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AN EXAMPLE OF AN OPEN RIEMANN SURFACE

NOT UNIFORMLY LARGE WITH RESPECT

TO GREEN'S FUNCTIONS

BY MASAHIKO TANIGUCHI

§ 1. Introduction and the main result.

Let R be an open Riemann surface. To assure certain uniformness of R,
we may impose the following conditions on R.

(G) Assuming that R admits Green's functions g(-, q; R) with the pole
q^R, there is a positive constant M such that {p^R: g{p,q; R)>M} is
simply connected for every q^R.

(H) Letting dR(-, •) be Poincare's hyperbolic distance on R, there is a
positive ε such that {p&R: dR(p, q)<s) is simply connected for every q^R.

A surface satisfying (H) is called one with a positive injectivity radius and
has several nice properties (cf. [4]). The condition (G) is recently considered
in [3] and [7].

Remark 1. The condition (G) implies (H). In fact, let Fp be a Fuchsian
group acting on { |z |<l} and corresponding to a universal covering map πp of
{ |z |<l} to a Riemann surface R satisfying (G) such that πpφ)—p for arbitrarily
given P<BR. Then since g(πp{z), p; R)=*Σ/eFplog\l/f(z)\, πp is injective on
the disk {z: log | l /z |>M}, which has some hyperbolic radius depending only
on M.

Remark 2. In case of finite surfaces, (G) is equivalent to (H). In fact, in
this case each of (G) and (H) is equivalent to the condition for non-existence
of punctures.

But in general, (H) does not necessarily implies (G). Actually, the purpose
of this note is to show the following.

THEOREM. There is a regular Riemann surface of Parreau-Widom type
which satisfies (H) but not (G).

Here for regular Riemann surfaces of Parreau-Widom type, see for example
[5]. We will construct a family of Riemann surfaces satisfying (H) but not
(G) in §2, and give a proof of Theorem in §3.
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Finally, the author would like to thank the referee for his helpful advices.

§ 2. Construction.

Let SΊ be a compact bordered Riemann surface of genus one whose border
consists of a single geodesic dx. Namely, we have a Riemann surface Rx of
genus one with one hole and a bordered subsurface ^(called the Nielsen kernel,
cf. [2]) of Rx such that R^—S^ is a doubly connected region and the border of
Si is a compact simple geodesic in ^ ( w i t h respect to Poincare's hyperbolic
metric on i?j). Let c be the length of d1 and So be a compact bordered Riemann
surface of genus one whose border consists of two closed geodesies d0 and d'o
with the same length c. Also we set W1—R1—(S1—d1).

For every n^2, we can construct inductively a compact bordered Riemann
surface Sn from Sn-i and So by gluing the border dn-x of Sn-1 to d0 isometri-
cally so that the hyperbolic metrics on 5n_! and SQ coincide with that on Sn.
And for every n, let Rn be a Riemann surface (called the Nielsen extension of
Sm cf. [2]) obtained from Sn and WΊ by gluing dn and dx considered as the
border of Wx. In the sequel, we denote by Shn and W1>n the parts of Rn

corresponsing to Sα and Wx in Rn, respectively.
Also fix a point px in S1 and, denote by pn the point on S1> n corresponding

to p! for every n.
Here recall that Wx can be represented as the quotient bordered surface of

A={z: Imz>0, R e ^ O } by the elementary group generated by A(z)—az, where
a>l and then is determined by c. For every n and positive e<(a1/2—1)/2, we
denote by Bn(e) and B'n(e) the subregions of Whn corresponding to {zeΔ:
\z—l\<e} and {z<=Δ: \z—a1/2\<e-a1/2}, respectively. Note that Bn(e) and
B'n(e) are mutually disjoint. Let bn(e) and br

n{e) be the relative boundaries of
Bn{e) and B'n(e) in Wlt7l, respectively.

Then for any given sequence {en}n=i of positive numbers en with en<
(α1/2—1)/2, we can construct a sequence {Tn(en)\n=o of Riemann surfaces, where
we set T0(e0)~R1) inductively as follows.

Set T0(ely=:R1-Bί(e1) and R2(e1^=R2-B2(e1)> and glue b[(eλ) to b^e,) by
the mapping corresponding to f(z)= — e{-a1/2/(z—a1/z)+l. Then as before we
have a Riemann surface Tx{e^) having the curve c^e^ resulting from b[{e^ and
b2{ex) as a geodesic (with respect to the hyperbolic metric on TiieJ). Next
suppose that we-have constructed {Tn(en)}k^X Then set T*-1(e*)*=T*-.1(e*-1)
—B'k(ek) and Rk+iiβkY—Rk+i—Bk+^ek), and glue bf

k{ek) to bk+1(ek) similarly as
above. We denote by Tk{ek) the resulting Riemann surface. See Figure below.

Now since Tn(en + 1)* can be considered as a bordered subsurface of Tn + 1(£n + 2)*
for every n, we can consider a Riemann surface /?=U»=i ^( β n+i)* as the in-
ductive limit of {Tn(en+1)*}n=i. And we have the following.

PROPOSITION 1. For every sequence {en}™=1 of positive numbers en such that
en<(a1/2-l)/2, the surface /?=Un=i Tn(en+1)* satisfies (H) but not (G).



AN EXAMPLE OF AN OPEN RIEMANN SURFACE

Pt

211

[Figure] The parts of the surface T2(e2).

Proof. It is clear from the above construction that i? satisfies (H) and that
R admits Green's functions.

Next let S=[Jn=iSn be the inductive limit of {Sn}n-i Then {Sn—dn}*«i
gives a canonical exhaustion of 5. Also from the construction we can see by
Nevanlinna's modular test (cf. [1, IV. 15D]) that 5 admits no Green's functions,
or equivalently, that g( , px\ Sn—dn) tends to +cχ> locally uniformly on 5 as
n tends to +°°, where we regard p1 as a point on S.

Since g( , pn; R)>g(-, px\ Sn—dn) on Sn—dn considered as a subsurface
of R(where px is identified with pn) for every n, we can find, for any given
M, an N such that {p^R: g(p, pN; R)>M) contains SlιNy hence is not simply
connected.

Thus we conclude that R does not satisfy (G). q. e. d.

§3. Proof of Theorem.

First we will show the following

PROPOSITION 2. Let {tn}n=i and {en}n=i be two sequences of positive numbers
which satisfy the following conditions for every n, it holds that

1) fn<min{*„-!, 1/n3} and ^ < ( α 1 / 2 - l ) / 2 ,
2) D n = ( i e J 1

B . 1 ( g n . 1 ) : gi,n-i>4tn} is homeomorphic to Tn^(βn^ and con-
tains Dn-U

3) ghn-i<tn/2 on 3Tn-1(en)*=6;(en), and
4) \gi.n-gi.n-i\<tn/2n+1 on Tn^(en)*9
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where we set ί o = l , D o = 0 and g1>n—g( f Pi', Tn{en)) for every n.
Then i?=U»=i^n(^+i)* is a regular Riemann surface of Parreau-Widom type.

Proof. To show that R is regular, first not that, by 4), g1>n converges
locally uniformly on R—{pι) to a positive harmonic function, say h, as n tends
to +°° . Moreover, 1), 3) and 4) imply that

5) \h-gl,n-Λ^Έm=n\gi,m-gi,rn-i\<ΈZ=ntm/2m+1<tJ2n on Tn-M*^ and
6) h£Σm=n\gl,m-gl,m-l\+gl,n-i<tn/2n+tn/2£tn OΏ STn-jfo,)*,

for every n.
Hence by the maximal principle, for every ε>0, we can find a compact set

F in R such that h<ε on R—F, which implies that h=g( , px\ R) and that R
is a regular Riemann surface.

Next recall that a regular Riemann surface R is of Parreau-Widom type if
and only if

ΣβezSte, Pi; J?K+oo,

where Z is the set of all critical points of g( , px; R) including multiplicity
(cf. [5, V. 1C Theorem]).

Fix n arbitrarily. Since Ln = {p^R: g(p, pλ; R) — 2tn} is contained in
Tn-i(0n)*—\Dn by 4), 5) and 6), and since Tn-^βnY—Dn is a doubly connected
region by 2), we see that Ln is a simple closed analytic curve and D'n—{p^.R:
g(ί, 0i #)>2ί n } is homeomorphic to T W ^ - i ) .

Here it is well known (as a corollary of Riemann-Roch theorem, cf. [1, V.
27A]) that D'n contains exactly 2-2*U£ = n(w+l) critical points of g( , pλ; R).
Hence D'n—D'n-x contains 2n such points and it holds that

Έ q e z g ( Q , P i ; R ) ^ \

which is finite by 1). Thus we conclude that R is of Parreau-Widom type.
q. e. d.

Thus to complete the proof of Theorem, it remins to give such sequences
Un}π=i and {en}n=i as in Proposition 2.

For this purpose, fix n arbitrarily, and suppose that {tk}k=l and {ek}k^i are
determined. Then take tn so small that 1) and 2) in Proposition 2 hold, and
then take en>0 so small that gi,n-i<tn/2n+2 on b'n(enι0). Next set E—{p^
Tn-άβn-J: ^ u - i ( ί ) ^ W 2 " + 2 } , then E is compact in Tn^{en^)-Bf

n{entfi). And
if we find an e'n<en^ such that

\g( ,Pil T»(β;))-5r1.»-il<ίn/2n+ί on E,

we can conclude by the maximal principle that 3) and 4) hold with en—er

n.
Here the existence of such an e'n follows by the fact that g( , px\ Tn{e'n))

converges to g1>n-i locally uniformly on Tn-^n-i) as e'n tends to 0. This fact
seems to be essentially well-known. But the author can not find any adequate
reference, so we include a proof.
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For every ef

n<en>(i, let Tn{e'n) be the double of Tn(er

n) with respect to two
ideal boundary arcs of Tn(e'n) between bf

n(en>Q) and bn+1(ent0). Then clearly,
fn(e'n) admits Green's functions, and it holds that

g(P, Pi', Tn{ef

n))=g(p, pi; tn{ef

n))-g{p, pf; Tn{e'n))

on Tn{ef

n) for every e'n, where />? is the mirror image of pλ. Since fn{ef

n) con-
verges to a Riemann surface with one node corresponding to e'n=0 in the
sence of the conformal topology as ef

n tends to 0, we can see the assertion by
[6, Corollary 1].

Now we have obtained tn and en satisfying l)-4) in Proposition 2. And by
induction, we can show the existence of desired sequences, and finish the proof
of Theorem. q. e. d.
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