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ON A FAMILY OF INTEGRAL OPERATORS RELATED

TO FRACTIONAL CALCULUS

BY YUSAKU KOMATU

I. Introduction.

Let % denote the class of analytic functions / regular in the unit disk E
= {|z|<l} and normalized at the origin by /(0)=0 and /'(0)=l. On the other
hand, let σ be a probability measure supported by the unit interval /=[0, 1].
Then the linear integral operator X is defined on SF by the expression

It is readily seen that / G Ϊ implies I / ε ϊ .

Let the Taylor expansion of /e£F be given by

f(z)=Έcvz
v with cr=l.

Then substitution followed by termwise integration yields

-£/(*)= Σ avcvz
v

where {tfv}Γ=i is the moment sequence with respect to a defined by

( x ; = i f 2 , . -) ,

which is decreasing and nonnegative; in particular, α ^ l .
The iteration {Xn}n=o arises automatically by JΓ°=id, Xn=XX71-1 (n = l,

2, •••) or by

We discussed in [2, 3] the problem of interpolating the sequence {Xn} into a
family {Xλ} depending on a continuous parameter λ in such a way that the
additivity XλXμ—XλJr^ remains valid. We then derived several properties of
the family thus introduced, and observed the simplest distinguished case gener-
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ated by a special probability measure σ(t)=t especially in detail.
In the present paper we shall mainly observe the case generated by the

probability measure involving a real parameter a defined by

σ(t; a)=ta with a>0.

The measure σ(t;l)—t is indeed included as a particular one but it plays an
exceptional role occasionally in certain sense.

2. Family generated by ta.

We now suppose that a probability measure σ possesses the density p:

* (0=

The operator generated by this measure will be denoted by -£[/>] :

We begin with the following lemma:

LEMMA 1. The product of two operators becomes -£[£]-£[#] =-£[/>] where

Proof. Direct calculation shows that

with p stated in the lemma.

REMARK. If we put t=e~v and accordingly p(t)=P(v), g(t)=Q(v) and p(t)
=R(v), then the expression in the lemma becomes

R(v)=[VP(u)Q(v-u)du .
Jo

This shows that R is the convolution of P and Q: R=P*Q.

LEMMA 2. Lei ever y member Xλ of the family {-£ ;h>0 &<? generated by a
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measure with the density ρλ: Xλ=X[_pχ]. Then the additivity XλXμ = Xλ+μ is
characterized by

Proof. In view of Lemma 1 we have -C[px~]-£lpμl—-Clρ~] with

Hence the additivity is characterized by the condition that J?[p~]f(z)=£[pχ+μ]f(z)
holds for any /<Ξ£F. This condition applied, for instance, to f(z)=z(l—z)~1^<Ξ
yields, by comparing the coefficients of zv,

In view of the unicity of the solution of moment problem, we obtain p = pλ+μ.
Conversely, if ρ—pχ+μ) it is evident that the additivity holds.

Now, we observe the probability measure defined by σ(t; a)—ta with β>0.

THEOREM 1. The additive family of operators generated by σ(t a)—ta with
α>0 is given by the probability measure σχ(t; a) with the density pχ(t; a) defined
by

) a)dτ, pλ(t; α ) A

Proof. The condition stated in Lemma 2 can be verified by direct calcula-
tion. In fact, we have

W ( l0g7) (T) ( logτ)
λ+μ +a ifVi l\^"Vi sγ-ids

( ^ )Λ l o g7) ( l o g τ ) -

Γ{λ)Γ(μ)

The assertion may be proved alternatively as follows. In fact, since the
moment with respect to σ(t a) is equal to
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; a)=

it is sufficient to show that the moment with respect to the measure σχ(t; a)
stated in the theorem is equal to av(a)λ, what is an immediate consequence of
a familiar formula

According to Theorem 1 we shall denote in the following lines X[_pλ(t; α)]
briefly by X(a)λ:

The behaviors of the general family {Xλ} as Λ->+0 and λ-^co have been
shown in [2]. But, in case of σ(f a), since the extreme exceptional cases do
not appear, we can state the following theorem:

THEOREM 2. The limit relations

lim £(a)λf{z)=f(z) and lim £{a)λf(z)=z

hold for every /e£F in E uniformly in the wider sense.

On the other hand, the behaviors as α->+0 and α-̂ oo become as follows:

THEOREM 3. The limit relations

lim £(a)λf(z)-=z and lim £(a)λf(z)=f(z)
α->+0 α->oo

hold for every f e EF in E uniformly in the wider sense.

Proof. Let z be restricted on any fixed compact in E* Then both
\f(zt)/t—z\ and \f(zt)/t—f(z)\ possess for every ί e / a bound M, say. First,
we have

For any ε>0 there exists τe(0, 1) such that \f(zt)/t—z\<ε/2 as 0^t<τ, and
hence for a<l

The first summand of this estimate is always less than ε/2, while the second
summand becomes less than ε/2 provided a is sufficiently near to zero. This
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leads to the first relation in the theorem. Next, we have

For any ε>0 there exists re(0 , 1) such that \f(zt)/t—f(z)\<e/2 as 1
and hence for a>l

Since the second summand of this estimate is always less than ε/2 and the first
summand becomes less than ε/2 for a large enough, the second relation follows.

Though the proof given here has been based on the integral representation
for X(a)λf(z), a rather brief proof may be given by referring to its series
expansion.

3. Relation to integration operator.

We have pointed out in [2] that the operator X with general σ and the
differentiation with respect to log z are commutative. Further, in particular
case generated by σ(f)=σ(f, 1), the operation X(l)λ can be represented in the
form

X(l)λf(z)=:1~^Zf(ζ)(\og z-log ζ)λ-'d log ζ.

Here the integration is taken along the half straight line on the log ζ-plane
which is parallel to the real axis and contained in the left half-plane {Re log ζ
<0}. Thus, this operator coincides with the fractional integration of order
λ with respect to log z. In particular, X(ϊ) is just the inverse operator of
d/d log z.

The last-mentioned fact is peculiar to the case α = l . The corresponding
property in the case aΦl is stated as in the following theorem.

THEOREM 4. The operator X(a) with aφ\ coincides with the integration with
respect to w=a(a—l)"1za~1 followed by multiplication of z~ia'Όy the non-integral
power being understood to mean the principal branch. More precisely , we have

°F{ω)dω

where w—a(a—iylza-1, F(w)=f((a"1(a—Ϊ)w)ina'1^) and the integration paths are
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the half straight line {argω—π—(1—a) argz, co> \ω\ > \w\} for 0 < α < l and the
segment {arg<w=(α — l)argz, 0 < | ω | < \w\} for α > l , respectively.

Proof, The operator X{a) is, by definition, given by

the last integration being taken along the segment from 0 to z. We have only
to change the variable of the last integral by dω=aζa~2dζ, or more concretely,
by ω=α(α—l)" 1 ζ α " 1 . When ζ runs along the segment from 0 to z, ω runs along
the respective integration path stated in the theorem.

It will be seen that the relation

d

d \ogz Λ(a)f(z)=af(z)-(a-l)Λ(a)f(z)

holds for any α>0. This may be regarded as a straightforward generalization
of the already mentioned relation (d/d log z)X(l)f(z)=f(z) corresponding to
α = l. Here we state it in slightly general form:

THEOREM 5. For any α>0 and λ^il, we have

X{a)° being understood to be the identity operator.

Proof. By differentiating the defining equation of X(a)λf(z), we obtain

which becomes after integration by parts

Here we remember /e f f and α>0. We get for λ—l

d log z -c(aV(^=a(f(z)-(a-l)\jif(zt)ta-'dt)

= af(z)-(a-l)Λ(a)f(z),
while we obtain for
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-(α-l) J//Ctf)f-»(log j ) 2 " 1

In the following lines we shall consider the relation of C(α) to the ordinary
integration operator S denned by

For that purpose we attempt to derive the expression for £{d) in terms of S
and its iterations. For the sake of brevity we make use of Pochhammer's
symbol

Γ(xA-ri) n~1

the empty product denoting unity; in particular, Oc)0=l even for x=0.

THEOREM 6. For any a>0 we have

In particular, when a — k>l is an integer, the right hand expression reduces to
finite sum consisting of the beginning k—1 terms.

Proof. Since \z—ζ|<|z| holds on the integration path in the expression
for £{ά) except at ζ=0, we have

1 ^

7 —

h (*-i)i z*-Λ

Substitution followed by termwise integration yields

When β = ^ > l is an integer, then (2—k)κ^1 vanishes for every κ^k. The
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case a — I is exceptional in the sense that every term in the summand for JO{1)
does not vanish.

It may be noted that, for integral value of a, the relation in the theorem
can also be inductively varified, by making use of integration by parts. On the
other hand, it is remarked that the operator «Γ(2) was observed by Libera [4]
and Livingston [5] and that -C(a) for integer α > l was studied by Bernardi
[1], both in connection with some classes of univalent functions.

4. Generalization.

By relaxing the restriction that the referring probability measure α is a
monomial, we now consider a probability measure defined by a power series

with convergence radius greater than unity: lim suρk^V\ωk | <1 . In view of
the condition that σ is a probability measure, we have to suppose

p(t) = σf{t)= Σ kcΰkt*-1^) (f e/), σ(l)= Σ ω* = l .
k=l k=l

THEOREM 7. Let σ satisfy the just mentioned conditions. Then the operator
-C\_p~] defined by

ΪS represented in terms of the ordinary integration operator S in the form

where φ is defined by

Proof. By substituting the expressions for £(k) (ife = l, 2, •••) derived in

Theorem 6, we obtain

oo (r—l)\ co k-1 (k—2)l
=α>i Σ ϊ?—^-J'+ ΈωkkΣ ( - D - 1

 fh

{ , K«=i zκ k=2 κ=i (k—tc—l)\zκ

κ=l Z

Φ
K <J , s a y .
K
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The coefficients of the last expression are given by

h

and hence the desired result.

The result just derived can be more slightly generalized with respect to
the referring measure σ.

THEOREM 8. Let a probability measure a be given by

where a measure τ defined on (0, oo) satisfies the conditions

Then we have

where φ is defined by

Proof. The proof proceeds quite similar as for the previous theorem. In
fact, we have

I t

/ ί

Hence, by substituting the expression for JC(ά) derived in Theorem 6, we obtain

j:iplι=ζa Σ ( 2 ~ ^ ) ' - 1 j»dr(α)= Σ - ^ - J » , say.

The coefficients of the last expression are given by
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and hence the result.

REMARK. Throughout this section the restriction p(t)—σ'(t)^0 (ίe/) is
really inessential, since the discussions concern to derive relations involving
equality alone. From this standpoint we supplement here an example concern-
ing Theorem 7.

We consider σf (of indefinite sign) given by

where P2m denotes the Legendre polynomial of degree 2m and Λ2m is the
normalization factor determined by <τ(l)=l. By means of Rodrigues formula
we get after repeated integration by parts

.n ,_w (-1Γ-1 (2m-2)!

By making use of a familiar formula

2 / '

we get after repeated differentiation

2 )

Thus, for p(ί)=^2mΛm(ί) we obtain the value of p ( e " 1 } and finally

L σ J ~ l j (2m-2)! Λ (ic-l)!(

For m=0, we have P0(f)=l, Λ = 2 ; σ(ί)=ί* and

while for m=l/2, we have P^τ^τ, Λ = 3 ; ^(ί)=ί8 and

3 ^ ί ^ 2

However, the case with odd suffix greater than 1 has been rejected, since we
would have l/^4n=0 for any odd integer n^3.
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In this occasion we state another remark. The discussions developed in § 2
and §3 for the case generated by

p(t;a)=ata-1, pλ(t; a^

will be generalized formally to the case

However, the latter can be reduced essentially to the former. In fact, we have
only to take into account the relation

px(t a, b)=ρbλ(t a, l)=pbx(t a).

5. Hadamard product.

The Hadamard product * of two power series

φ(z)=Έavz
v, φ(z)=Σ,bvz

v

is defined by

It is readily seen that φ,φ^.SS implies φ*φ<=<2 and the particular function

plays the role of unit function with respect to the operation * in the class £F
namely, / * χ = χ * / = / (/e£F).

On the other hand, any operator X under consideration satisfies

whence follows, in particular,

Thus, the action of X on any function /eEF is reduced to the Hadamard pro-
duct of / with XI.

If we consider, for instance, the operator X(a) defined in §2, we have an
expansion of X{a)l in the form
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a±
v=i 1 (v+a)

On the other hand, we have derived an expression for «Γ(α) in terms of {Jκ},
which, in particular, yields

valid for a>0. Now, as readily seen directly, Sκl is expressed by the expansion

By substituting this into the above relation and comparing the coefficients of
zv, we obtain an identity

1 ^k^ (v=l,2, . ).
Γ(v+a) tA

Now, Sκl{z) is for any integer /c^O an elementary function. We have, for
instance,

«Λ(z)=log -f-ί z, J2X(z)=-(l-z) log —!— +«-?-.
x Z x Z CJ

For any integer κ^2 we can derive similar explicit expression in the form

the empty sum being to be understood zero. It is verified, for instance, by
induction though the actual calculation is somewhat troublesome.

6. Distortion inequalities.

In the previous paper [2], we discussed some distortion properties on the
family {Xλ\ generated by a general measure σ, and specialized them in the
case of {Λ(l)λ}. We supplement here these results by observing the family
{X(a)λ} with α>0.

First, for a fixed pair /, g^3 we consider the quantities M and N defined
by

Mir) a, λ, μ)=max\J:(a)λf(z)-X(ayg(z)\f
\z\=r

N(r; a, λ)=τmx\X(a)xf(z)-z\.
\z\r\z\=r

THEOREM 9. For any f, g<B £F the quantity Mir a, λ+δ, μ+δ) decreases with
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respect to δ^O. More precisely, for δ'>δ^O we have

{^)δ'M{r a, λ+δ', μ+δ') s(^~)M{r a, λ+δ, μ+δ).

Proof. As shown in [2], we have

M(r a, λ+δ, μ+δ)^M(r a, λ, μ)\tdσδ{t a).

The last factor of the right hand member is in the present case equal to

i n8 C / 1 \δ-i

Let 0^δ<δ'. Then, by replacing λ, μ and δ in the above inequality by λ+δ,
μ+δ and δ'—δ, respectively, we obtain the desired result.

COROLLARY. For any /e£F the quantity ((a+l)/a)δN(r; a, λ+δ) decreases
with respect to δΞgO.

Proof. Since L(a)μz becomes z for any μ, the quantity M(r a, λ, μ) reduces
to ΛΓ(r; α, λ) provided g(z)=z. Hence, the assertion follows from the theorem
by only substituting g(z)=z.

By the way, it follows from the Corollary that

(r a, λ+δ)^N(r a, λ).

If we replace here both λ and δ by λ/2, we get

In view of this inequality, we see that the first limit relation stated in Theorem
3 is again verified.

Next, for a fixed / G ί we observe the quantities h and H defined by

hλ(r a) __ £|L* X(q)*f(z)

Hλ(r; a) max z

|2|=r

THEOREM 10. For any / e ^ and δ>0 we have

hλ+δ(r;a)^hλ(r;a)+Φ(δ, a){l-hλ{r a)),

Hλ+δ(r;a)^Hλ(r;a)-Φ(δ, a)(Hλ(r; a)-l)

where Φ is given by
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The equality sign in either estimation does not appear for any re(0, 1) unless f(z)
=z. If, in particular, a—k is a positive integer, Φ{3, k) is expressible in the
form

Φ(δ, k)=l+2(-l)k-1ks((l-21-!)ζ(δ)+ Σ ^

ζ denoting Riemann zeta function.

Proof. The inequalities having been generally shown in [2], it suffices to
verify the expression for Φ. We first have

1 \si

H ^ T )
 dt

v=2 (v+α —If

Next, in view of the formula

we get for a positive integer & the relation

oo (—1)" °° (—1)*-* + 1

By substituting this in the above expression for Φ(δ, a) with α — k, we obtain
its desired expression.

COROLLARY. We have

hλ+δ(r; a)^hλ(r; a)+{l-e-φl">^){l-hλ{r a)),

Hλ+δ(r; a)^Hλ(r a)-(l-e-φ'(0

where Φf is given by
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[ pj ~l<5=+o

Mφ{b> a)\

If, in particular, a—k is a positive integer, then

φ'(0 k)=2(—l)k-1 log k ! ^ π ^ los k
ψ \\j, K) &\ i.) iu^ (2 [ j f e / 2 : ] [^/2]!) 2 '

Proof. We first note that Φ(+0, α)=0. In fact, by means of integration
by parts, we get

whence readily follows

The first inequality in the theorem yields

hλ+δ(r;a)-hχ(r;a) ^ Φ(δ, a)

δ = δ

whence follows, as δ tends to +0, the inequality

a
ϊχh*(r'> α ) ^ φ / ( 0 > a)(l-hλ(r; a ) ) .

This linear differential inequality can be brought readily into finite form. In
fact, by rewriting it in the form

and then integrating with respect to λ over the interval (λ, λ+δ), we obtain the
desired estimation for h. Similar argument applies also for H. Next, we have
in view of the expression for Φ{δ, a) given in the theorem

|=#(ί,β)=2β Σ(-l) l 0 β ( v + β - 1 ) " t o β β

whence follows the desired expression for Φ'(0, a). Finally, if a = k is a posi-
tive integer, we see that
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~Φ(δ, £)=2(-l)*-^log έ((l-2'-δ)ζ(δ)- Σ ^ P )
00 V κ=l It '

+2(-l)"-ίkδ((l-21-s)ζ'(δ)+21-δ\og2 Z(δ)+ Σ ^ r ^ l o g Λ

In view of ζ(0)=—1/2 and ζ'(0)=-(l/2)log2;r, we get

Φ'(0, έ)=2(-l)*-1log

+2(-l)*-1(-!Γ log 2w-log 2+ Σ (-I) 1" 1 log * ) ,

which becomes the desired form, by remembering the elementary relations

In the following lines, we shall supplement some properties of the quantities
Φ(δ, a) and Φ'(0, a) contained in Theorem 10 and its Corollary.

For lower values of 3, a we see that

Φ(l, 1)=2 log 2, Φ(2, 1)= ̂ , Φ(l, 2 ) = 3 - 4 log 2

and hence, in particular, Φ(2, 1)>Φ(1, 1)>Φ(1, 2). Now, we shall indicate that
^, a) shows such monotoneity in general.

THEOREM 11. For any fixed a>0 we have

Φ(+0, α)=0 βπύί Φ(oo, fl)=l.

When δ increases from 0 to oo, Φ(^, α) increases strictly from 0 ίo 1.

Proof, The relation Φ(+0, β)=0 has been shown on the way of proving

the Corollary of Theorem 10. Next, we have

Let any small positive number ε be given. Then, 2ί/(l+ί)<ε/2 as ί<ε/4 and
hence

<



36 YUSAKU KOMATU

In view of Stirling formula applied to Γ(δ), we see that

1 4 « i 1 /ea . 4 δ

{ l o g as

and hence there exists Δ(ε) such that 1—Φ(δ, a)<ε as δ>Δ(ε). This shows
Φ(oo, α ) = i . Finally, let Q<δ<δ'. Then

Put T=exp(-(l/α)(Γ(δO/Γ(δ))1/(δ'-δ)). Then we see that as

IV"1
 J l-t 1-T

g T ) a n d ^
and hence

Φ(δ', a)-Φ(δf a)

THEOREM 12. For any fixed δ>Q we have

φ(δ, +0)=l αnί/ Φ(3, oo)=0.

α increases from 0 ίo oo, φ(5, α) decreases strictly from 1 to 0.

. We see that

since the last integral remains finite for δ>0. Or, the result could be derived
more simply by means of the series form of Φ. Next, let any small positive
number ε be given. Then, (1—0/(l+0<e/2 as l>ί>j?=(2-ε)/(2+ε) and hence

Since aδta-1~^0 as α-̂  oo uniformly for ίe[0, η]t there exists A(ε) such that
0<Φ(δ, α)<ε as a>A(ε). Finally, let 0<α<α / <l . Then
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Φ(δ, af)-Φ{δ, α)=

We see that as t^{a/af)δl{a'~a^

- ^ — ^ ~~ , δ (a>-aϊ a n < ^ a/δta'~1^aδta~

and hence

Φ(δ, a')-Φ{δ, a)

\—(a/a')δna'-a) I f / 1 \δ-i1 \δ-i
~) dt~O
t) dΐ~Ό

REMARK. If φ{t) is a measurable function bounded on / and left-continuous
at 1, a similar argument as above for deriving Φ(δ, cχ>)—0 in which (1—0/(1+0
is replaced by ψ(t)—ψ(l) yields

f a)dt->0, i.e., I ψ(t)p§(t; a)dt->φ(l) as β—>oo.

This relation corresponds to the fact that the probability density

is a kernel of singular integral tending to concentrate at t—1 as

Now, we shall denote Φ'(0, a) briefly by Ψ(a), namely

As shown in the Corollary of Theorem 10, the quantity Ψ(k) with a positive
integer k is represented in terms of elementary expressions in particular, we
have

!-, ?Γ(2)=log ~, ?Γ(3)=log ψ ,

^ etc.

We supplement here the monotoneity of Ψ(a).

THEOREM 13. We have

2Γ(+0) = oo and ?P"(oo)=0.

α increases from 0 to oo, ψ(a) decreases strictly from oo to 0.
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Proof. The expression for Φ(δ, a) obtained in the proof of the Corollary

of Theorem 10 yields, after differentiation with respect to δ,

f A
^Γ(δ+l)iidt\l+ty

whence follows after integration by parts

l\δ 1
log — J log l o g y d t,

The decresing property of Ψ(a) is evident in view of the last expression. Now,

for any εe(0, 1/2) we get

whence follows

lim inf
α-»+0

Since ε<Ξ(0, 1/2) is arbitrary, we conclude ^(+0)^=00. Next, since the integrand

of the above integral expressing Ψ(a) is uniformly bounded on / for a>2 and

tends to 0 as α->oo, it follows that ?P*(oo)=:0.
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