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A NOTE ON POISSON APPROXIMATION
IN MULTIVARIATE CASE

By CHENG-GEE L1u

0. Introduction.

It has been studied in recent years to show the Poisson approximation for
the sum of independent Bernoulli random variables which may or may not be

identically distributed (see [1], [2], [4]).
In paper [3], K. Kawamura has derived sufficient conditions of a Poisson

approximation for the sum of independent identically multivariate Bernoulli
random variables. In this paper, we are going to extend the result of paper
[2] and generalize the result of paper [3] to the multivariate case.

1. Notations and Definitions.

a. Suffix and n-dimensional vectors.

1. 7, k, m, n: positive integers,

2. 2,: parameter of Poisson distribution for every i E,

3. ey, e, -, e,: base of n-dimensional vectors,

4. E={0,1}*—{0} and EO={0, 1}™,

5. O: n-dimensional zero vector.

6. i=(4, 75 -+, 1) : n-dimensional vector belonging to E,

7. k=(ky, ky, -+, k,): n-dimensional vector belonging to E,

8. s=(sy, Ss, -+, S,): n-dimensional vector with nonnegative integer components.

b. Sum of Bernolli vectors.
L AX =Xy, X245, -+, Xny)), 1=1, 2, -+, n,, kZ1} be a sequence of inde-

pendent multivariate Bernoulli vectors with
P j(0)=P(X ,;=i), for all i€ EO,
where

iEEEOij(i)zl »

2. P,i): P,;(i) expressed in the notation b.1. will be replaced by P,@i) for
simplicity if we don’t need any information about fixed &,
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n
k
S,= 2 X,,: the sum of Bernoulli vectors,
s=1

ny . positive integer with lim n,=co.
k—co

¢. Probability of the sum of Bernoulli vectors.

a;: frequence of the observation i in n, trials of {X,,=(X1,,, X2,,, -,

Xngp), 1=1, 2, -+, ny, k21},

a=(0e,, Qeyy ">, Ay *** , Oloyy.te,)  2"—1 dimensional vector,

i-e,: inner product of i and e,,

[Cl=[a; .eEIaizsn r=1, 2, -+, n, i€ E], where [C] is a set of @ uniquely
ier=

defined by the given vector s,
f:@@): trial number for the f{-th occurrence of observation i in n, trials with

ft(i)e{l» 2: Tty nk} and tzlr 2: e, A,

- Fi={(£:0), f20), -, fai@); 1S/, <fo(D)< - <[o;(@) =4}

G;: the set of integers expressed in (f,(0), f,(), ---, f«;(i)) belonging to F,,
With G,={f1(i), f2(i)7 Tty fai(i)}r

T(@)=¢,-2°+15:2"+ -+ +ip-2™ '+ --- 4+4,-2""1: one to one correspondence on
E and S*, where S*={1, 2, ---, 2"—1},

. v<iEL T <TG,

H;=1) G; where i’<i is defined in the notation c.9.,
i'<i

Q:(@)=Py,»(@) for simplicity,
Qi(i):Pft(i)(i)/Pft(,')(O) for simplicity,

aey a
P[S,=s]=2{ X T1 Qe - 2 TILQ.0) -
[C] Fej t=1 Fi t=1
GiNH =0
aejt+- tep nk
= II  Q.le;+--+en)} I1
Fel'*’"""en t=1 QJG};
GeptteynHeyt +e, =0 ’ =

Py0)

P[S,=s] will appear in section 2 in detail.

d. Variation forms of the probability P[S,=s]
Let us express two variation forms of P[S,=s] for the proof of Poisson

approximation.

1.

Let us put

Bo@=3 Tl Que) -~ 3 TLQui) -
Fo, b=t F;  i=1
GinHi=0

Aey+tey

2 II Qe +-+en)},
Fojiten t=1
Gey+tepnHeyt+te, =0

then we have from notation c.13.
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"k
P[S,=s]= 3 {B,,@} II P,0)
£ 2406,
i€E
2. Let us put
Xey aj
An(a@)= 3 Tl oie) - X T1QLE) -
Fey t=1 F; i=1
GinH =0
Xey+tey
pX II  Qiles+---+en)},
Fel+-“+en t=1
Gel+'~+enf\yeﬁm-—#en:'3

then we have
Ty e
P[S,=s]= El {A, (@)} J_I_Il Pi0),

because P[S,=s](see notation c.13.) can be rewritten by

PISi=s)=3 (T T1Qe) ¥ 30Qi0)

[C] Fey
GinH =0
Xey+tey np
pX II Qileit--+en)} II Py0),
Feﬁ'"""en t=1 =1

Ge1+-~~+e"/'\He1+-~+en='3

3. Let us denote C, (a) from B, ,(a) by removing all the restriction in the
sums (see notation d.l.) as follows,
Qeyt-tep

Co@=F TQe) =~ QM+, T I Quetrten).
e " i - -

Fel+-~+en

2. Conditions sufficient for Poisson approximation.

Let {X;=(X1,,, X2,, ---, Xn4y), 7=1, 2, ---, n,, k=1} be a sequence of
independent multivariate Bernoulli vectors with
P, ())=P(X,,=i), for all i€ EO,
where
3, Pu=1,

g
and denote the sum of multivariate Bernoulli vectors by S,= 23 X,,. In the
=1

following discussion, P,,(i) expressed in notation b.1. will be replaced by P,®)
for simplicity and we can easily see that
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PISi=sl=2{S M ey~ £ Ha

[C1 Fe t=
GinH ;=0
Xepteten n,
p> II Qile,+-+eq)} ]_I_Il Py(0)
erteten B 7&UG;
iEE

GetoteNnHeytte, =0

THEOREM. If the following relations (2.1) and (2.2) are satisfied for the
sequence of independent n-variate Bernoulli distribution which may or may not be

identically distributed, that is, for every i€ E
2.1) nZEij(i) — 4, as k— oo,
=
(2.2) min P,(i)—1 as k— oo,
1s)snp

then we have

2.3) £i£nP[Sk=8]= 2 LIL(AS /e )] exp (— EZ)EZ,)

[C1 1€E

for all s (s=0), where [C] 1s uniquely defined by the vector s as
[C]:[a; E_laizsr: 721) 2: ) n) » iEE]'

In order to prove the theorem, we are going to show lemma 1, lemma 2
and lemma 3.

LEMMA 1. If the conditions (2.1) and (2.2) are satisfied then we have
Z%Pg(O) —exp(— 2 4,) as k— oo,
g=1 1€E

Proof. Consider the inequality
I+y=exp(y), ye[—1, ),
putting y=—x and y=x/(1—x) with x[0, 1] we obtain
exp(—x/(1—x)=1l—x=Zexp(—x), x[0, 1).
Now putting Agzing(i)=l—Pg(O),

where 0<A,<1 (by (2.2)) for sufficiently large 2(1<g<n,), and using the last
inequality, we get

exp[’(glAe)/ mginPg(O)]é ﬁ P(O)< exp (- > Ag),

g=1

and from (2.1), (2.2) we can prove that
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(2.4) gkng(O)—»exp(— Bi) as koo m

LEMMA 2. If the conditions (2.1) and (2.2) are satisfied then we have

2.5) Ch (@)= II(A7+/a,l) as k— co.
1159
Proof. 1t is sufficient to prove that
(2.5.1) FE [ﬁPft(i)(i)] — AT /a, ), for every icE.

The proof of (2.5.1) is given by induction with respect to a,.
(1) a;=1. It is obvious by (2.1) that

2 P/I(i)(i)—>2,- as k— oo,

fiCH=1

(2) a;=2. By (2.1) and (2.2), we have
Pfl(i>(i)Pf2(i>(i) - (1;)2/2!

=
F1I<S o)
because

0< 3 P3)<[1— min P,(0)] > Py(i)
J=1 J=1

and by (2.1), (2.2) the right hand side of the inequality tends to 0, so we have

Nz ) — Tk e k o/ 2
W28 Pro@Pro@=L S PO = S PH) > 21 as koo

(3) Assume that (2.5.1) is correct as a;=m—1, that is,

TP, ) = Q)" /(m—1)! as k- oco.

[1D< L -1 E=1

In order to finish the induction, let us prove (2.5.1) to be also true as a;=m.
nk

Multiply the left hand side of the last relation by ; Z}) lem(,-)(i) which tends
m(i)=

to A; (by (2.1)), we obtain

m=1
Pro® L Py ,wld)

SO < -1

m-1
Proir(@) g Proo@+-

F1OH<<fm-1(D

. m-l -
(2.5.2) +h<i><~§fm-1<i>Pf”"1(")(l)t=Hl Pria®
Pfg(i)(i)

SO 1(D< < m-1() t=1
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IL Procir()+--

+ 2y
[1DOf Do (D < fm—1¢i) t=1

TP, ()

. pIN ,
1D <=1 (DK () t=1
Each of the first (m—1) terms of (2.5.2) may be nonnegative and estimated by

. 7"-"1 3

[1—mlnP](O)]fl(i)<~<<fm_1(i) Epftci)(l)

which is an upper bound of these terms and by (2.2) tends to 0, that is,
0<[each of the first (m—1) terms of (2.5.2)]

. m-1 .
g[l—mij(O)]h(iK”_(Ef l(i)gpft(i)(l)

So each of the first (m—1) terms tends to 0, and each of the last m terms has
the same value, then we can obtain the limiting value of (2.5.2) to be

s . (1 . m-1 —1)!
i mrcd };Ilpf‘(‘)(l) = A@)"/m=D,
that is, (2.5.1) is correct as a;=m and we finish the proof of (2.5.1) by induc-

Then by (2.5.1), we have
2.5) Cy (@)~ EHE(Zf‘I/a, ) as k— oo,

tion.

this is the result of lemma 2. =

LEMMA 3. Three values (defined in the notation d.) A, (@), B, (@) and C, (@)
have the same [imiting value, that is,

2.8) Bnk(a)éig(lf"/a,!) as k— o,

and
(2.9) Ank(a)a.g(lﬁ"/a, N as k— oo,
Proof. For the proof of lemma 3, we consider the following three steps.

(step 1) Let us define
Rem ()= S T1 Py (i)~

it=1

ai
> 1 Pft(i)(l) ,
Fj t=1
GinH ;=2

ag
= > HPft(i)(l);
Fi t=1
GinHi+2
for every ic E—{e,;}. In this step, we are going to prove that
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(26) Rem@)—0 as £k — o,

for every ic E—{e,}.
Proof of (2.6): It is easy to see that

nk

@7 B Prw®sL 3 Pro®ls@ter.

fi(=1

It is obvious that Rem (i) is nonnegative and estimated as follows:
i) ai X
Rem ()< §1 §,Pfs<i>(i),2gpfz<“(i)
R
<d@)a;[1—min P,(0)](A;+¢)*i"!
J

with fy(i)=f.(k), where d@)= X a;.

i<k
By (2.2) and (2.7) for n=a;—1 the right hand side of the last inequality
tends to zero as k—oo, and we finish step 1.
(step 2) By the definition of C,, (@) we can obtain

an(a)z‘ ‘1;[‘? % tluipft(i)(i)

Ze1 . ai -
=2 O Prcolel JI, Rem@+ 2 I Pro@l)

GinH =0

and by the definitions of Rem (i), B,:(a@) and using (2.6), we can obtain that
B, (@) and C, (@) have the same limiting value as k — co. Then from lemma

2, we have
2.8) Bg,(a)— .Ie"%(af-'/a,!) as k— oo,

(step 3) It is easy to see by the definition of A,,(a), B, , (@) that
B, (@)= A, (@)<(1/minPy0))"B, (a),
where h= EZEai and by (2.2), (2.8), we have

(2.9) Ank(a)a‘]eIE(Z‘i"i/a,-!) as k—co. W

Proof of the theorem.

Summarize lemma 1 and lemma 3, we finish the theorem. =
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