ON A FAMILY OF INTEGRAL OPERATORS RELATED TO FRACTIONAL CALCULUS

By Yósaku Komatu

I. Introduction.

Let \mathcal{I} denote the class of analytic functions f regular in the unit disk E $=\{|z|<1\}$ and normalized at the origin by $f(0)=0$ and $f^{\prime}(0)=1$. On the other hand, let σ be a probability measure supported by the unit interval $I=[0,1]$. Then the linear integral operator \mathcal{L} is defined on \mathscr{F} by the expression

$$
\mathcal{L} f(z)=\int_{I} \frac{f(z t)}{t} d \sigma(t) .
$$

It is readily seen that $f \in \mathscr{F}$ implies $\mathcal{L} f \in \mathscr{F}$.
Let the Taylor expansion of $f \in \mathscr{F}$ be given by

$$
f(z)=\sum_{\nu=1}^{\infty} c_{\nu} z^{\nu} \quad \text { with } c_{1}=1
$$

Then substitution followed by termwise integration yields

$$
\mathcal{L} f(z)=\sum_{\nu=1}^{\infty} \alpha_{\nu} c_{\nu} z^{\nu}
$$

where $\left\{\alpha_{\nu}\right\}_{\nu=1}^{\infty}$ is the moment sequence with respect to σ defined by

$$
\alpha_{\nu}=\int_{I} t^{\nu-1} d \sigma(t) \quad(\nu=1,2, \cdots),
$$

which is decreasing and nonnegative; in particular, $\alpha_{1}=1$.
The iteration $\left\{\mathcal{L}^{n}\right\}_{n=0}^{\infty}$ arises automatically by $\mathcal{L}^{0}=\mathrm{id}, \mathcal{L}^{n}=\mathcal{L} \mathcal{L}^{n-1}(n=1$, $2, \cdots$) or by

$$
\mathcal{L}^{n} f(z)=\sum_{\nu=1}^{\infty} \alpha_{\nu}{ }^{n} c_{\nu} z^{\nu} .
$$

We discussed in [2,3] the problem of interpolating the sequence $\left\{\mathcal{L}^{n}\right\}$ into a family $\left\{\mathcal{L}^{\lambda}\right\}$ depending on a continuous parameter λ in such a way that the additivity $\mathcal{L}^{\lambda} \mathcal{L}^{\mu}=\mathcal{L}^{\lambda+\mu}$ remains valid. We then derived several properties of the family thus introduced, and observed the simplest distinguished case gener-

[^0]ated by a special probability measure $\sigma(t)=t$ especially in detail.
In the present paper we shall mainly observe the case generated by the probability measure involving a real parameter a defined by
$$
\boldsymbol{\sigma}(t ; a)=t^{a} \quad \text { with } a>0
$$

The measure $\sigma(t ; 1)=t$ is indeed included as a particular one but it plays an exceptional role occasionally in certain sense.

2. Family generated by t^{a}.

We now suppose that a probability measure σ possesses the density ρ :

$$
\sigma(t)=\int_{0}^{t} \rho(\tau) d \tau ; \quad \rho(\tau) \geqq 0, \quad \int_{I} \rho(\tau) d \tau=1
$$

The operator generated by this measure will be denoted by $\mathcal{L}[\rho]$:

$$
\mathcal{L}[\rho] f(z)=\int_{I} \frac{f(z t)}{t} \rho(t) d t
$$

We begin with the following lemma:
Lemma 1. The product of two operators becomes $\mathcal{L}[p] \mathcal{L}[q]=\mathcal{L}[\rho]$ where

$$
\rho(t)=\int_{t}^{1} p(s) q\left(\frac{t}{s}\right) \frac{d s}{s} .
$$

Proof. Direct calculation shows that

$$
\begin{aligned}
\mathcal{L}[p] \mathcal{L}[q] f(z) & =\int_{I} p(s) \frac{d s}{s} \int_{I} f(z s \tau) q(\tau) \frac{d \tau}{\tau} \\
& =\int_{I} p(s) \frac{d s}{s} \int_{0}^{s} f(z t) q\left(\frac{t}{s}\right) \frac{d t}{t}=\int_{I} f(z t) \frac{d t}{t} \int_{t}^{1} p(s) q\left(\frac{t}{s}\right) \frac{d s}{s} \\
& =\int_{I} \frac{f(z t)}{t} \rho(t) d t=\mathcal{L}[\rho] f(z)
\end{aligned}
$$

with ρ stated in the lemma.
REMARK. If we put $t=e^{-v}$ and accordingly $p(t)=P(v), q(t)=Q(v)$ and $\rho(t)$ $=R(v)$, then the expression in the lemma becomes

$$
R(v)=\int_{0}^{v} P(u) Q(v-u) d u
$$

This shows that R is the convolution of P and $Q: R=P * Q$.
Lemma 2. Let every member \mathcal{L}^{λ} of the family $\left\{\mathcal{L}^{\lambda}\right\}_{\lambda>0}$ be generated by a
measure with the density $\rho_{\lambda}: \mathcal{L}^{\lambda}=\mathcal{L}\left[\rho_{\lambda}\right]$. Then the additvity $\mathcal{L}^{\lambda} \mathcal{L}^{\mu}=\mathcal{L}^{\lambda+\mu}$ is characterized by

$$
\int_{t}^{1} \rho_{\lambda}(s) \rho_{\mu}\left(\frac{t}{s}\right) \frac{d s}{s}=\rho_{\lambda+\mu}(t) .
$$

Proof. In view of Lemma 1 we have $\mathcal{L}\left[\rho_{\lambda}\right] \mathcal{L}\left[\rho_{\mu}\right]=\mathcal{L}[\rho]$ with

$$
\rho(t)=\int_{t}^{1} \rho_{\lambda}(s) \rho_{\mu}\left(\frac{t}{s}\right) \frac{d s}{s} .
$$

Hence the additivity is characterized by the condition that $\mathcal{L}[\rho] f(z)=\mathcal{L}\left[\rho_{\lambda+\mu}\right] f(z)$ holds for any $f \in \mathscr{F}$. This condition applied, for instance, to $f(z)=z(1-z)^{-1} \in \mathscr{T}$ yields, by comparing the coefficients of z^{ν},

$$
\int_{I} t^{\nu-1} \rho(t) d t=\int_{I} t^{\nu-1} \rho_{\lambda+\mu}(t) d t
$$

In view of the unicity of the solution of moment problem, we obtain $\rho=\rho_{\lambda+\mu}$. Conversely, if $\rho=\rho_{\lambda+\mu}$, it is evident that the additivity holds.

Now, we observe the probability measure defined by $\sigma(t ; a)=t^{a}$ with $a>0$.
Theorem 1. The additive family of operators generated by $\sigma(t ; a)=t^{a}$ with $a>0$ is given by the probability measure $\sigma_{\lambda}(t ; a)$ with the density $\rho_{\lambda}(t ; a)$ defined by

$$
\sigma_{\lambda}(t ; a)=\int_{0}^{t} \rho_{\lambda}(\tau ; a) d \tau, \quad \rho_{\lambda}(t ; a)=\frac{a^{\lambda}}{\Gamma(\lambda)} t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1}
$$

Proof. The condition stated in Lemma 2 can be verified by direct calculation. In fact, we have

$$
\begin{aligned}
& \int_{t}^{1} \rho_{\lambda}(s ; a) \rho_{\mu}\left(\frac{t}{s} ; a\right) \frac{d s}{s} \\
= & \frac{a^{\lambda+\mu}}{\Gamma(\lambda) \Gamma(\mu)} \int_{t}^{1} s^{a-1}\left(\log \frac{1}{s}\right)^{\lambda-1}\left(\frac{t}{s}\right)^{a-1}\left(\log \frac{s}{t}\right)^{\mu-1} \frac{d s}{s} \\
= & \frac{a^{\lambda+\mu}}{\Gamma(\lambda) \Gamma(\mu)} t^{a-1} \int_{t}^{1}\left(\log \frac{1}{s}\right)^{\lambda-1}\left(\log \frac{s}{t}\right)^{\mu-1} \frac{d s}{s} \\
= & \frac{a^{\lambda+\mu}}{\Gamma(\lambda) \Gamma(\mu)} t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda+\mu-1} \int_{0}^{1} u^{\lambda-1}(1-u)^{\mu-1} d u \quad \quad\left[\log \frac{1}{s}=u \log \frac{1}{t}\right] \\
= & \frac{a^{\lambda+\mu}}{\Gamma(\lambda) \Gamma(\mu)} t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda+\mu-1} \cdot \frac{\Gamma(\lambda) \Gamma(\mu)}{\Gamma(\lambda+\mu)}=\rho_{\lambda+\mu}(t ; a) .
\end{aligned}
$$

The assertion may be proved alternatively as follows. In fact, since the moment with respect to $\sigma(t ; a)$ is equal to

$$
\alpha_{\nu}(a)=\int_{I} t^{\nu-1} d \sigma(t ; a)=\frac{a}{\nu+a-1},
$$

it is sufficient to show that the moment with respect to the measure $\sigma_{\lambda}(t ; a)$ stated in the theorem is equal to $\alpha_{\nu}(a)^{\lambda}$, what is an immediate consequence of a familiar formula

$$
\int_{I} t^{\kappa-1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t=\frac{\Gamma(\lambda)}{\kappa^{\lambda}} .
$$

According to Theorem 1 we shall denote in the following lines $\mathcal{L}\left[\rho_{\lambda}(t ; a)\right]$ briefly by $\mathcal{L}(a)^{\lambda}$:

$$
\mathcal{L}(a)^{\lambda} f(z)=\frac{a^{\lambda}}{\Gamma(\lambda)} \int_{I} f(z t) t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-1} d t
$$

The behaviors of the general family $\left\{\mathcal{L}^{\lambda}\right\}$ as $\lambda \rightarrow+0$ and $\lambda \rightarrow \infty$ have been shown in [2]. But, in case of $\sigma(t ; a)$, since the extreme exceptional cases do not appear, we can state the following theorem:

Theorem 2. The limit relations

$$
\lim _{\lambda \rightarrow+0} \mathcal{L}(a)^{\lambda} f(z)=f(z) \quad \text { and } \quad \lim _{\lambda \rightarrow \infty} \mathcal{L}(a)^{\lambda} f(z)=z
$$

hold for every $f \in \mathscr{F}$ in E uniformly in the wider sense.
On the other hand, the behaviors as $a \rightarrow+0$ and $a \rightarrow \infty$ become as follows:
Theorem 3. The limit relations

$$
\lim _{a \rightarrow+0} \mathcal{L}(a)^{\lambda} f(z)=z \quad \text { and } \quad \lim _{a \rightarrow \infty} \mathcal{L}(a)^{\lambda} f(z)=f(z)
$$

hold for every $f \in \mathscr{F}$ in E uniformly in the wider sense.
Proof. Let z be restricted on any fixed compact in E. Then both $|f(z t) / t-z|$ and $|f(z t) / t-f(z)|$ possess for every $t \in I$ a bound M, say. First, we have

$$
\mathcal{L}(a)^{\lambda} f(z)-z=\frac{a^{\lambda}}{\Gamma(\lambda)} \int_{I}\left(\frac{f(z t)}{t}-z\right) t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t
$$

For any $\varepsilon>0$ there exists $\tau \in(0,1)$ such that $|f(z t) / t-z|<\varepsilon / 2$ as $0 \leqq t<\tau$, and hence for $a<1$

$$
\left|\mathcal{L}(a)^{\lambda} f(z)-z\right|<\frac{\varepsilon}{2} \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{\tau} t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t+M \tau^{a-1} \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{\tau}^{1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t .
$$

The first summand of this estimate is always less than $\varepsilon / 2$, while the second summand becomes less than $\varepsilon / 2$ provided a is sufficiently near to zero. This
leads to the first relation in the theorem. Next, we have

$$
\mathcal{L}(a)^{\lambda} f(z)-f(z)=\frac{a^{\lambda}}{\Gamma(\lambda)} \int_{I}\left(\frac{f(z t)}{t}-f(z)\right) t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t
$$

For any $\varepsilon>0$ there exists $\tau \in(0,1)$ such that $|f(z t) / t-f(z)|<\varepsilon / 2$ as $1-\tau<t \leqq 1$, and hence for $a>1$

$$
\begin{aligned}
\left|\mathcal{L}(a)^{\lambda} f(z)-f(z)\right|< & M(1-\tau)^{a-1} \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{1-\tau}\left(\log \frac{1}{t}\right)^{\lambda-1} d t \\
& +\frac{\varepsilon}{2} \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{1-\tau}^{1} t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t
\end{aligned}
$$

Since the second summand of this estimate is always less than $\varepsilon / 2$ and the first summand becomes less than $\varepsilon / 2$ for a large enough, the second relation follows.

Though the proof given here has been based on the integral representation for $\mathcal{L}(a)^{\lambda} f(z)$, a rather brief proof may be given by referring to its series expansion.

3. Relation to integration operator.

We have pointed out in [2] that the operator $\mathcal{\mathcal { L }}$ with general σ and the differentiation with respect to $\log z$ are commutative. Further, in particular case generated by $\sigma(t)=\sigma(t, 1)$, the operation $\mathcal{L}(1)^{\lambda}$ can be represented in the form

$$
\mathcal{L}(1)^{\lambda} f(z)=\frac{1}{\Gamma(\lambda)} \int_{\infty}^{\log z} f(\zeta)(\log z-\log \zeta)^{\lambda-1} d \log \zeta
$$

Here the integration is taken along the half straight line on the $\log \zeta$-plane which is parallel to the real axis and contained in the left half-plane $\{\operatorname{Relog} \zeta$ $<0\}$. Thus, this operator coincides with the fractional integration of order λ with respect to $\log z$. In particular, $\mathcal{L}(1)$ is just the inverse operator of $d / d \log z$.

The last-mentioned fact is peculiar to the case $a=1$. The corresponding property in the case $a \neq 1$ is stated as in the following theorem.

TheOrem 4. The operator $\mathcal{L}(a)$ with $a \neq 1$ coincides with the integration with respect to $w=a(a-1)^{-1} z^{a-1}$ followed by multiplication of $z^{-(a-1)}$, the non-integral power being understood to mean the principal branch. More precisely, we have

$$
\mathcal{L}(a) f(z)=\left\{\begin{array}{lr}
\frac{1}{z^{a-1}} \int_{\infty}^{w} F(\omega) d \omega & (0<a<1), \\
\frac{1}{z^{a-1}} \int_{0}^{w} F(\omega) d \omega & (a>1),
\end{array}\right.
$$

where $w=a(a-1)^{-1} z^{a-1}, F(w)=f\left(\left(a^{-1}(a-1) w\right)^{1 /(a-1)}\right)$ and the integration paths are
the half straight line $\{\arg \omega=\pi-(1-a) \arg z, \infty>|\omega|>|w|\}$ for $0<a<1$ and the segment $\{\arg \omega=(a-1) \arg z, 0<|\omega|<|w|\}$ for $a>1$, respectively.

Proof. The operator $\mathcal{L}(a)$ is, by definition, given by

$$
\mathcal{L}(a) f(z)=a \int_{I} \frac{f(z t)}{t} t^{a-1} d t=\frac{a}{z^{a-1}} \int_{0}^{z} f(\zeta) \zeta^{a-2} d \zeta
$$

the last integration being taken along the segment from 0 to z. We have only to change the variable of the last integral by $d \omega=a \zeta^{a-2} d \zeta$, or more concretely, by $\omega=a(a-1)^{-1} \zeta^{a-1}$. When ζ runs along the segment from 0 to z, ω runs along the respective integration path stated in the theorem.

It will be seen that the relation

$$
\frac{d}{d \log z} \mathcal{L}(a) f(z)=a f(z)-(a-1) \mathcal{L}(a) f(z)
$$

holds for any $a>0$. This may be regarded as a straightforward generalization of the already mentioned relation $(d / d \log z) \mathcal{L}(1) f(z)=f(z)$ corresponding to $a=1$. Here we state it in slightly general form:

Theorem 5. For any $a>0$ and $\lambda \geqq 1$, we have

$$
\frac{d}{d \log z} \mathcal{L}(a)^{\lambda}=a \mathcal{L}(a)^{\lambda-1}-(a-1) \mathcal{L}(a)^{\lambda}
$$

$\mathcal{L}(a)^{0}$ being understood to be the identity operator.
Proof. By differentiating the defining equation of $\mathcal{L}(a)^{\lambda} f(z)$, we obtain

$$
\frac{d}{d \log z} \mathcal{L}(a)^{\lambda} f(z)=\frac{a^{\lambda}}{\Gamma(\lambda)} \int_{I} z f^{\prime}(z t) t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1} d t
$$

which becomes after integration by parts

$$
\begin{aligned}
\frac{d}{d \log z} \mathcal{L}(a)^{\lambda} f(z)= & \frac{a^{\lambda}}{\Gamma(\lambda)}\left[f(z t) t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1}\right]_{0}^{1} \\
& -\int_{I} f(z t)\left(-(\lambda-1) t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-2}+(a-1) t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-1}\right) d t
\end{aligned}
$$

Here we remember $f \in \mathscr{F}$ and $a>0$. We get for $\lambda=1$

$$
\begin{aligned}
\frac{d}{d \log z} \mathcal{L}(a) f(z) & =a\left(f(z)-(a-1) \int_{I} f(z t) t^{a-2} d t\right) \\
& =a f(z)-(a-1) \mathcal{L}(a) f(z)
\end{aligned}
$$

while we obtain for $\lambda>1$

$$
\begin{aligned}
\frac{d}{d \log z} \mathcal{L}(a)^{\lambda} f(z)= & \frac{a^{\lambda}}{\Gamma(\lambda)}(\lambda-1) \int_{I} f(z t) t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-2} d t \\
& \left.\quad-(a-1) \int_{I} f(z t) t^{a-2}\left(\log \frac{1}{t}\right)^{\lambda-1} d t\right) \\
= & a \mathcal{L}(a)^{\lambda-1} f(z)-(a-1) \mathcal{L}(a)^{\lambda} f(z) .
\end{aligned}
$$

In the following lines we shall consider the relation of $\mathcal{L}(a)$ to the ordinary integration operator \mathcal{I} defined by

$$
\mathcal{I} f(z)=\int_{0}^{z} f(\zeta) d \zeta
$$

For that purpose we attempt to derive the expression for $\mathcal{L}(a)$ in terms of \mathcal{I} and its iterations. For the sake of brevity we make use of Pochhammer's symbol

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}=\prod_{j=0}^{n-1}(x+j) \quad(n=0,1, \cdots),
$$

the empty product denoting unity ; in particular, $(x)_{0}=1$ even for $x=0$.
Theorem 6. For any $a>0$ we have

$$
\mathcal{L}(a)=a \sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{z^{k}} \mathcal{J}^{\kappa} .
$$

In particular, when $a=k>1$ is an integer, the right hand expression reduces to finite sum consisting of the beginning $k-1$ terms.

Proof. Since $|z-\zeta|<|z|$ holds on the integration path in the expression for $\mathcal{L}(a)$ except at $\zeta=0$, we have

$$
\begin{aligned}
\zeta^{a-2} & =z^{a-2}\left(1-\frac{z-\zeta}{z}\right)^{a-2} \\
& =z^{a-2} \sum_{\kappa=0}^{\infty}(-1)^{\kappa}\binom{a-2}{\kappa}\left(\frac{z-\zeta}{z}\right)^{\kappa} \\
& =z^{a-2} \sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{(\kappa-1)!} \frac{1}{z^{\kappa-1}}(z-\zeta)^{\kappa-1}
\end{aligned}
$$

Substitution followed by termwise integration yields

$$
\begin{aligned}
\mathcal{L}(a) f(z) & =a \sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{z^{\kappa}} \frac{1}{(\kappa-1)!} \int_{0}^{z} f(\zeta)(z-\zeta)^{\kappa-1} d \zeta \\
& =a \sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{z^{\kappa}} \mathcal{J}^{\kappa} f(z)
\end{aligned}
$$

When $a=k>1$ is an integer, then $(2-k)_{k-1}$ vanishes for every $k \geqq k$. -The
case $a=1$ is exceptional in the sense that every term in the summand for $\mathcal{L}(1)$ does not vanish.

It may be noted that, for integral value of a, the relation in the theorem can also be inductively varified, by making use of integration by parts. On the other hand, it is remarked that the operator $\mathcal{L}(2)$ was observed by Libera [4] and Livingston [5] and that $\mathcal{L}(a)$ for integer $a>1$ was studied by Bernardi [1], both in connection with some classes of univalent functions.

4. Generalization.

By relaxing the restriction that the referring probability measure σ is a monomial, we now consider a probability measure defined by a power series

$$
\sigma(t)=\sum_{k=1}^{\infty} \omega_{k} t^{k}
$$

with convergence radius greater than unity: $\lim \sup _{k \rightarrow \infty} \sqrt[k]{\left|\omega_{k}\right|}<1$. In view of the condition that σ is a probability measure, we have to suppose

$$
\rho(t)=\sigma^{\prime}(t)=\sum_{k=1}^{\infty} k \omega_{k} t^{k-1} \geqq 0 \quad(t \in I), \quad \sigma(1)=\sum_{k=1}^{\infty} \omega_{k}=1
$$

THEOREM 7. Let σ satisfy the just mentioned conditions. Then the operator $\mathcal{L}[\rho]$ defined by

$$
\mathcal{L}[\rho] f(z)=\int_{I} \frac{f(z t)}{t} \rho(t) d t \quad(f \in \mathscr{F})
$$

is represented in terms of the ordinary integration operator \mathcal{G} in the form

$$
\mathcal{L}[\rho]=\sum_{\kappa=1}^{\infty}(-1)^{\kappa-1} \frac{\varphi^{(\kappa-1)}(1)}{z^{\kappa}} \mathcal{J}^{\kappa}
$$

where φ is defined by

$$
\varphi(t)=\frac{\rho(t)}{t}=\sum_{k=1}^{\infty} k \omega_{k} t^{k-2}
$$

Proof. By substituting the expressions for $\mathcal{L}(k)(k=1,2, \cdots)$ derived in Theorem 6, we obtain

$$
\begin{aligned}
\mathcal{L}[\rho] & =\sum_{k=1}^{\infty} \omega_{k} \mathcal{L}(k) \\
& =\omega_{1} \sum_{\kappa=1}^{\infty} \frac{(\kappa-1)!}{z^{\kappa}} \mathcal{J}^{\kappa}+\sum_{k=2}^{\infty} \omega_{k} k \sum_{\kappa=1}^{k-1}(-1)^{\kappa-1} \frac{(k-2)!}{(k-\kappa-1)!z^{\kappa}} \mathcal{G}^{\kappa} \\
& =\sum_{\kappa=1}^{\infty} \frac{\Phi_{\kappa}}{z^{\kappa}} \mathcal{J}^{\kappa}, \quad \text { say. }
\end{aligned}
$$

The coefficients of the last expression are given by

$$
\begin{aligned}
\Phi_{\kappa} & =(\kappa-1)!\omega_{1}+(-1)^{\kappa-1} \sum_{k=\kappa+1}^{\infty} k \frac{(k-2)!}{(k-\kappa-1)!} \omega_{k} \\
& =(-1)^{\kappa-1}\left[\frac{d^{\kappa-1}}{d t^{\kappa-1}}\left(\frac{\omega_{1}}{t}+\sum_{k=2}^{\infty} k \omega_{k} t^{k-2}\right)\right]^{t=1} \\
& =(-1)^{\kappa-1} \varphi^{(\kappa-1)}(1),
\end{aligned}
$$

and hence the desired result.
The result just derived can be more slightly generalized with respect to the referring measure σ.

Theorem 8. Let a probability measure σ be given by

$$
\boldsymbol{\sigma}(t)=\int_{0}^{\infty} t^{a} d \boldsymbol{\tau}(a)
$$

where a measure τ defined on $(0, \infty)$ satisfies the conditions

$$
\rho(t)=\sigma^{\prime}(t)=\int_{0}^{\infty} a t^{a-1} d \tau(a) \geqq 0 \quad(t \in I), \quad \sigma(1)=\int_{0}^{\infty} d \tau(a)=1 .
$$

Then we have

$$
\mathcal{L}[\rho]=\sum_{\kappa=1}^{\infty}(-1)^{\kappa-1} \frac{\varphi^{(\kappa-1)}(1)}{z^{\kappa}} \mathcal{I}^{\kappa},
$$

where φ is defined by

$$
\varphi(t)=\frac{\rho(t)}{t}=\int_{0}^{\infty} a t^{a-2} d \tau(a) .
$$

Proof. The proof proceeds quite similar as for the previous theorem. In fact, we have

$$
\begin{aligned}
\mathcal{L}[\rho] f(z) & =\int_{I} \frac{f(z t)}{t} d \int_{0}^{\infty} t^{a} d \tau(a) \\
& =\int_{0}^{\infty} d \tau(a) \int_{I} \frac{f(z t)}{t} a t^{a-1} d t=\int_{0}^{\infty} \mathcal{L}(a) f(z) d \tau(a) .
\end{aligned}
$$

Hence, by substituting the expression for $\mathcal{L}(a)$ derived in Theorem 6, we obtain

$$
\mathcal{L}[\rho]=\int_{0}^{\infty} a \sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{z^{\kappa}} \mathcal{g}^{\kappa} d \tau(a)=\sum_{\kappa=1}^{\infty} \frac{\Phi_{k}}{z^{\kappa}} \mathcal{J}^{k}, \quad \text { say } .
$$

The coefficients of the last expression are given by

$$
\begin{aligned}
\Phi_{k} & =\int_{0}^{\infty} a(2-a)_{k-1} d \tau(a) \\
& =(-1)^{x-1}\left[\frac{d^{k-1}}{d t^{k-1}} \int_{0}^{\infty} a t^{a-2} d \tau(a)\right]^{t=1}=(-1)^{\kappa-1} \varphi^{(x-1)}(1),
\end{aligned}
$$

and hence the result.
Remark. Throughout this section the restriction $\rho(t)=\sigma^{\prime}(t) \geqq 0 \quad(t \in I)$ is really inessential, since the discussions concern to derive relations involving equality alone. From this standpoint we supplement here an example concerning Theorem 7.

We consider σ^{\prime} (of indefinite sign) given by

$$
\boldsymbol{\sigma}(t)=A_{2 m} \int_{0}^{t} \tau P_{2 m}(\boldsymbol{\tau}) d \tau \quad(m \geqq 1),
$$

where $P_{2 m}$ denotes the Legendre polynomial of degree $2 m$ and $A_{2 m}$ is the normalization factor determined by $\sigma(1)=1$. By means of Rodrigues formula we get after repeated integration by parts

$$
\frac{1}{A_{2 m}}=\int_{I} \tau P_{2 m}(\tau) d \tau=\frac{(-1)^{m-1}}{2^{2 m}} \frac{(2 m-2)!}{(m-1)!(m+1)!} .
$$

By making use of a familiar formula

$$
P_{n}(t)=\sum_{\nu=0}^{n}(-1)^{\nu} \frac{(n+\nu)!}{\nu!^{2}(n-\nu)!}\left(\frac{1-t}{2}\right)^{\nu},
$$

we get after repeated differentiation

$$
P_{n}^{(\kappa-1)}(t)=\sum_{\nu=\kappa-1}^{n}(-1)^{\nu} \frac{(n+\nu)!}{\nu!^{2}(n-\nu)!}\left(-\frac{1}{2}\right)^{\kappa-1} \frac{\nu!}{(\nu-\kappa+1)!}\left(\frac{1-t}{2}\right)^{\nu-\kappa+1} .
$$

Thus, for $\varphi(t)=A_{2 m} P_{2 m}(t)$ we obtain the value of $\varphi^{(k-1)}$ and finally

$$
\mathcal{L}\left[\sigma^{\prime}\right]=(-1)^{m-1} 2^{2 m} \frac{(m-1)!(m+1)!}{(2 m-2)!} \sum_{\kappa=1}^{2 m+2} \frac{(-1)^{\kappa-1} \cdot(2 m+\kappa-1)!}{(\kappa-1)!(2 m-\kappa+1)!} \frac{1}{2^{\kappa-1}} \frac{1}{z^{\kappa}} \mathcal{g}^{\kappa} .
$$

For $m=0$, we have $P_{0}(\tau)=1, A_{0}=2 ; \sigma(t)=t^{2}$ and

$$
\mathcal{L}\left[\sigma^{\prime}\right]=\mathcal{L}(2)=\frac{2}{z} \mathcal{I},
$$

while for $m=1 / 2$, we have $P_{1}(\tau)=\tau, A_{1}=3 ; \sigma(t)=t^{3}$ and

$$
\mathcal{L}\left[\sigma^{\prime}\right]=\mathcal{L}(3)=3 \frac{1}{z} \mathcal{S}-\frac{1}{z^{2}} \mathcal{J}^{2} .
$$

However, the case with odd suffix greater than 1 has been rejected, since we would have $1 / A_{n}=0$ for any odd integer $n \geqq 3$.

In this occasion we state another remark. The discussions developed in $\S 2$ and $\S 3$ for the case generated by

$$
\rho(t ; a)=a t^{a-1}, \quad \rho_{\lambda}(t ; a)=\frac{a^{\lambda}}{\Gamma(\lambda)} t^{a-1}\left(\log \frac{1}{t}\right)^{\lambda-1}
$$

will be generalized formally to the case

$$
\rho(t ; a, b)=\frac{a^{b}}{\Gamma(b)} t^{a-1}\left(\log \frac{1}{t}\right)^{b-1}
$$

However, the latter can be reduced essentially to the former. In fact, we have only to take into account the relation

$$
\rho_{\lambda}(t ; a, b)=\rho_{b \lambda}(t ; a, 1)=\rho_{b \lambda}(t ; a) .
$$

5. Hadamard product.

The Hadamard product $*$ of two power series

$$
\varphi(z)=\sum_{\nu=1}^{\infty} a_{\nu} z^{\nu}, \quad \psi(z)=\sum_{\nu=1}^{\infty} b_{\nu} z^{\nu}
$$

is defined by

$$
\varphi * \psi(z)=\sum_{\nu=1}^{\infty} a_{\nu} b_{\nu} z^{\nu}
$$

It is readily seen that $\varphi, \psi \in \mathscr{F}$ implies $\varphi * \psi \in \mathscr{F}$ and the particular function

$$
\chi(z)=\frac{z}{1-z}=\sum_{\nu=1}^{\infty} z^{\nu}
$$

plays the role of unit function with respect to the operation $*$ in the class \mathscr{F}; namely, $f * \chi=\chi * f=f(f \in \mathscr{F})$.

On the other hand, any operator \mathcal{L} under consideration satisfies

$$
\begin{aligned}
\mathcal{L}(\varphi * \psi)(z) & =\int_{I} \frac{(\varphi * \psi)(z t)}{t} d \sigma(t)=\int_{I}\left(\varphi(z) * \frac{\phi(z t)}{t}\right) d \sigma(t) \\
& =\varphi(z) * \int_{I} \frac{\phi(z t)}{t} d \sigma(t)=(\varphi * \mathcal{L} \psi)(z),
\end{aligned}
$$

whence follows, in particular,

$$
\mathcal{L} f=\mathcal{L}(f * \chi)=f * \mathcal{L} \chi .
$$

Thus, the action of \mathcal{L} on any function $f \in \mathscr{F}$ is reduced to the Hadamard product of f with $\mathcal{L \chi}$.

If we consider, for instance, the operator $\mathcal{L}(a)$ defined in $\S 2$, we have an expansion of $\mathcal{L}(a) \chi$ in the form

$$
\mathcal{L}(a) \chi(z)=a \sum_{\nu=1}^{\infty} \frac{z^{\nu}}{\Gamma(\nu+a)} .
$$

On the other hand, we have derived an expression for $\mathcal{L}(a)$ in terms of $\left\{\boldsymbol{g}^{\kappa}\right\}$, which, in particular, yields

$$
\sum_{\nu=1}^{\infty} \frac{z^{\nu}}{\Gamma(\nu+a)}=\sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{z^{\kappa}} g^{\kappa} \chi(z)
$$

valid for $a>0$. Now, as readily seen directly, $g^{\kappa} \chi$ is expressed by the expansion

$$
g^{\kappa} \chi(z)=z^{\kappa} \sum_{\nu=1}^{\infty} \frac{z^{\nu}}{(\nu+1)_{k}} .
$$

By substituting this into the above relation and comparing the coefficients of z^{ν}, we obtain an identity

$$
\frac{1}{\Gamma(\nu+a)}=\sum_{\kappa=1}^{\infty} \frac{(2-a)_{\kappa-1}}{(\nu+1)_{\kappa}} \quad(\nu=1,2, \cdots) .
$$

Now, $g^{\chi} \chi(z)$ is for any integer $\kappa \geqq 0$ an elementary function. We have, for instance,

$$
\mathfrak{J} X(z)=\log \frac{1}{1-z}-z, \quad \mathcal{I}^{2} \chi(z)=-(1-z) \log \frac{1}{1-z}+z-\frac{z^{2}}{2} .
$$

For any integer $\kappa \geqq 2$ we can derive similar explicit expression in the form

$$
\begin{aligned}
\mathcal{g}^{\kappa} \chi(z)= & \frac{(-1)^{\kappa-1}}{(\kappa-1)!}(1-z)^{\kappa-1} \log \frac{1}{1-z}+\frac{(-1)^{\kappa-1}}{\kappa!}(1-z)^{\kappa} \\
& +\frac{(-1)^{\kappa-1}}{(\kappa-1)!} \sum_{j=2}^{\kappa-1} \frac{1}{\jmath} \cdot(1-z)^{\kappa-1}+\sum_{j=0}^{\kappa-2}+\frac{(-1)^{\jmath}}{j!} \frac{1}{(\kappa-j)!(\kappa-\jmath-1)}(1-z)^{\jmath},
\end{aligned}
$$

the empty sum being to be understood zero. It is verified, for instance, by induction though the actual calculation is somewhat troublesome.

6. Distortion inequalities.

In the previous paper [2], we discussed some distortion properties on the family $\left\{\mathcal{L}^{\lambda}\right\}$ generated by a general measure σ, and specialized them in the case of $\left\{\mathcal{L}(1)^{\lambda}\right\}$. We supplement here these results by observing the family $\left\{\mathcal{L}(a)^{\lambda}\right\}$ with $a>0$.

First, for a fixed pair $f, g \in \mathscr{F}$ we consider the quantities M and N defined by

$$
\begin{gathered}
M(r ; a, \lambda, \mu)=\max _{|z|=r}\left|\mathcal{L}(a)^{\lambda} f(z)-\mathcal{L}(a)^{\mu} g(z)\right|, \\
N(r ; a, \lambda)=\max _{|z|=r}\left|\mathcal{L}(a)^{\lambda} f(z)-z\right| .
\end{gathered}
$$

Theorem 9. For any $f, g \in \mathscr{F}$ the quantity $M(r ; a, \lambda+\delta, \mu+\delta)$ decreases with
respect to $\delta \geqq 0$. More precisely, for $\delta^{\prime}>\delta \geqq 0$ we have

$$
\left(\frac{a+1}{a}\right)^{\delta^{\prime}} M\left(r ; a, \lambda+\delta^{\prime}, \mu+\delta^{\prime}\right) \leqq\left(\frac{a+1}{a}\right)^{\delta} M(r ; a, \lambda+\delta, \mu+\delta) .
$$

Proof. As shown in [2], we have

$$
M(r ; a, \lambda+\delta, \mu+\delta) \leqq M(r ; a, \lambda, \mu) \int_{I} t d \sigma_{\delta}(t ; a)
$$

The last factor of the right hand member is in the present case equal to

$$
\int_{I} t d \sigma_{\delta}(t ; a)=\frac{a^{\delta}}{\Gamma(\delta)} \int_{I} t^{a}\left(\log \frac{1}{t}\right)^{\delta-1} d t=\left(\frac{a}{a+1}\right)^{\delta} .
$$

Let $0 \leqq \delta<\delta^{\prime}$. Then, by replacing λ, μ and δ in the above inequality by $\lambda+\delta$, $\mu+\delta$ and $\delta^{\prime}-\delta$, respectively, we obtain the desired result.

Corollary. For any $f \in \mathscr{F}$ the quantity $((a+1) / a)^{\delta} N(r ; a, \lambda+\delta)$ decreases with respect to $\delta \geqq 0$.

Proof. Since $L(a)^{\mu} z$ becomes z for any μ, the quantity $M(r ; a, \lambda, \mu)$ reduces to $N(r ; a, \lambda)$ provided $g(z)=z$. Hence, the assertion follows from the theorem by only substituting $g(z)=z$.

By the way, it follows from the Corollary that

$$
\left(\frac{a+1}{a}\right)^{\delta} N(r ; a, \lambda+\delta) \leqq N(r ; a, \lambda) .
$$

If we replace here both λ and δ by $\lambda / 2$, we get

$$
N(r ; a, \lambda) \leqq\left(\frac{a}{a+1}\right)^{\lambda / 2} N\left(r ; a, \frac{\lambda}{2}\right) .
$$

In view of this inequality, we see that the first limit relation stated in Theorem 3 is again verified.

Next, for a fixed $f \in \mathscr{F}$ we observe the quantities h and H defined by

$$
\begin{aligned}
& h_{\lambda}(r ; a)=\min _{|z|=r} \operatorname{Re} \frac{\mathcal{L}(a)^{\lambda} f(z)}{z} \\
& H_{\lambda}(r ; a)
\end{aligned}
$$

Theorem 10. For any $f \in \mathscr{F}$ and $\delta>0$ we have

$$
\begin{aligned}
& h_{\lambda+\delta}(r ; a) \geqq h_{\lambda}(r ; a)+\Phi(\delta, a)\left(1-h_{\lambda}(r ; a)\right), \\
& H_{\lambda+\delta}(r ; a) \leqq H_{\lambda}(r ; a)-\Phi(\delta, a)\left(H_{\lambda}(r ; a)-1\right)
\end{aligned}
$$

where Φ is given by

$$
\Phi(\delta, a)=1-2 a^{\delta} \sum_{\nu=2}^{\infty} \frac{(-1)^{\nu}}{(\nu+a-1)^{\delta}}
$$

The equality sign in either estimation does not appear for any $r \in(0,1)$ unless $f(z)$ $=z$. If, in particular, $a=k$ is a positive integer, $\Phi(\delta, k)$ is expressible in the form

$$
\Phi(\delta, k)=1+2(-1)^{k-1} k^{\delta}\left(\left(1-2^{1-\delta}\right) \zeta(\delta)+\sum_{\kappa=1}^{k} \frac{(-1)^{\kappa-1}}{\kappa^{\delta}}\right)
$$

ζ denoting Riemann zeta function.
Proof. The inequalities having been generally shown in [2], it suffices to verify the expression for Φ. We first have

$$
\begin{aligned}
\Phi(\delta, a) & =\int_{I} \frac{1-t}{1+t} d \sigma_{\delta}(t ; a) \\
& =\frac{a^{\delta}}{\Gamma(\delta)} \int_{I} \frac{1-t}{1+t} t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t \\
& =\frac{a^{\delta}}{\Gamma(\delta)} \int_{I}\left(1-2 \sum_{\nu=2}^{\infty}(-1)^{\nu} t^{\nu-1}\right) t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t \\
& =1-2 a^{\delta} \sum_{\nu=2}^{\infty} \frac{(-1)^{\nu}}{(\nu+a-1)^{\delta}}
\end{aligned}
$$

Next, in view of the formula

$$
\sum_{\kappa=1}^{\infty} \frac{(-1)^{\kappa-1}}{\kappa^{\delta}}=\left(1-2^{1-\delta}\right) \zeta(\delta)
$$

we get for a positive integer k the relation

$$
\begin{aligned}
\sum_{\nu=2}^{\infty} \frac{(-1)^{\nu}}{(\nu+k-1)^{\delta}} & =\sum_{\kappa=k+1}^{\infty} \frac{(-1)^{\kappa-k+1}}{\kappa^{\delta}}=(-1)^{k}\left(\sum_{\kappa=1}^{\infty}-\sum_{k=1}^{k}\right) \frac{(-1)^{\kappa-1}}{\kappa^{\delta}} \\
& =(-1)^{k}\left(1-2^{1-\delta}\right) \zeta(\delta)+(-1)^{k} \sum_{\kappa=1}^{k} \frac{(-1)^{\kappa}}{\kappa^{\delta}}
\end{aligned}
$$

By substituting this in the above expression for $\Phi(\delta, a)$ with $a=k$, we obtain its desired expression.

Corollary. We have

$$
\begin{aligned}
& h_{\lambda+\delta}(r ; a) \geqq h_{\lambda}(r ; a)+\left(1-e^{-\Phi^{\prime}(0, a) \delta}\right)\left(1-h_{\lambda}(r ; a)\right), \\
& H_{\lambda+\delta}(r ; a) \leqq H_{\lambda}(r ; a)-\left(1-e^{-\Phi^{\prime}(0, a) \delta}\right)\left(H_{\lambda}(r ; a)-1\right)
\end{aligned}
$$

where Φ^{\prime} is given by

$$
\begin{aligned}
\Phi^{\prime}(0, a) & =\left[\frac{\partial}{\partial \delta} \Phi(\delta, a)\right]^{\delta=+0} \\
& =2 \lim _{\delta \rightarrow+0} \sum_{\nu=2}^{\infty}(-1)^{\nu} \frac{\log (\nu+a-1)-\log a}{(\nu+a-1)^{\delta}}
\end{aligned}
$$

If, in particular, $a=k$ is a positive integer, then

$$
\Phi^{\prime}(0, k)=2(-1)^{k-1} \log \frac{k!\sqrt{\pi / 2}}{\left(2^{[k / 2]} \cdot[k / 2]!\right)^{2}}-\log k
$$

Proof. We first note that $\Phi(+0, a)=0$. In fact, by means of integration by parts, we get

$$
\begin{aligned}
\Phi(\delta, a) & =\frac{a^{\delta}}{\Gamma(\delta)} \int_{I} \frac{1-t}{1+t} t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t \\
& =\frac{a^{\delta}}{\Gamma(\delta+1)}\left\{\left[-\frac{1-t}{1+t} t^{a}\left(\log \frac{1}{t}\right)^{\delta}\right]_{0}^{1}+\int_{I} \frac{d}{d t}\left(\frac{1-t}{1+t} t^{a}\right) \cdot\left(\log \frac{1}{t}\right)^{\delta} d t\right\} \\
& =\frac{a^{\delta}}{\Gamma(\delta+1)} \int_{I} \frac{d}{d t}\left(\frac{1-t}{1+t} t^{a}\right) \cdot\left(\log \frac{1}{t}\right)^{\delta} d t,
\end{aligned}
$$

whence readily follows

$$
\Phi(+0, a)=\int_{I} \frac{d}{d t}\left(\frac{1-t}{1+t} t^{a}\right) d t=0
$$

The first inequality in the theorem yields

$$
\frac{h_{\lambda+\delta}(r ; a)-h_{\lambda}(r ; a)}{\delta} \geqq \frac{\Phi(\delta, a)}{\delta}\left(1-h_{\lambda}(r ; a)\right),
$$

whence follows, as δ tends to +0 , the inequality

$$
\frac{\partial}{\partial \lambda} h_{\lambda}(r ; a) \geqq \Phi^{\prime}(0, a)\left(1-h_{\lambda}(r ; a)\right) .
$$

This linear differential inequality can be brought readily into finite form. In fact, by rewriting it in the form

$$
\frac{\partial}{\partial \lambda}\left(e^{\Phi^{\prime}(0, a) \lambda} h_{\lambda}(r ; a)\right) \geqq \Phi^{\prime}(0, a) e^{\Phi^{\prime}(0, a) \lambda}
$$

and then integrating with respect to λ over the interval $(\lambda, \lambda+\delta)$, we obtain the desired estimation for h. Similar argument applies also for H. Next, we have in view of the expression for $\Phi(\delta, a)$ given in the theorem

$$
\frac{\partial}{\partial \delta} \Phi(\delta, a)=2 a^{\delta} \sum_{\nu=2}^{\infty}(-1)^{\nu} \frac{\log (\nu+a-1)-\log a}{(\nu+a-1)^{\delta}}
$$

whence follows the desired expression for $\Phi^{\prime}(0, a)$. Finally, if $a=k$ is a positive integer, we see that

$$
\begin{aligned}
\frac{\partial}{\partial \delta} \Phi(\delta, k)= & 2(-1)^{k-1} k^{\delta} \log k\left(\left(1-2^{1-\delta}\right) \zeta(\delta)-\sum_{\kappa=1}^{k} \frac{(-1)^{\kappa-1}}{\kappa^{\delta}}\right) \\
& +2(-1)^{k-1} k^{\delta}\left(\left(1-2^{1-\delta}\right) \zeta^{\prime}(\delta)+2^{1-\delta} \log 2 \cdot \zeta(\delta)+\sum_{\kappa=2}^{k} \frac{(-1)^{\kappa-1}}{\kappa^{\delta}} \log \kappa\right)
\end{aligned}
$$

In view of $\zeta(0)=-1 / 2$ and $\zeta^{\prime}(0)=-(1 / 2) \log 2 \pi$, we get

$$
\begin{aligned}
\Phi^{\prime}(0, k)= & 2(-1)^{k-1} \log k\left(\frac{1}{2}-\sum_{\kappa=1}^{k}(-1)^{\kappa-1}\right) \\
& +2(-1)^{k-1}\left(\frac{1}{2} \log 2 \pi-\log 2+\sum_{\kappa=2}^{k}(-1)^{\kappa-1} \log \kappa\right)
\end{aligned}
$$

which becomes the desired form, by remembering the elementary relations

$$
\frac{1}{2}-\sum_{\kappa=1}^{k}(-1)^{\kappa-1}=\frac{(-1)^{k}}{2}, \quad \sum_{\kappa=2}^{k}(-1)^{\kappa-1} \log \kappa=\log \frac{k}{\left(2^{[k / 2]} \cdot[k / 2]!\right)^{2}}
$$

In the following lines, we shall supplement some properties of the quantities $\Phi(\delta, a)$ and $\Phi^{\prime}(0, a)$ contained in Theorem 10 and its Corollary.

For lower values of δ, a we see that

$$
\Phi(1,1)=2 \log 2, \quad \Phi(2,1)=\frac{\pi^{2}}{6}, \quad \Phi(1,2)=3-4 \log 2
$$

and hence, in particular, $\Phi(2,1)>\Phi(1,1)>\Phi(1,2)$. Now, we shall indicate that $\Phi(\delta, a)$ shows such monotoneity in general.

Theorem 11. For any fixed $a>0$ we have

$$
\Phi(+0, a)=0 \quad \text { and } \quad \Phi(\infty, a)=1
$$

When δ increases from 0 to $\infty, \Phi(\delta, a)$ increases strictly from 0 to 1 .
Proof. The relation $\Phi(+0, a)=0$ has been shown on the way of proving the Corollary of Theorem 10. Next, we have

$$
1-\Phi(\delta, a)=\frac{a^{\delta}}{\Gamma(\delta)} \int_{I} \frac{2 t}{1+t} t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t>0 .
$$

Let any small positive number ε be given. Then, $2 t /(1+t)<\varepsilon / 2$ as $t<\varepsilon / 4$ and hence

$$
\begin{aligned}
1-\Phi(\delta, a) & <\frac{a^{\delta}}{\Gamma(\delta)}\left(\frac{\varepsilon}{2} \int_{0}^{\varepsilon / 4}+\int_{\varepsilon / 4}^{1}\right) t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t \\
& <\frac{a^{\delta}}{\Gamma(\delta)}\left(\frac{\varepsilon}{2} \int_{I} t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t+\left(\log \frac{4}{\varepsilon}\right)^{\delta-1} \int_{I} t^{a-1} d t\right)
\end{aligned}
$$

$$
=\frac{\varepsilon}{2}+\frac{1}{\Gamma(\delta)}\left(a \log \frac{4}{\varepsilon}\right)^{\delta-1} .
$$

In view of Stirling formula applied to $\Gamma(\delta)$, we see that

$$
\frac{1}{\Gamma(\delta)}\left(a \log \frac{4}{\varepsilon}\right)^{\delta-1} \sim \frac{1}{\sqrt{2 \pi \delta} e}\left(\frac{e a}{\delta} \log \frac{4}{\varepsilon}\right)^{\delta-1} \rightarrow 0 \quad \text { as } \delta \rightarrow \infty
$$

and hence there exists $\Delta(\varepsilon)$ such that $1-\Phi(\delta, a)<\varepsilon$ as $\delta>\Delta(\varepsilon)$. This shows $\Phi(\infty, a)=1$. Finally, let $0<\delta<\delta^{\prime}$. Then

$$
\Phi\left(\delta^{\prime}, a\right)-\Phi(\delta, a)=\int_{I} \frac{1-t}{1+t} t^{a-1}\left(\frac{a^{\delta^{\prime}}}{\Gamma\left(\delta^{\prime}\right)}\left(\log \frac{1}{t}\right)^{\delta^{\prime}-1}-\frac{a^{\delta}}{\Gamma(\delta)}\left(\log \frac{1}{t}\right)^{\delta-1}\right) d t
$$

Put $T=\exp \left(-(1 / a)\left(\Gamma\left(\delta^{\prime}\right) / \Gamma(\delta)\right)^{1 /\left(\delta^{\prime}-\delta\right)}\right)$. Then we see that as $t \lessgtr T$

$$
\frac{a^{\delta^{\prime}}}{\Gamma\left(\delta^{\prime}\right)}\left(\log \frac{1}{t}\right)^{\delta^{\prime}-1} \gtrless \frac{a^{\delta}}{\Gamma(\delta)}\left(\log \frac{1}{t}\right)^{\delta-1} \quad \text { and } \quad \frac{1-t}{1+t} \gtrless \frac{1-T}{1+T}
$$

and hence

$$
\begin{aligned}
& \Phi\left(\delta^{\prime}, a\right)-\Phi(\delta, a) \\
> & \frac{1-T}{1+T} \int_{I} t^{a-1}\left(\frac{a^{\delta^{\prime}}}{\Gamma\left(\delta^{\prime}\right)}\left(\log \frac{1}{t}\right)^{\delta^{\prime}-1}-\frac{a^{\delta}}{\Gamma(\delta)}\left(\log \frac{1}{t}\right)^{\delta-1}\right) d t=0 .
\end{aligned}
$$

Theorem 12. For any fixed $\delta>0$ we have

$$
\Phi(\delta,+0)=1 \quad \text { and } \quad \Phi(\delta, \infty)=0
$$

When a increases from 0 to $\infty, \Phi(\delta, a)$ decreases strictly from 1 to 0 .
Proof. We see that

$$
\begin{aligned}
\Phi(\delta, a) & =\frac{a^{\delta}}{\Gamma(\delta)} \int_{I}\left(t^{a-1}-\frac{2 t^{a}}{1+t}\right)\left(\log \frac{1}{t}\right)^{\delta-1} d t \\
& =1-\frac{2 a^{\delta}}{\Gamma(\delta)} \int_{I} \frac{t^{a}}{1+t}\left(\log \frac{1}{t}\right)^{\delta-1} d t \rightarrow 1 \quad \text { as } a \rightarrow+0,
\end{aligned}
$$

since the last integral remains finite for $\delta>0$. Or, the result could be derived more simply by means of the series form of Φ. Next, let any small positive number ε be given. Then, $(1-t) /(1+t)<\varepsilon / 2$ as $1>t>\eta \equiv(2-\varepsilon) /(2+\varepsilon)$ and hence

$$
\begin{aligned}
0<\Phi(\delta, a) & <\frac{a^{\delta}}{\Gamma(\delta)}\left(\int_{0}^{\eta}+\frac{\varepsilon}{2} \int_{\eta}^{1}\right) t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t \\
& <\frac{a^{\delta}}{\Gamma(\delta)} \int_{0}^{\eta} t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1} d t+\frac{\varepsilon}{2}
\end{aligned}
$$

Since $a^{\delta} t^{a-1} \rightarrow 0$ as $a \rightarrow \infty$ uniformly for $t \in[0, \eta]$, there exists $A(\varepsilon)$ such that $0<\Phi(\delta, a)<\varepsilon$ as $a>A(\varepsilon)$. Finally, let $0<a<a^{\prime}<1$. Then

$$
\Phi\left(\delta, a^{\prime}\right)-\Phi(\delta, a)=\frac{1}{\Gamma(\delta)} \int_{I} \frac{1-t}{1+t}\left(a^{\prime \delta} t^{a^{\prime}-1}-a^{\delta} t^{a-1}\right)\left(\log \frac{1}{t}\right)^{\delta-1} d t
$$

We see that as $t \lessgtr\left(a / a^{\prime}\right)^{\delta /\left(a^{\prime}-a\right)}$

$$
\frac{1-t}{1+t} \gtrless \frac{1-\left(a / a^{\prime}\right)^{\delta /\left(a^{\prime}-a\right)}}{1+\left(a / a^{\prime}\right)^{\delta /\left(a^{\prime}-a\right)}} \quad \text { and } \quad a^{\prime \delta} t^{a^{\prime}-1} \lessgtr a^{\delta} t^{a-1}
$$

and hence

$$
\begin{aligned}
& \Phi\left(\delta, a^{\prime}\right)-\Phi(\delta, a) \\
< & \frac{1-\left(a / a^{\prime}\right)^{\delta /\left(a^{\prime}-a\right)}}{1+\left(a / a^{\prime}\right)^{\delta /\left(a^{\prime}-a\right)}} \frac{1}{\Gamma(\delta)} \int_{I}\left(a^{\prime \hat{\delta}} t^{a^{\prime}-1}-a^{\delta} t^{a-1}\right)\left(\log \frac{1}{t}\right)^{\delta-1} d t=0 .
\end{aligned}
$$

Remark. If $\psi(t)$ is a measurable function bounded on I and left-continuous at 1 , a similar argument as above for deriving $\Phi(\delta, \infty)=0$ in which $(1-t) /(1+t)$ is replaced by $\psi(t)-\psi(1)$ yields

$$
\int_{I}(\psi(t)-\psi(1)) \rho_{\delta}(t ; a) d t \rightarrow 0, \quad \text { i. e., } \int_{I} \psi(t) \rho_{\delta}(t ; a) d t \rightarrow \psi(1) \quad \text { as } a \rightarrow \infty .
$$

This relation corresponds to the fact that the probability density

$$
\rho_{\bar{\delta}}(t ; a)=\frac{a^{\bar{\delta}}}{\Gamma(\delta)} t^{a-1}\left(\log \frac{1}{t}\right)^{\delta-1}
$$

is a kernel of singular integral tending to concentrate at $t=1$ as $a \rightarrow \infty$.
Now, we shall denote $\Phi^{\prime}(0, a)$ briefly by $\Psi(a)$, namely

$$
\Psi(a)=\Phi^{\prime}(0, a)=\left[\frac{\partial}{\partial \delta} \Phi(\delta, a)\right]^{\delta=+0}
$$

As shown in the Corollary of Theorem 10 , the quantity $\Psi(k)$ with a positive integer k is represented in terms of elementary expressions; in particular, we have

$$
\begin{array}{ll}
\Psi(1)=\log \frac{\pi}{2}, & \Psi(2)=\log \frac{4}{\pi}, \\
\Psi(3)=\log \frac{3 \pi}{8} \\
\Psi(4)=\log \frac{32}{9 \pi}, & \Psi(5)=\log \frac{45 \pi}{128},
\end{array} \Psi(6)=\log \frac{256}{75 \pi}, \quad \text { etc. }
$$

We supplement here the monotoneity of $\Psi(a)$.
Theorem 13. We have

$$
\Psi(+0)=\infty \quad \text { and } \quad \Psi(\infty)=0
$$

When a increases from 0 to $\infty, \Psi(a)$ decreases strictly from ∞ to 0 .

Proof. The expression for $\Phi(\delta, a)$ obtained in the proof of the Corollary of Theorem 10 yields, after differentiation with respect to δ,

$$
\begin{aligned}
\frac{\partial}{\partial \delta} \Phi(\delta, a)= & a^{\delta}\left(\frac{\log a}{\Gamma(\delta+1)}-\frac{\Gamma^{\prime}(\delta+1)}{\Gamma(\delta+1)^{2}}\right) \int_{I} \frac{d}{d t}\left(\frac{1-t}{1+t} t^{a}\right) \cdot\left(\log \frac{1}{t}\right)^{\delta} d t \\
& +\frac{a^{\delta}}{\Gamma(\delta+1)} \int_{I} \frac{d}{d t}\left(\frac{1-t}{1+t} t^{a}\right) \cdot\left(\log \frac{1}{t}\right)^{\delta} \log \log \frac{1}{t} d t,
\end{aligned}
$$

whence follows after integration by parts

$$
\Psi(a)=\int_{I} \frac{d}{d t}\left(\frac{1-t}{1+t} t^{a}\right) \cdot \log \log \frac{1}{t} d t=\int_{I} \frac{1-t}{1+t} t^{a-1}\left(\log \frac{1}{t}\right)^{-1} d t
$$

The decresing property of $\Psi(a)$ is evident in view of the last expression. Now, for any $\varepsilon \in(0,1 / 2)$ we get

$$
\Psi(a)>\frac{1}{3} \varepsilon^{a} \int_{\varepsilon}^{1 / 2} t^{-1}\left(\log \frac{1}{t}\right)^{-1} d t=\frac{1}{3} \varepsilon^{a}\left[-\log \log \frac{1}{t}\right]_{\varepsilon}^{1 / 2},
$$

whence follows

$$
\liminf _{a \rightarrow+0} \Psi(a) \geqq \frac{1}{3}\left[-\log \log \frac{1}{t}\right]_{\varepsilon}^{1 / 2}
$$

Since $\varepsilon \in(0,1 / 2)$ is arbitrary, we conclude $\Psi(+0)=\infty$. Next, since the integrand of the above integral expressing $\Psi(a)$ is uniformly bounded on I for $a \geqq 2$ and tends to 0 as $a \rightarrow \infty$, it follows that $\Psi(\infty)=0$.

References

[1] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[2] Y. Komatu, On a one-parameter additive family of operators defined on analytic functions regular in the unit disk, Bull. Fac. Sci. Eng., Chuo Univ., 22 (1979), 1-22.
[3] Y. Komatu, A one-parameter family of operators defined on analytic functions in a circle, Lecture Notes in Math. No. 768, Proc. Anal. Func./Kozubnik 1979, ed. by J. Ławrynowicz, Springer (1980), 292-300.
[4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.
[5] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.

[^0]: Received September 29, 1986

