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A NOTE ON POISSON APPROXIMATION

IN MULTIVARIATE CASE

BY CHENG-GEE LIU

0. Introduction.

It has been studied in recent years to show the Poisson approximation for
the sum of independent Bernoulli random variables which may or may not be
identically distributed (see [1], [2], [4]).

In paper [3], K. Kawamura has derived sufficient conditions of a Poisson
approximation for the sum of independent identically multivariate Bernoulli
random variables. In this paper, we are going to extend the result of paper
[2] and generalize the result of paper [3] to the multivariate case.

1. Notations and Definitions.

a. Suffix and n-dimensional vectors.
1. j , k, m, n: positive integers,
2. λt: parameter of Poisson distribution for every
3. elf e2, -" , en: base of n-dimensional vectors,
4. E={0,l}n-{O] and EO={0,l}n,
5. O: n-dimensional zero vector.
6. i=(z'i, h, •••, in) n-dimensional vector belonging to E,
7. k—(kly k2, •••, kn): n-dimensional vector belonging to E,
8. s=(slf s2, •••, sn) n-dimensional vector with nonnegative integer components.

b. Sum of Bernolli vectors.
1. {Xkj=(Xlkj, X2kJ, •" , Xnkj), 7=1, 2, •••, nk, k^l) be a sequence of inde-

pendent multivariate Bernoulli vectors with

Pkj(i)=P(Xkj=i), for all i€=EO,
where

2. Pj(i): Pkj{ϊ) expressed in the notation b. 1. will be replaced by P3(ϊ) for
simplicity if we don't need any information about fixed k,
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nk

3. Sk= ΣXkj' the sum of Bernoulli vectors,

4. nk: positive integer with \imnk — com

c. Probability of the sum of Bernoulli vectors.
1. <Xi: frequence of the observation i in nk trials of {XkJ=(XlkJ, X2kJ, ••• ,

XnkJ),j=l,2, -,nk, k^l},
2. a=(aβl, oίe2, '" , ot-i, •••, αβ l +...+ β n): 2n—1 dimensional vector,
3. i er: inner product of i and er,
4. [C] = [α; Σ (Xi=sr, r—\, 2, ••• , n, i^E~\, where [C] is a set of α uniquely

defined by the given vector s,
5. /t(ί): trial number for the t-th. occurrence of observation i mnk trials with

/ t ( i)e{ l ,2, - , nk] and ί = l , 2, - , α,,
6. Fi^{{Uί)fft{i)9 ~ , / β | ( ί ) ) ; lg/i(i)</.(i)< - </« l(i)^n J k}
7. G f : the set of integers expressed in (/i(ί), /2(i), •••,/αi(ί)) belonging to F,,

with Gί={fι{ί),f2{ϊ), - , / β ί ( i ) } ,
8. T ( Ϊ ) = * Ί 2 O - H 2 2 Ή h/m 2m-1H h/n^"" 1 : one to one correspondence on

^ and STO, where S n ={l, 2, •••, 2 n - l } ,

9. i'
10. Hi—\JGi< where ι v < ί is defined in the notation c.9.,

ϊ<i

11. Qt(ϊ)=Pftci)(ί) for simplicity,
12. Q'tϋ)=PftCi)(i)/PftaΛO) for simplicity,

13. P [ S Λ = 8 ] = Σ { Σ UQtie,) - Σ Π Qt(ί) •••
[C] Fβ! ί = l Fi ί = l

G n H Ί Θ

Σ Π Qtfa+' +en)} Π

—s'] will appear in section 2 in detail.

d. Variation forms of the probability
Let us express two variation forms of P [ S Λ = s ] for the proof of Poisson

approximation.
1. Let us put

Σ ΠΣ
Fe1+-+en

then we have from notation c. 13.
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= « ] = Σ {£»,(«)} Π Pj(O)
LCI R 3 = 1

i<=E

2. Let us put

Ank(a)= Σ ΠoίCβi) ••• Σ Π Qίd) -
Λ Fei ί=l Fi ί=l

ae1+-+en

Σ Π

then we have

] Σ { n Λ ( ) } Π / ) ,

because P [ ί S Λ = s ] ( s e e notation c. 13.) can be rewritten by

PίSk=8]= Σ I Σ Π Qί(βi) ••• Σ Σ ζ?ί(i) -
[CJ .P e i ί=l Fi ί = l

1

Π
ί 1

3. Let us denote Cnk{a) from Bnk(a) by removing all the restriction in the
sums (see notation d. 1.) as follows,

C n»=Σ i ϊ ^ ω - Σ TLQtd)- Σ ^Π^^tei+ +O}.
F β l ί = l Fi t = l Feι+-+en « = 1

2. Conditions sufficient for Poisson approximation.

Let {Xkj=(XlkJ, X2kJ, •••, Xnkj), j=l, 2, •••, nk, k^l} be a sequence of
independent multivariate Bernoulli vectors with

PkJ(i)=P(Xk,=ϊ), for all i^EO,

where

and denote the sum of multivariate Bernoulli vectors by Sk= ΣiXkj In the

following discussion, PΛj(ί) expressed in notation b. 1. will be replaced by P3{i)
for simplicity and we can easily see that
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/ ) [ S * = β ] = Σ I Σ Π Qάei) - Σ f ί Qtd) -
ίCl Fei t = l Ft ί = l

<*e1+-+en nk

Π Qtfa+ -'+en)} Π Λ(
ί 1 βi

THEOREM. // the following relations (2.1) and (2.2) are satisfied for the
sequence of independent n-vanate Bernoulli distribution which may or may not be
identically distributed, that is, for every i

(2.1) ΣiPkjΰ)-*** as
.7 = 1

(2.2) min PUi) -> 1 as

then we have

(2.3) li [ p
[C] iE:E i(=E

for all s (s^O), where [C] is uniquely defined by the vector s as

[C] = [«; Σ α, = sr, r = l , 2, - , n, , ίeJS].
i β r =l

In order to prove the theorem, we are going to show lemma 1, lemma 2
and lemma 3.

LEMMA 1. // the conditions (2.1) and (2.2) are satisfied then we have

Σ

Proof. Consider the inequality

putting y — — x and 3/ = jc/(l--;t) with xe[0 , 1] we obtain

*), x^lO, 1).

Now putting Ag=ΣPg(i)=l-Pg(O),
iEi(EE

where 0^Δ^<l(by (2.2)) for sufficiently large k(l^g<^nk), and using the last
inequality, we get

, ( ) UPg(O)< exp ( - Σ
g J g=i \ g=i

and from (2.1), (2.2) we can prove that
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(2.4) Σ^(O)->exp(-Σ^«) as £->oo. •
g=l ι<ΞE

LEMMA 2. // the conditions (2.1) and (2.2) are satisfied then we have

(2.5) C n » - » Π t f f ' / « . ! ) as £->oo.
I<ΞE

Proof. It is sufficient to prove that

(2.5.1) Σ[Π/Vt<<>(i)]->Λ? /α.!, for every i^E.
Fi ί=l *

The proof of (2.5.1) is given by induction with respect to at.
(1) α ι = l . It is obvious by (2.1) that

Σ = i / 1 c i ) ( ) i a s

(2) α i = 2 . By (2.1) and (2.2), we have

Σ 1
/lCi)</2(*)

because

and by (2.1), (2.2) the right hand side of the inequality tends to 0, so we have

Σ2Σ P/l<i)(i)P/2ci)(i)=[ΣΛ(i)]2-Σi7(i)->^ as έ^oo.
/lCO</2<O j = l j=l

(3) Assume that (2.5.1) is correct as 0Li=m—l, that is,

m-i

Σ Πi }/ ί(i)(i)->(i,r-7(w-l)! as *->oo.

In order to finish the induction, let us prove (2.5.1) to be also true as cίi—m.
nk

Multiply the left hand side of the last relation by Σ Pfma->ϋ>) which tends

to Λt (by (2.1)), we obtain

7 7 1 - 1

)Π

+ Σ
(2.5.2) /!(*)<•••</

+ Σ o Π P/t<i)(i)
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m

+ Σ Π
/lCi)</mCi)</2C0< </ m - i( i ) ί=

m

+ Σ ΠP/ί£i,(ί)
/lCi)< </m_iCt)</m(i) ί=l

Each of the first (m—1) terms of (2.5.2) may be nonnegative and estimated by
m - l

[l-minP,(O)] Σ UPftc»(i)
/iCi)< </m-i(ί) ί=i

which is an upper bound of these terms and by (2.2) tends to 0, that is,

0^[each of the first (m—1) terms of (2.5.2)]
m - l

£[l-minP,(0)] Σ ΠP/tc«(ί)
/lC0< </m_i(i) ί=l ε

So each of the first (m—1) terms tends to 0, and each of the last m terms has
the same value, then we can obtain the limiting value of (2.5.2) to be

- D ! ,

that is, (2.5.1) is correct as ai—m and we finish the proaf of (2.5.1) by induc-
tion. Then by (2.5.1), we have

(2.5) C n j b («)-+Π Mi •/«,!) as k->™.

this is the result of lemma 2. •

LEMMA 3. Three values {defined in the notation d.) Ank(ά), Bnk{a) and Cnk(a)
have the same limiting value, that is,

(2.8) β n »-Π(t f ' /α. ! ) as k -> oo,

and

(2.9) ; 4 n » - > I I U ? /α.!) as fe->oo.

Proof. For the proof of lemma 3, we consider the following three steps,
(step 1) Let us define

Rem(ί)=ΣΠ/V£c«(i)- Σ lί/>/,«)(«),
Fι ί=l F£ t = l

6,'Λff|-0

= Σ ΠPΛc«(i),

for every i^E — \eι). In this step, we are going to prove that
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(2.6) Rem(i)->0 as &->oo,

for every ί^E— {e±}.
Proof of (2.6): It is easy to see that

(2.7) ΣΠPΛ<»(i)^[ Σ JWM

It is obvious that Rem (/) is nonnegative and estimated as follows:

( i )^ Σ ΣP/ 1 «)( ί )ΣΠP/ l «)( i )
r=l s=ί S Fi ί = l l

with f,(i)=fr(k), where d(ί)=Σα*.
i<k

By (2.2) and (2.7) for n = α , —1 the right hand side of the last inequality
tends to zero as &->oo, and we finish step 1.

(step 2) By the definition of Cnk(a) we can obtain

Cnk(ά)=U Σ Π P / ί ( ί ) ( i )
* i<=E Fi ί = l *

Σ Π ^ t ψ W I Π [Rem(i)+ Σ II.
Fei ί=l l l i&E-iei] Fi ί=l

and by the definitions of Rem®, Bnk(a) and using (2.6), we can obtain that
Bnk(a) and Cnk(ά) have the same limiting value as k -> <χ>. Then from lemma
2, we have

(2.8) B n » - > Π ( α W α . l ) as &->oo.

(step 3) It is easy to see by the definition of Ank(a), Bnk(a) that

where λ = Σ α * and by (2.2), (2.8), we have

(2.9) ; ! „ » - + J l W f ' / α i ! ) as ^ -> oo.

Proof of the theorem.

Summarize lemma 1 and lemma 3, we finish the theorem. •
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