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Abstract

We study the spectral geometry of smooth maps of a compact Riemannian manifold
in a Euclidean space, by using the notion of order (introduced by the first author).
We give some best possible estimates of energy and total tension of a map in terms
of order. Some applications to closed curves and harmonic maps are then obtained.
In the last section, we relate the spectral geometry of the Gauss map of a submani-
fold to its topology and derive some topological obstructions to submanifolds to have
a Gauss map of low type.

1. Introduction.

Let Mn be a compact Riemannian manifold and x a smooth map from Mn

into the Euclidean space En+m. To study x, it is natural to consider the spectral
decomposition of x with respect to the Laplacian of Mn. This point of view has
been adopted by the first author, when x is an isometric immersion [4,5]. Using
the same idea, we define two numbers p and q, canonically associated with x
p is a positive integer, and q is either oo or an integer ^p. The pair [_p, q~\
is called the order of the map. A map is called a finite type map is q is finite.
Thus, we obtain spectral invariants related to the map. From Section 3 to
Section 5, we relate the geometric properties of the map to its order and its
type. In particular, we give in Section 3 a best possible estimate of the total
tension of a map in terms of order, and then, in terms of λx and energy. In
Section 4, some relations between moment, energy and order are obtained. In
Section 5 the notion of order is applied to obtain a necessary and sufficient
condition for a spherical map to be harmonic. As an application of the previous
sections, we study the Gauss map associated to a submanifold. We show that
the spectral geometry of the Gauss map is related to the topology of the sub-
manifold. In particular, if Mn is a compact submanifold of Em with nonzero
self-intersection number, the type of its Gauss map is " large" (>n/2).

The results of the first part of this paper have been announced in [6]. Some
classifications of submanifolds with 1 or 2 type Gauss map can be found in
[3], [7].

Received February 21, 1986

406



ENERGY, TENSION AND FINITE TYPE MAPS 407

A portion of this work was done while the first author was a visiting
professor at the Universite d'Avignon, France. This paper was finished when
the second and the third authors were visiting Michigan State University. The
authors would like to thank their colleagues at both universities for their
hospitality.

2. Preliminaries.

Let M be a compact Riemannian manifold of dimension n and Δ the Laplacian
of M acting on the space C°°(M) of smooth functions. Then Δ has an infinite
discrete sequence of eigenvalues:

O=λo<λ1<λ2< <λk< ' too.

For each fe=0, 1, 2, •••, the eigenspace Vk = {f^C0O(M) \ Af=λkf} is finite-

dimensional. With respect to the inner product (/, g)=\ fgdV on C^(M)t the
JM

decomposition ^kVk is orthogonal and dense in C°°(M). Therefore, for each
/eC°°(M), f—fo+Έt^ift, where f0 is a constant and ft is the projection of /
into Vt.

For any smooth map x: M-^En+m of the compact Riemannian manifold M
into the Euclidean (n+^)-space En+m, we can apply the above decomposition to
the £n+m-valued function x:

oo

ί = l

where x0 is a constant vector and xt an eigenvector with Δxt—λtxt.
If x is a non-constant map, there is a natural number p such that xpΦθ

and x = Xo+Σί2;ί>#t. If there are infinitely many nonzero xt's in the decom-
position (2.1), we put q—oo. Otherwise, we put q to be the largest integer
such that xqΦθ in the spectral decomposition (2.1). In any case, we have

q

As in [4, 5], we call [/>, q~] the order of the map x. Moreover, the map
x: M-^En+m is said to be of finite type if q is finite. Otherwise, x is said to
be of infinite type. More precisely, x is said to be of k-type (k^Nu{^>}) if
there exist exactly k nonzero xt's ( ί^ l ) in the spectral decomposition (2.2).

If M is a compact submanifold of En+m, then M i s a compact Riemannian
manifold with respect to the induced Riemannian metric. In this case the sub-
manifold M is said to be of &-type if the immersion is of &-type.

The following result can be proved exactly in the same way as that of
Theorem 2.1 of [5, p. 255]. (see, also [1]).

PROPOSITION 2.1. Let x;M->En+m be a non-constant map of a compact
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Riemmanian manifold M into En+m. Then x is of finite type if and only if
there is a non-trivial polynomial Q(t) such that Q(A)(x—xo)=O.

It follows from (2.2) that x o =\ x dV /[ dV, where dV denotes the volume
JM I JM

element of M. This simply says that x0 is the center of mass of x.
If φ: M—>N is a map between Riemannian manifolds, the energy-density e(φ)

of ψ is the real-valued function on M given by

(2.3)

where gf is the metric on N and dφ—φ*. The energy E(φ) of φ is defined by

(2.4) E(φ)=[ e{φ)dV.
JM

The Euler-Lagrange operator associated with E shell be written τ(φ)=άiγ(dφ)
and called the tension field of φ. A map φ is said to be harmonic if its tension
field vanishes identically.

For the map x: M-*En+m, one has (cf. [8])

(2.5) Ax = -τ(x).

Similar to Proposition 2.1, we have

PROPOSITION 2.2. Let x: M->En+Ήl be a non-constant map of a compact
Riemannian manifold M into En+m. Then x is of finite type if and only if there
is a non-trivial polynomial Q(t) such that Q(Δ)r=0, where τ is the tension field
of x.

If x: M->En+m is of finite type, there is a monic polynomial P(t) of least
degree with P(Δ)r=0. The following result follows easily from Proposition 2.2.

PROPOSITION 2.3. // x: M-*En+m is a finite type non-constant map, then

(1) the polynomial P(t) is unique,

(2) if Q is any polynomial with QiAϊτ^O, P is a factor of Q, and
(3) x is of k-type if and only if k—άegP.

The same holds if τ is replaced by x — x0.

The unique polynomial P, associated with the finite type map x: M->En+m,
is called the minimal polynomial of x.

If x: M->S?+m-ldEn+m is a map of M into a hypersphere S ? ^ - 1 of Em,
then x is called mass-symmetric if the center of mass, x0, is the center c of
the hypersphere in En+m.

We shall make use of the following convention on the ranges of indices
unless mentioned otherwise:
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lίgz, j , k, ••• Sn n + l ^ r , s, t, ••• ΐg?

n + l ^ α , j8, γ, ••• ^?

Remark 1. From (2.5) we know that if #, Jc:M—>En+m are two maps from
a compact Riemannian manifold M into £ π + m such that x, x have the same
tension field, then x and x differ only by a translation.

3. Total Tension and Order.

Let x: M-+En+m be a smooth map of a compact Riemannian n-manifold M
into £ n + m . Denote by τ=τ(x) the tension field of x. The foto/ tension S(x) of
x is given by

The following result gives a best possible estimate of the total tension in
terms of the order.

THEOREM 3.1. Let x:M-+En+m be α non-constαnt map of a compact Rie-
mannian manifold M into En+m. Then we have

(3.2) 2λpE(x)^[ \\τ\\2dV^2λqE(x),

where [/>, q~] is the order of x. Either equality sign in (3.2) holds if and only if
x is of l-type.

Proof. Since [/>, q~] is the order of x, we have

q
\%j.ό) X — Xo I / J Xι .

t=p

Thus, by (2.5), we find

(3.4) -τ=j:λtxt.

Since A=dδ+δd is a self-adjoint operator on C°°(M), we obtain from (2.3), (2.4)
and (3.4) that

(3.5) 2E(x)=\ \\dx\\2dV=(dx, dx)
JM

Q
- ^^ 1 ( y y \' ZmJ Λt\A> if Λ i) ,

t=p

(3.6) \ \\τ\\2dV=(Ax, Ax)=ilXXxt,xt).
t=p
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Thus

(3.7) ( \\τ\\2dV-2λpE(x)= Σλ t(λ t-λp)(x t, xt)^0,

equality holding if and only if xp is the only nonzero component. The other
inequality is obtained in the same way. (Q. E. D.)

If x is an isometric immersion, Theorem 3.1 is due to [4].
The following corollaries follow immediately from Theorem 3.1.

COROLLARY 3.1. // x\M->En+m is a non-constant map of a compact Rie-
mannian manifold into En+m, then we have

(3.8) \ HτllW^^x),

equality holding if and only if x is of order [1, 1].

If x is an isometric immersion, (3.8) is due to [14].

COROLLARY 3.2. Let x:C-*Em+1 be a non-constant map of a closed curve
into Em+1. If s denotes the arc length of C, then we have

(3.9)

where L is the length of C, x'=dx/ds, x" = d2x/dsz. Equality sign of (3.9)
holds if and only if x is of the form:

/o IΛ\ , 2TΓS , . 2πs

(3.10) * = C0 + £iCOS—j \-CzSm-j-,

for some vectors c0, cu c2 in En+m.

This Corollary follows from the fact that the tension field of x:C-^En+m

is given £y — x" and λx of C is equal to (2π/L)2 with the eigenspace VΊ
spanned by cos(2πs/L) and sin(2τrs/L).

By applying Corollary 3.2 k times, we obtain.

COROLLARY 3.3. // x: C-^Em+1 is a non-constant map of a closed curve C
in to Em+1, then for any positive integers k>h, we have

(3.11)

where xik) = dkx/dsk. The equality holds if and only if x{h~l) is of the form
(3.10) for some vectors c0, cly c2 in Em+1.

Remark 3.1. If x :C—>Em+1 is an isometric immersion, inequality (3.9)
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reduces to

Γ 4ττ2

(3.12) κ*ds^™9

JC L
which is a variant of the famous Fenchel-Borsuk inequality, where it is the
curvature of C in Em+1.

4. Energy, Moment and Order.

Now, we define the moment of a map as follows.

DEFINITION 4.1. Let x:M->En+m be a map of a compact Riemannian
manifold M into En+m and c a point in En+m. The moment of x with respect
to c is defined by

(4.1) 3ίe=3le(x)=\ <x-c, x-c}dV.
J M

The moment of x with respect to the center of mass x0 is simply called the
moment of the map x. We simply denote it by 3ί, i.e., 3i—31 XQ.

THEOREM 4.1. Let x:M-^En+m be a non-constant map of a compact Rie-
mannian manifold into En+m. Then we have

(4.2)

Either equality sign of (4.2) holds if and only if x is of 1-type.

Proof. Since A=dδ-\-δd, we have

(4.3) (*, Ax)=(x, δdx)=(dx, dx)=2E(x).

From (3.3) we find

(4.4) {x,Ax)=Έλt(xt, xt).
t=p

On the other hand, we have

(4.5) 3ί=(x-x0, x-xo)= Σ (*t, xt)
t = p

Therefore, (4.3), (4.4) and (4.5) imply

p Σ ( t p ) ( t ,
t=p

equality holding if and only if q—p, i.e., x is of 1-type. The other inequality
is obtained in the same way.
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If x is spherical, Theorem 4.1 yields the following best possible estimate of
the energy.

COROLLARY 4.1. Let x : M->Sn+m~1(zEn+m be a mass-symmetric, non-constant
map of a compact Riemannian manifold M into a unit hypersphere Sn+m~1 of
En+m. Then we have

(4.6) £(*)^-y-vol(M).

Equality holds if and only if x is of order [1, 1].

Proof. Under the hypothesis, we have <3i=vo\(M). Since p^A, (4.6) fol-
lows from (4.2). Equality sign of (4.6) holds if and only if x is of 1-type with
ί = l . (Q.E.D.)

For closed curves in Em+ί, Theorem 4.1 gives the following best possible
estimate of moment.

COROLLARY 4.2. Let C be a closed curve of length L in Em+\ Then the
moment of C satisfies

(4.7)

Equality holds if and only if C is a plane circle of radius L/2π.

5. Some Applications to Harmonic Maps.

In this section we apply the notion of order to study harmonic maps.

LEMMA 5.1. Let x: M-*Sn+m-1c:En+m be a map of a compact Riemannian
manifold M into a hypersphere Sn+m~1 of En+m. Then the map x: M-^Sn+m~1

is a harmonic map with positive constant energy density if and only if x is a
mass-symmetric, 1-type map.

Proof. Without loss of generality, we may assume that Sn+m~1 is a unit
hypersphere centered at the origin of En+m. Denote by / the inclusion of
ς n+m-i m gn+m^ Then the second fundamental forms σx, σs and σ3 of the
maps x, x and j respectively satisfy

σx(X, Y)=j*σs(X, Y)+σj(x*X, x*Y),

for X, Y tangent to M. Thus we have

n

where elt •••, en is an orthonormal local frame on M. Since j is totally
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umbilical, (5.2) yields

(5.2) Ax = -j*τ(x)+2e(x)x,

where e(x) is the energy density of x.
If x is a mass-symmetric 1-tyρe map, we have x — xp and Ax—λpx, where

[p, p2 is the order of x. Hence, (5.2) gives r(jc)=0 and e(x)=λp/2. Since x
is a non-constant map, λp>0. Thus, x is a harmonic map with constant energy
density.

Conversely, if x is a harmonic map with constant energy density, then
from (5.2) we find Ax=2e(x)x. This implies x is a mass-symmetric, 1-type
map. (Q. E. D.)

By using Lemma 5.1 we have the following.

PROPOSITION 5.1. Let xr: (M, g)—>Sm+1 be a map from a Riemannian surface
(M, g) into Sm+1 ( c £ m + 2 ) . If xf has positive energy-density e'=e(x'), then xf is
a harmonic map if and only if the composition:

x : (M, e'g) - ^ (M, g) ^U s^dEm+2

is a mass-symmetric, 1-type map.

Proof. Let elt •••, en be an orthonormal frame on (M, e'g). Then εelf •••, εen

(δ = V 7 ) is an orthonormal frame for (M, ,§•). Thus, the map x:(M, e'g^S™-1

has constant energy-density 1. If x': (M, ^)->Sm + 1 is harmonic, then it is known
that the composition

(M, e'g) - ^ (M, g) - ^ Sm + 1

is also harmonic (cf. [8]). Thus, by applying Lemma 5.1, we conclude that x
is a mass-symmetric, 1-type map.

Conversely, if x is a mass-symmetric, 1-type map, then, by Lemma 5.1, the
composition:

(M, e'g) -^L (M, g) -?L Sm+1

is a harmonic map. Thus, x'—x'-id-id'1 is also harmonic. (Q. E. D.)

LEMMA 5.1 implies immediately the following: A compact Riemannian mam-
fold M admits a harmonic map into a m-sphere with constant positive energy-
density if and only if there is an eigenspace Vk of A on M which contains m-\-l
functions flf •••, / m +i with / f + ••• +/m+i—£ for some nonzero constant c.

Remark 5.1. Some special cases of Proposition 5.1 were obtained in [12, 15].



414 BANG-YEN CHEN, JEAN-MARIE MORVAN AND THέRESE NORE

6. Topological Obstruction.

Let V be an oriented m-plane in En+m. Denote by en+1, •••, en+m an oriented
orthonormal basis of V. Then en+1Λ - Λen+m is a decomposable ra-vector of
norm 1 and en+1Λ~'Λen+m gives the orientation of V. Conversely, a decom-
posable m-vector of norm 1 determines a unique oriented m-plane in En+m.
Consequently, if we denote by G(m, n) the Grassmannian of oriented m-planes
in En+m, then G(m, n) can be identified with decomposable ra-vectors of norm
1. This shows that G(m, n) can be regarded as an nm-dimensional submanifold

of the unit hypersphere S*-1 centered at the origin of EN^AmEn+m, Λί

in a natural way. Thus, we have the following canonical inclusions:

(6.1) G{m, n)CZSN-1aEN=ΛmEn+m.

Let x: M-+En+m be an isometric immersion of a compact oriented 72-dimen-
sional Riemannian manifold M into En+m. For a vector X tangent to M we
identify X with its image under the differential x* of x. If en+1, •••, en+m is
an oriented orthonormal normal frame on M, then the Gauss map v:

(6.2) v\ M-*G(m, n)dSN'1czEN^ΛmEn+m

can be defined by v(p)=(en+1Λ -Λen+m)(p).
The following result is known.

LEMMA 6.1. For a compact oriented submanifold M in En+m, the Gauss map

v:M->G(n, m)dSN-1-=EN=ΛmEn+m is mass-symmetric in SN-\ iV=

Let 7 and V' be the Levi-Civita connections of M and En+m, respectively.
Denote by h, A and D the second fundamental form, the Weingarten map and
the normal connection of M in En+m, respectively. For the second fundamental
form h, we define the covariant derivative Ih of A by

(6.3) (7zAχr, Z)=Dzh{Y, Z)-h(lxY, Z)-h(Y, 1XZ).

Let φ: M->ΛΓ be a map between Riemannian manifolds. For vector fields
X, Y tangent to M, the symmetric bilinear map σ: TMx TM-+TN defined by

(6.3) σ(X, Y)=Ψχf*Y-f*VχY

is called the second fundamental form of the map φ, where 1' is the ̂ -induced
connection on φ-\TN).

In the following, we choose an oriented orthonormal local frame elt •••, en,
en+i> '" > βn+m such that el9 •••, en is an oriented orthonormal local frame tangent
to M and e n + 1 , •••, en+m an oriented orthonormal local frame normal to M in
En+m. We denote by hr

ιj=(h(eι> e3), er> the coefficients of h and by RD the
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normal curvature tensor with coefficients Kr

sιj=(RD(eι, e^eri esy. Then we
have [3]

(6.4) etv=—Σ A^n+iΛ Λ^Λ Λ^n+ni,

(6.5) Av=\\h\\2v+nΣen+iΛ-ΛVHrΛ--Λen+m
r

- Σ ΈKr

sjken+1A" Aer

JA"Άes

kA' -Aen+m,
rφs j<krφs

where Hr and ΊHr denote the mean curvature and gradient of the mean cur-
vature in the direction of er and er

3 means to replace er by e3.
By applying Proposition 2.3 we have the following.

THEOREM 6.1. Let M be a compact oriented n-dimensional manifold immersed
in En+m. If the Euler class e(TLM) of the normal bundle is nontrivial, then the
Gauss map of M in En+m is of k-type with k>m/2.

Proof. If either m is odd or m>n, then the Euler class of normal bundle
vanishes automatically. Thus we have m^n and m=2δ is an even integer.

For any positive integer l^m/2, let Vt be the subspace of ΛmEn+m spanned

by

{etlA"Άel2lAeriA"Άerm_2l: l^ilf ~ , i2l^>n, n + l^rlf — ,

Denote by πt: ΛmEn+m~^Vι the canonical projection. Then from (6.5) we have

(6.6) πa(v)=0,

(6.7) πa(Av)=0,

(6.8) π1(Av)-=-Σ,Kr

sjken+1A "Aer

JA' Άes

kA"Άen+m.

Now, assume that the Gauss map v is of &-type for some k^δ. Then,
Proposition 2.3 and Lemma 6.1 imply that there is a monic polynomial P of
degree k such that iD(Δ)v=0. Since k^δ, Q(t)^td~kP{t) is a monic polynomial
of degree δ such that Q(Δ)v=0. In particular, we have

(6.9) πδ(Q(A)v)=0.

By direct computation we have

(6.10) πδ(Aιv)=0 for Kδ.

Thus we have πδ(Aqv)=πδ(Q(A)v)=0. On the other hand, by direct computation,
we may find

(6.11) πs(ΔM=(-Dδ Σ K ^ w t - K^-KmJm.l3m •

«JiΛ«3Λ Λ«Js=0.
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Thus we find

(6.12) Σ/fW - ^-WWίίΛ Λ^O.

This is equivalent to

(6.13) Έerr.,mK

where
as (ri,

(6.14)

where

(6.15)

ω1

•••, ωn is the dual frame of elf •••, en and ε r r . . r m is 1 or —1 according

r m ) is an even or odd permutation of (n + 1, •••, n+m). Now, we put

Ωr

s=jΣKrsιjω*Λω>,

•••, ωn is the dual frame of elf •••, en. Then (6.13) gives

Since f represents the Euler class of the normal bundle, we obtain e(TLM)=Q.
(Q.E.D.)

For a compact, oriented n-dimensional submanifold M immersed in E2n, the
Euler number 1{T^M) of the normal bundle is equal to twice of the self-inter-
section number [10]. Thus, from Theorem 6.1, we have the following.

COROLLARY 6.1. Let M be a compact, oriented, n-dimensional manifold im-
mersed in E2n. If the self-intersection number of M in E2n is non-zero, then
the Gauss map v is of k-type with k>n/2.

It is well-known that the self-intersection number is a regular homotopic
invariant. From Theorem 6.1 we also have the following.

COROLLARY 6.2. Let x: M-+E2n be an immersion of a compact, oriented,
n-dimensional manifold M in E2n. If the Euler class e(TLM) of the normal
bundle of x is nontrivial, then x cannot be deformed regularly to an immersion
with k-type Gauss map for k^

Example 6.1. Although the standard immersion of S2n in E2n+1(ZE*n has
1-type Gauss map, the Whitney immersion w of S2n in Ein cannot be deformed
regularly to an immersion with &-type Gauss map of k^n. The Whitney
immersion w is defined as follows.

Let f:E
2n+1->E4n be a map of E2n+1 into E4n defined by

J\XQ, X\, ' " , ^27i) — ( ^ i > •*• , X2n> AXQXI, ' " , ZXQXZΠ).

Then / induces an immersion w: S2n->E4n, called the Whitney immersion,
which has a unique self-intersection point / (—I, 0, •••, 0)=/(l, 0, •••, 0). The
self-intersection number I{w) is one. Corollary 6.2 shows that w cannot be



ENERGY, TENSION AND FINITE TYPE MAPS 417

deformed regularly to any immersion of S2n in EAn with &-type Gauss map for
kSn/2.

If x : M^>Cn is a totally real immersion, then the tangent bundle is iso-
morphic to the normal bundle. Thus, by Theorem 6.1, we have the following.

COROLLARY 6.3. Let M be a compact, oriented, n-dimensional, totally real
submanifold of Cn. If the Euler number X(M) of M ts nontrivial, then the
Gauss map of M in Cn is of k-type with k>n/2.
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