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MODULUS OF CONVEXITY, CHARACTERISTIC OF

CONVEXITY AND FIXED POINT THEOREMS

BY HAJIME ISHIHARA AND WATARU TAKAHASHI

§ 1. Introduction.

Let C be a bounded closed convex subset of a Banach space E and let T
be a nonexpansive mapping from C into itself. Browder [2] and Gohde [10]
showed that if E is uniformly convex then T has a fixed point, while Kirk [13]
proved that if E is reflexive and if C has normal structure then T has a fixed
point. On the other hand, Goebel [7] defined the characteristic ε0 of convexity
of E and showed that E is uniformly convex if and only if εo=O, if ε o < l then
E has normal structure and if ε o<2 then E is reflexive. Also, Bynum [3]
defined the normal structure coefficient N(E) of E, and then Maluta [17] and
Bae [1] proved that if NiE)'1^ then E is reflexive and has normal structure.
Using these coefficients, Goebel and Kirk [8], Goebel, Kirk and Thele [9] and
Casini and Maluta [4] proved the fixed point theorems for uniformly ^-lip-
schitzian mappings. (For the results on Hubert space, see [5], [12], [14].) But
it seems natural to define these coefficients for a convex set, since for any
Banach space E, a nonexpansive mapping has a fixed point if C is weakly
compact and has normal structure.

In this paper, we introduce the modulus δ(C, ε) of convexity, the charac-
teristic eo(C) of convexity and the constant N(C) of uniformity of normal
structure for a convex subset C of a Banach space and prove some results
similar to [3], [7], [11], [17]. For example, we show that if N(C)<1 then C
is boundedly weakly compact. Further, by using these coefficients, we prove
three fixed point theorems. All of these proofs are given by explicitly con-
structing a sequence which converges to a fixed point. We first show a fixed
point theorem for nonexpansive semigroups. Secondly, we obtain a fixed point
theorem for uniformly ^-lipschitzian semigroups on C under k<γ, where γ is
determined by the modulus of convexity of C. Also, using our results, we
evaluate γ as l < τ ^ l + ( l —εo(C))/2. Finally, we prove that Casini and Maluta's
result [4] is valid under more general semigroups.

§ 2. Preliminaries.

Let E be a real Banach space and let B be a bounded subset of E. For a
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nonempty subset C of E define,

R{B,x)=sup{\\x-y\\:

R(B, C)=inf{R(B, x):

C(B, C ) = { * € Ξ C : R(B, x)=R{By C)}.

We call the number R(B, C) the Chebyshev radius of B in C and the set C(C, B)
the Chebyshev center of B in C.

Let {Ba: a^A] be a decreasing net of bounded subsets of E. For a non-
empty subset C of E define,

r({Ba}, x)=infΛ(βα, x);

r({βα},C)=inf{r({£α}, JC)

: r({Ba}, x)=r({Ba}, C)}.

The number r({Ba}-, C) and the set JL({Ba}, C) are called the asymptotic radius
and the asymptotic center of {£« : a<=Λ} in C, respectively. We also know that
R(B, •) and r({£α}, •) are continuous convex functions on E which satisfy the
following:

\R(B, x)-R{B, y)\<,\\x-y\\^R{B, x)+R(B, y);

\r({Ba}, x)-r({Ba}, y)\£\\x-y\\£r({Ba}, x)+r({Ba}, y)

for each x, y^E, cf. [16].
A nonempty subset C of E is boundedly weakly compact if its intersection

with every closed ball is weakly compact. It is easy to see that if C is boun-
dedly weakly compact and convex, then C(B, C) and J.{{Ba}y C) are nonempty.

For a subset D of E} we denote by d(D) the diameter of D and by coD
the closure of the convex hull of D. A convex set C of E is said to have
normal structure if each bounded convex subset D of C with d(D)>0 contains
a point y such that R(D, y)<d(D).

The modulus of convexity of E is the function

defined for 0 ^
Let S be a semitopological semigroup, i.e., S is a semigroup with a Haus-

dorff topology such that for each α e S the mappings s->α s and s-+s a from
5 to S are continuous. Let C be a nonempty closed convex subset of E. Then
a family S={Tt: ί eS} of mappings from C into itself is said to be a uniformly
k'lipschitzian semigroup on C if S satisfies the following:

(1) Tts(x)=TtTs(x) for t, SZΞS and XCΞC;

(2) the mapping (s, x)->Ts(x) from SxC into C is continuous when SxC has
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the product topology
(3) \\Ts{x)-Ts{y)\\Sk\\x-y\\ for x, y^C and s^S.

In particular, a uniformly 1-lipschitzian semigroup on C is said to be a nonex-
pansive semigroup on C. A semitopological semigroup S is left reversible if any
two closed right ideals of S have nonvoid intersection. In this case, (S, ^ ) is
a directed system when the binary relation " ^ " on S is defined by a^b if and
only if {a}\JώS^{b}\JbS.

§ 3. Modulus of convexity and characteristic of convexity.

We first define the modulus of convexity, the characteristic of convexity
and the constant of uniformity of normal structure for a nonempty convex
subset of a Banach space.

DEFINITION 3.1. Let C be a nonempty convex subset of a real Banach
space E with d(C)>0. Then we define, for ε with 0^ε^2,

: x, y,δ(C, e)=in^l-^!*~

εo(C)=sup{ε : 0rgε^2, 5(0, ε)=0}

iV"(C)=sup I—-ΎTfΓs— : D is a nonempty bounded convex

subset of C with d(D)>θ\.

Remark 3.1. It follows from Definition 3.1 that δ(C, 0)=0, 0^δ(C, ε)^l ,
δ(C, ε) is nondecreasing in ε and δ(E, ε)=δE(ε). Further for a nonempty convex
subset D of C with d(D)>0 it follows that <5(C, ε)^δ(D, ε), εoφ)^εo(C) and

Remark 3.2. Let C and D be convex subsets of E. For C G E , it is easy
to see that <5(C, e)=3(C, e), <5(C+α, e)=δ(C, ε), and <5(Cn£>, ε)=max{^(C, ε),
J(fl,e)}. Similarly we have Sί(C)=N(C), ft(C+a)=ft(C), and N(CΓ\D)=

Example 3.1. Let C[0, 1] be a Banach space of all continuous real func-
tions on [0, 1] with supremum norm and let A be a subspace of all afiine func-
tions in C[0, 1]. Since C[0, 1] is not reflexive, we have N(C[0, 1])=1. But it
is easy to see that A is isomorphic to ll={R2, || |U) and hence N(A)=N(li)=

\ , cf. [17], [1].
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It is well known that δE{ε) is continuous on [0, 2), cf [11]. We can also
prove an inequality concerning the continuity of δ(C, ε). Before proving it we
need the following lemma.

LEMMA 3.1. Let C be a nonempty convex subset of a real Banach space E
with d(C)>0, let u, V(ΞE and let 0<r<d(C). For Z<ΞC and ε with 0 ^ ε ^ 2 define
a set Nr>UtV(z) and a function δr,u,v(ε) # s follows:

^r,u,υ(z)=](x, y): x,

x+yx-ry , r U . Δ

x—y—auy z -^-—bv for some a, b^0>

Then δr,u,v 2S a nondecreasing convex function from [0, 2] to [0, 1] with

δ(C, ε)=inf{<5r,w,υ(ε): u, V<EΞE, 0<r<d(C)}.

Proof. Since it is obvious that δr>UtΌ is nondecreasing and

3(C, 6)=inf{3r,tl,t,(e): u, v^E, 0<r£d(Q},

we only prove that δr,u,v is convex.

For arbitrary zlt z2<=C and (xly yi)&Nr,u.v(zi) and (x2, y2)^NrιU,v(z2) with
||*i— y j ^ r ε i and ||x2—3;2|| ^ r s 2 , there exist alf a2y bly b2^0 such that

Xί-yi-alUf Zl—

and

For λ with O^Λ^l, define xi—λxι-\-{l—λ)x2y ^ 3 =>ί^i+(l—^)^ 2 and z^—λz^
(\—λ)z2. Then, we have

2

=Qbx+{l-λ)b%)υ.

Since \\z3—xB\\<r and \\zs—ys\\<Lr, we have (xs, yz)^Nr>u>v{zz). We also obtain

and
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for arbitrary zu z2^C, (xlf

we have

2 1)
and (x2, y^Nr,UtX>{z^ Therefore

THEOREM 3.1. Let C be a nonempty convex subset of a real Banach space E
with d(C)>0. Then for all εx and ε2 with 0 g ε ! < ε 2 ^ 2 ,

δ(C, ea)-3(C, e i )^-^^-(l-3(C, £ l ) ) ^ 4 F ^ .
S ζ

Proof. For any real number with η>0, there exist u, v^E and r with
0<r<d(C) such that δr,u,v(εi)^δ(C, εj+η and hence we obtain

or

ur, u, v\&lJ= c\ \ur,u,

ε 2 ε i Λ x

Then we have

, ε2)—ί(C, εi)^δr,Mft)(ε2)—

Since is arbitrary, we have

δ(C, ε2)—δ(C, εJ^-Tf

The following lemma can be proved as in [16].

LEMMA 3.2. Let C be a convex subset of a real Banach space E. Let B be
a bounded subset of C and let {Ba: a^A} be a decreasing net of bounded subsets
of C. For each x, y^C, if R(B, x)£t, R{B, y)<t and | | x - ; y | | ^ ε then
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and if r({Ba\, x)<t, r({Ba}, y)^t and \\x-y\\^tε then

It was proved by Bynum [3] that ft(E)^l—δE(ϊ). By using Theorem 3.1,
Lemma 3.2 and the method of [3], we can also obtain the following: Let C
be a nonempty convex subset of a real Banach space E with d(C)>0. Then N(C)
£ l - ί ( C , 1).

Maluta [17] and Bae [1] proved that if N(E)<1 then E is reflexive. We
can prove the following:

THEOREM 3.2. Let C be a nonempty convex subset of a real Banach space E
with d(C)>0. // N(C)<1 then C is boundedly weakly compact and has normal
structure.

Proof. It is obvious from iV(C)<l that C has normal structure. We may
assume that C is bounded. Let {Cn\ be an arbitrary decreasing sequence of
nonempty closed convex subsets of C. If we show {Cn} has nonempty intersec-
tion then we complete the proof, cf. [p. 433, 4]. If d(Cn)=0 for some n ^ l
then it is obvious that {Cn} has nonempty intersection. So we assume d(Cn)>0
for all n^l. Let η be a real number with N(C)<η<l and define by induction:

Xn,τn^Cn>m such that R(Cn>m, xn,m)£yd(Cn>m);

Cn,m+i='cd{xkιm: k^n).

Then, we have Cn>m is nonempty, Cn,m2Cn + 1,m, Cn,m^Cn,m+ι and

n,m)—sup{|Uι,m_1—*JιTO-i||: i, /^n}

p

for all n,m^l. Hence limd(Cn>TO)=0 Since Γ\Cn>m^ Γ\Cn+1>m for all n^l ,
m-oo ' m=l ' m=l

there exists y<=E such that Γ\Cn,m~{y} for all n ^ l . Therefore Γ\Cn is
TO=I ' n=i

nonempty.

COROLLARY 3.1 (Maluta [17] and Bae [1]) Let E be a real Banach space
with N(E)<1. Then E is reflexive and has normal structure.
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§4. Fixed point theorems.

In this section, we prove three fixed point theorems by using the results
obtained in section 3. The following lemma is crucial in the proofs.

LEMMA 4.1. Let C be a convex subset of a real Banach space E. Let {Ba :
a^Λ} be a decreasing net of bounded subsets of C and let D be a boundedly
weakly compact convex subset of C. Let r be the asymptotic radius and A be the
asymptotic center of {Ba} in D. Then

d(A)£εo(C)r.

Further let εo(C)<l and let γ be a real number such that γ(l—δ(C, 1/^))=1. For
a real number k with l^k<γ, define Ak — {x^D: r({Ba}, x)<^kr}. Then

Proof. In case r=0, the inequality is true. In fact, if x, y^A then

\\x-y\\£r({Ba}, x)+r(lBa\, y)=0

and hence d(A)—0. So we assume r>0 and d(A)>0. For any real number η
with 0<η<d(A), there exist x, y^A such that \\x—y\\^d(A)—η. By Lemma
3.2 and convexity of A, we have

This implies

δ(c,

and hence d(A)<Zεo(C)r.
We may also assume r>0 and d(Ak)>0. For any real number η with 0<

η<d{Ak), there exist x, y^Ak such that ||x—y\\^d(Ak) — η. Then, we have

Since η>0 is arbitrary and δ is continuous, it follows that

kr / k

Suppose that — <—r~^~ Then we have
γ ~~ kr

γ/ \ kr / ^ T*
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This is a contradiction.

Remark 4.1. From Lemma 4.1, we have immediately the similar inequality
concerning the Chebyshev radius and center. In fact, putting Ba=B, we have

d(C(B, D))<εo(C)R(B, C).

The following theorem is a special case of results of Lim [15] and Taka-
hashi [18], while the proof is constructive.

THEOREM 4.1. Let C be a closed convex subset of a real Banach space E with
εo(C)<l and let S={Tt: t^S} be a nonexpansive semigroup on C. Suppose that
S is left reversible and {Tty : ί e S } is bounded for some j>eC. Then there exists
a z<E:C such that Tsz—z for all s^S.

Proof. Let Bs(x)={Ttx: t^s} for S<ΞS and jceC, Define {xn: n^O} by
induction as follows:

n-1)},C) for

Let rn(x)=r({Bs(xn^)}f x)frn=r({Bs(xn.1)},C) and An=JH{Bt(xn-i)}, Q for
l. Then we have

for all ί e S and n ^ l and hence TtAnQAn for t^S and n ^ l . By Lemma 4.1,
we obtain

and hence

\\xn+i—xn\\^r({Bs(xn)}, xn+i)+r({Bs(xn)}, x n )=r n + 1 +r n + 1 (x»)

for all n ^ l . So, {xn} is a Cauchy sequence and hence {xn} converges to a
point z e C Therefore we have

\\z-Tsz\\=\im\\xn-Tsxn\\<\im(rn(xn)+rn(Tsxn))
n

for all
By the method of Theorem 4.1, we can prove the following fixed point

theorem which is slightly different from [9].
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THEOREM 4.2. Let C be a closed convex subset of a real Banach space E
with εo(C)<l and let γ be a real number such that γ(l—δ(C, 1/^))=1. Let S=
{Tt: t^S} be a uniformly k-lipschitzian semigroup on C with l^k<γ. Suppose
that S is left reversible and {Tty : t^S} is bounded for some 3/eC1. Then there
exists a z^C such that Tsz=z for all s e 5 .

Proof. Let Bs(x)={Ttx: t^s} for S G 5 and XGΞC. Define {xn: n^O} by
induction as follows:

*»€ΞΛ({.B,(Λ:n-1)},C) for n ^ l .

Let r n U)=r({5,U n - 1 )} , x), rn=H{B8(xn,1)}, C) and An={χ(ΞC: rn(x)^krn} for
w ^ l . Then since rn{xn)—rn^krn and

for all t^S and n^l, we have xn, Ttxn^Λn for all ί e S a n d w^l. By Lemma
4.1, we obtain

k

for all n ^ l . Therefore, as in the proof of Theorem 4.1, {xn} converges to a
point z<=C. So, we have

\\z-Tsz\\=\im\\xn-Tsxn\\S\im(rn(xn)+rn(Tsxn))
7

for all

Remark 4.2. Let C and γ be defined as in Theorem 4.2. Then we have

In fact, let η=l/γ and if δ(C, η)=l — η=0. Then we have l>eo(C)^i7 = l
This is a contradiction. Hence ε o ( C ) ^ < l . So, from Theorem 3.1,

Therefore we have

l - β o ( C )
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We can also obtain a generalization of Casini and Maluta's fixed point
theorem [4].

LEMMA 4.2. Let C be a boundedly weakly compact convex subset of a real
Banach space E. Let {Ba: a^Λ) be a decreasing net of nonempty hounded closed
convex subsets of C and let B=Γ)Ba. Then

a

r({Ba},B)^N(C)infd(Ba).
a

Proof. Let uβ<^C(Bβ, Bβ) for each β(=Λ. Then we have

r({Ba], uβ)£R(Bβ, uβ)=R(Bβ, Bβ)£N(C)d(Bβ).

Let {uβγ} be a subnet of {uβ} which converges weakly to a point UO<BB. By
weakly lower semicontinuity of r and monotonicity of d(Bβ), we have

r{{Ba], B)£r({Ba}, uo)^\immfr({Ba}, uβΐ)£\ϊmmfN(C)d(Bβΐ)

=N(C)mfd(Bβ)=:N(C)mfd(Ba).
r r a

THEOREM 4.3. Let C be a closed convex subset of a real Banach space E
with N{C)<1 and let S={Tt: t&S} be a uniformly kΊipschitzian semigroup on
C with k<N(C)-1/2. Suppose that S is left reversible and {Tty : t^S} is bounded
for some y&C. Then there exists a z^C such that Tsz—z for all

Proof. Let Bs(x)=cd{Ttx : ί^s} and let B(x)=Γ\Bs(x) for s&S and *eC.
s

Define {xn: n^O} by induction as follows:

i)) for tt^l.

Let rnU)=r({5,(xn.1)}, x) and rn=r({B,(xn_1)}, B(xn^)) for n ^ l . Then from
n-i)=nBtUn-i) for n ^ l , we have

tίxn-!), Tsxn))

=lim suprn(T,xn)=lim sup(lim s\λχ>\\Ttxn-1--Tsxn\\
s s t

n-!—xn\\)—krn
s t

gkft(C)mίd(B.(xΛ-1))
S

and

Md(B9(xn-i))=mfs\ip{\\TaXn-i-TbXn-i\\' a, b^
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=liinsupr n (T t x n - 1 )

Hence we have

Therefore, as in the proof of Theorem 4.2, {xn} converges to a common fixed

point.

R E F E R E N C E S

[ 1 ] BAE, J. S., Reflexivity of a Banach space with a uniformly normal structure, Proc.
Amer. Math. Soc. 90 (1984), 269-270.

Γ 2 ] BROWDER, F. E., Nonexpansive nonlinear operators in Banach space, Proc. Nat.
Acad. Sci. U.S.A. 54(1965), 1041-1044.

[ 3 ] BYNUM, W.L., Normal structure coefficients for Banach spaces, Pacific J. Math.
86 (1980), 427-436.

[ 4 ] CASINI, E. AND E. MALUTA, Fixed points of uniformly lipschitzian mappings in
spaces with uniformly normal structure, Nonlinear Analysis 9 (1985), 103-108.

[ 5 ] DOWNING, D. J. AND W. O. RAY, Uniformly lipschitzian semigroup in Hubert
space, Canad. Math. Bull. 25 (1982), 210-214.

[ 6 ] DUNFORD, N. AND J.T. SCHWARTZ, Linear operators, Part 1., Interscience, New
York (1958).

[ 7 ] GOEBEL, K., Convexity of balls and fixed-point theorems for mappings with non-
expansive square, Compositio Math. 22 Fasc. 3 (1970), 269-274.

[ 8 ] GOEBEL, K. AND W. A. KIRK, A fixed point theorem for transformations whose
iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135-140.

[ 9 ] GOEBEL, K., W.A. KIRK AND R.L. THELE, Uniformly lipschitzian families of

transformations in Banach space, Can. J. Math. 26 (1974), 1245-1256.
[10] GOHDE, D., Zum prinzip der kontraktiven abbildung, Math. Nachr. 30 (1965),

251-258.
[11] GURARII, V. I., On the differential properties of the modulus of convexity in a

Banach space, Mat. Issled. 2 (1967), 141-148.
[12] ISHIHARA, H. AND W. TAKAHASHI, Fixed point theorems for uniformly lipschitzian

semigroups in Hubert spaces, to appear in J. Math. Anal. Appl. 126 (1987).
[13] KIRK, W. A., A fixed point theorem for mappings which do not increase distance,

Amer. Math. Monthly 72 (1965), 1004-1006.
[14] LIFSCHITZ, E. A., Fixed point theorems for operators in strongly convex spaces,

Voronez Gos. Univ. Trudy Math. Fak. 16(1975), 23-28.
[15] LIM, T. C, Characterizations of normal structure, Proc. Amer. Math. Soc. 43

(1974), 313-319.
[16] LIM, T. C, On asymptotic centers and fixed points of nonexpansive mappings,

Can. J. Math. 32 (1980), 421-430.
[17] MALUTA, E., Uniformly normal structure and related coefficients, Pacific J. Math.

111 (1984), 357-369.



208 HAJIME ISHIHARA AND WATARU TAKAHASHI

[18] TAKAHASHI, W., Fixed point theorems for families of nonexpansive mappings
on unbounded sets, J. Math. Soc. Japan 36 (1984), 545-553.

DEPARTMENT OF INFORMATION SCIENCE,

TOKYO INSTITUTE OF TECHNOLOGY

OH-OKAYAMA, MEGURO-KU, TOKYO 152, JAPAN




