-3tm) for

(3.7) t(4-3tm)£Kcn(X, Y)<tm+1 for

In fact, with respect to a £>-homothetic deformation g->g*(a)^=ag+(a~—a)
, the sectional curvature Kfa}(X, Y) satisfies
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for ,

for α > l ,

where i/=(4—3α)/α(cf. Lemma 6.4, (12.1) of [11]). We put α = f m . By a homo-

thetic change ^ ( α ) - ^ " " 1 - ^ ^ 7 7 1 ) , we get g(t). Then, the inequalities (3.6) and

(3.7) are verified.

For example, if m = 3 , then (S3, g(to(3)) is ^-pinched, where 3=0.1005-••.

Remark. As for stability or instability of (harmonic mappings of) various

Riemannian manifolds, see Howard [1], Howard and Wei [2], Leung [3], [4],

Nagano [5], Ohnita [7], Okayasu [8], Pan [9], Urakawa [17], [18], Xin [19],

and so on.
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