BLOCH CONSTANT AND VARIATION OF BRANCH POINTS

By Akira Yamada

1. Introduction.

Let F be the set of functions f regular in the unit disc Δ normalized by the conditions f(0)=0 and f'(0)=1. For $z \in \Delta$, let B(f) denote the least upper bound of the radii of all unramified disc centered at f(z) which is contained in the Riemann surface of f. The Bloch constant B is defined by

$$B = \inf_{f \in F} B(f)$$
.

Although, the precise value of B is not known, we have the estimate [4] $B > \frac{\sqrt{3}}{4}$. In 1937 Ahlfors-Grunsky [1] obtained an upper bound $B \le B(g) = 0.47 \cdots$ by constructing a function $g \in F$ called the Ahlfors-Grunsky function. Also, they conjectured that B=B(g). The function $g: \Delta \to C$ is obtained as follows. Let S be the interior of the N.E. (non-Euclidian) triangle in Δ with the angles $\frac{\pi}{6}$, $\frac{\pi}{6}$ and $\frac{\pi}{6}$ and the vertices at σ , $\omega\sigma$ and $\omega^2\sigma$ where $\sigma = (\sqrt{3}+1)^{-1/2}$ and $\omega = e^{2\pi i/3}$. Let T be the interior of the regular triangle with the vertices at τ , $\omega\tau$, $\omega^2\tau$ where

$$\tau = \sigma \cdot \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{11}{12}\right) / \Gamma\left(\frac{1}{4}\right) = 0.47 \cdots.$$

By Schwarz's reflection the analytic function mapping S conformally onto T with $g(\omega^k \sigma) = \omega^k \tau$ (k=0, 1, 2) is continued analytically to a function $g \in F$ defined on Δ , which is the Ahlfors-Grunsky function. It is well known that g is a normal branched covering of the complex plane C which is simply branched at every point of the regular triangular lattice $\{(n+\omega m)\tau \mid n, m \in \mathbb{Z}\}$ but is not branched elsewhere.

A. W. Goodman [3] introduced a variation of branch points for an analytic function in Δ . We denote by $f_{c,\lambda}$ Goodman's branch variation of f.

The aim of this paper is to prove

THEOREM. For every branch point $c \in \Delta$ and sufficiently small $\lambda \in C$ ($\lambda \neq 0$), the Ahlfors-Grunsky function g satisfies

Received February 17, 1986

$$B(g) < B(g_{c,\lambda}/g'_{c,\lambda}(0))$$
.

Note that $g_{c,\lambda}/g'_{c,\lambda}(0) \in F$. The above Theorem asserts that the Bloch radius B(f) attains a local minimum at the Ahlfors-Grunsky function g when we vary its branch points slightly. For related results the reader is referred to H. Yanagihara's recent paper [7].

2. Proof of Theorem.

Goodman's branch variation [3] is described as follows. Let $f(z): \Delta \to C$ be regular in Δ with f'(0)>0, and map Δ onto a Riemann surface, having a simple branch point at f(c). For $\lambda \in C$ sufficiently small we form a new Riemann surface R^* , from R, by moving the branch point at f(c) to $f(c)+\lambda$, while holding the boundary and all other branch points of R fixed. Since R^* is simply-connected, there is a unique function $f_{c,\lambda}$ mapping Δ conformally onto R^* such that $f'_{c,\lambda}(0)>0$. The function $f_{c,\lambda}$ is called a Goodman's branch variation of f.

LEMMA 1. For sufficiently small $\lambda \in C$, we have

$$f_{c,\lambda}(z) = f(z) - \frac{1}{2}zf'(z) \left[A \cdot \frac{c+z}{c-z} + \overline{A} \cdot \frac{1+\overline{c}z}{1-\overline{c}z}\right] + 0(\lambda^2),$$

where $A = \frac{\lambda}{c^2 f''(c)}$ and the estimate is uniform for z in compact subsets of Δ .

Proof. See [3]. For another derivation of the above formula using q. c. variation, see [6]. q. e. d.

In particular, for Ahlfors-Grunsky function g, Lemma 1 shows

$$g'_{c,\lambda}(0) = 1 - Re \frac{\lambda}{c^2 f''(c)} + 0(\lambda^2).$$
 (1.1)

Let r(x, y, z) denote the (Euclidian) radius of the circle passing through the points x, y and $z \ (\in C)$. Since, if $\gamma z = az + b \ (a, b \in C)$,

$$r(\gamma x, \gamma y, \gamma z) = |a|r(x, y, z)$$

we have

$$\frac{\partial r}{\partial x}(\gamma x, \gamma y, \gamma z) = \frac{|a|}{a} \frac{\partial r}{\partial x}(x, y, z).$$
(1.2)

On the other hand, an elementary calculation gives

$$\frac{\partial r}{\partial x}(1, \boldsymbol{\omega}, \boldsymbol{\omega}^2) = \frac{1}{6}.$$
 (1.3)

Thus, if we move the branch point g(c) to $g(c)+\lambda$, the maximal radius $\rho(\lambda)$ of

402

all unramified disks in R^* is given by

$$\rho(\lambda) = \tau + \max_{k \in \mathbb{Z}} 2 \operatorname{Re}\left[\lambda \cdot \frac{1}{6} e^{k \pi \imath / 3}\right] + 0(\lambda^2).$$
(1.4)

This follows from the fact that the branch points of g forms a regular triangular lattice and from the identities (1.2) and (1.3).

LEMMA 2. If the inequality

$$|c^2 g''(c)| > 2\sqrt{3}\tau$$
 (1.5)

holds, then we have

$$B(g) < B(g_{c,\lambda}/g'_{c,\lambda}(0))$$

for sufficiently small $\lambda \in C$ ($\lambda \neq 0$).

Proof. Since
$$B(g_{c,\lambda}) = \rho(\lambda)$$
 and $B(g) = \tau$, the identities (1.1) and (1.4) give
 $B(g_{c,\lambda}/g'_{c,\lambda}(0)) = B(g_{c,\lambda})/g'_{c,\lambda}(0)$
 $= \tau + \max_{k \in \mathbb{Z}} Re \frac{\lambda}{3} \left[\frac{3\tau}{c^2 g''(c)} + e^{k\pi i/3} \right] + 0(\lambda^2)$

 $\geq B(g) + \frac{|\lambda|}{3} \Big[\max_{k \in \mathbb{Z}} Re \ e^{(k\pi i/3) + \theta} - \Big| \frac{3\tau}{c^2 g''(c)} \Big| \Big] + 0(\lambda^2)$

with
$$\theta = \arg \lambda$$
. Since

$$\max_{k\in\mathbb{Z}} Re \ e^{(k\pi i/3)+\theta} \geq \frac{\sqrt{3}}{2} \quad \text{for any} \quad \theta \in \mathbb{R},$$

(1.5) easily implies the desired inequality. q. e. d.

Let Γ be the group of *N.E.* isometries of Δ generated by l_1 , l_2 and l_3 where l_1 (*i*=1, 2, 3) are the reflections in each side of *N.E.* triangle *S.* We denote by Γ_0 the conformal subgroup of Γ . Poincaré's polygon theorem [5] implies that the group Γ is discontinuous and that the triangle *S* is a fundamental polygon for Γ .

LEMMA 3. For any
$$c \in \Delta$$
 with $g'(c) = 0$, we have

$$|c^{2}g''(c)| \ge |\sigma^{2}g''(\sigma)|.$$
 (1.6)

Proof. Observing that c is of the form $\gamma(\omega^k \sigma)$ for some $\gamma \in \Gamma_0$ and $k \in \mathbb{Z}$, we may assume by symmetry that $c = \gamma \sigma$ ($\gamma \in \Gamma_0$). Next, note that, for $\gamma \in \Gamma_0$,

$$g(\gamma z) = \omega^k g(z) + \text{const.}, \quad k \in \mathbb{Z}.$$

Differentiating the above identity, we have

$$g''(\gamma z)(\gamma' z)^2 + g'(\gamma z)\gamma'' z = \omega^k g''(z),$$

so that, by g'(c)=0,

$$g''(c)(\gamma'\sigma)^2 = \omega^k g''(\sigma).$$

Hence,

$$|c^{2}g''(c)| = \frac{|c|^{2}}{(1-|c|^{2})^{2}} \cdot (1-\sigma^{2})^{2} |g''(\sigma)|.$$

The Lemma will be proved if we show that $|c| \ge \sigma$. This is easy. Let $z = \gamma_0 \sigma$ $(\gamma_0 \in \Gamma)$ be a point in Δ such that

$$|z| = \min_{\gamma \in \Gamma} |\gamma \sigma|.$$

The existence of such a point z is clear from the discontinuity of the group Γ . Then we have

$$d(z, 0) \leq d(l_i \gamma_0 \sigma, 0), \quad i=1, 2, 3,$$

where $d(\cdot, \cdot)$ denotes the hyperbolic distance. Hence,

$$d(z, 0) \leq d(z, l_i(0)), \quad i=1, 2, 3,$$

so that $z \in \overline{S}$. Since S is a fundamental polygon, we conclude that $z = \sigma$, as desired. q. e. d.

Lemma 4.

$$g''(\sigma) = -(\sqrt{3}+1)^2 \cdot 2^{-37/12} \cdot 3^{-5/8} \cdot \pi^{-5/2} \cdot \Gamma^2\left(\frac{1}{4}\right) \Gamma^3\left(\frac{1}{3}\right).$$

Proof. Here, our basic reference is [2]. Let S_1 be the interior of the N. E. triangle in Δ with the angles $\frac{\pi}{6}$, $\frac{\pi}{6}$ and $\frac{\pi}{6}$ that has its vertices at 0, σ_1 , $e^{\pi i/6}\sigma_1$ with some positive constant σ_1 , and let T_1 be the interior of the regular triangle with the vertices at 0, τ , $e^{\pi i/3}\tau$. We denote by g_1 the function mapping S_1 conformally onto T_1 with $g_1(0)=0$, $g_1(\sigma_1)=\tau$ and $g_1(e^{\pi i/6}\sigma_1)=e^{\pi i/3}\tau$. Then it is easy to see that there exists a Möbius transformation φ with $\varphi(0)=\sigma$ satisfying the identity

$$g_1(z) = e^{i\theta}(g \circ \varphi(z) - \tau)$$

with some real constant θ . Differentiation shows

$$g''(\sigma) = -(1 - \sigma^2)^{-2} g_1''(0) , \qquad (1.7)$$

since geometrically it is clear that $g''(\sigma) < 0$ and $g_1''(0) > 0$. On the other hand, we can express g_1 as a composition $v \circ u^{-1}$ where u (resp. v) is the function mapping the upper half-plane $\{Im z > 0\}$ onto S_1 (resp. T_1) in such a way that the origin is kept fixed and the other vertices of the triangle correspond to 1 and ∞ . By [2, Vol. II, pp. 162-163], u(z) and v(z) have the expansion at the origin,

404

and

$$u(z) = C_1 z^{1/6} + \text{higher order terms},$$

 $v(z) = C_2 z^{1/8} + \text{higher order terms},$

where the coefficients C_1 and C_2 are given explicitly by

$$C_{1} = \frac{\sqrt{2}}{\sqrt{\sqrt{3}+1}} \cdot \frac{\Gamma(5/6)\Gamma(3/4)}{\Gamma(5/12)\Gamma(7/6)}$$
(1.8)

and

$$C_{2} = \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}} \cdot \frac{\Gamma(2/3)\Gamma(11/12)}{\Gamma(1/4)\Gamma(4/3)}$$
(1.9)

Hence,

$$g_1(z) = v \cdot u^{-1}(z) = C_2 C_1^{-2} \cdot z^2 + \text{higher order terms,}$$

so that

$$g_1''(0) = 2C_2 C_1^{-2}. \tag{1.10}$$

By applying standard formulas for the function $\Gamma(z)$, the identities (1.7)-(1.10) yield the value of $g''(\sigma)$, as desired. q. e. d.

Lemmas 2 and 3 imply that to conclude our THEOREM it is only necessary to show

$$\sigma^2 g''(\sigma) |> 2\sqrt{3}\tau.$$

However, a computation using Lemma 4 gives

$$|\sigma^2 g''(\sigma)| = 2.34 \dots > 2\sqrt{3}\tau = 1.63 \dots$$

This completes the proof of the THEOREM.

References

- L.V. AHLFORS AND H. GRUNSKY, Über die Blochschen Konstante, Math. Z., 42 (1937), 671-673.
- [2] C. CARATHÉODORY, Theory of functions, I, II, Chelsea, New York, 1954.
- [3] A. W. GOODMAN, Variation of the branch points for an analytic function, Trans. Amer. Math. Soc., 89 (1958), 277-284.
- [4] M. HEINS, On a class of conformal metrics, Nagoya Math. J., 21 (1962), 1-60.
- [5] B. MASKIT, On Poincaré's theorem for fundamental polygons, Adv. in Math., 7 (1971), 219-230.
- [6] A. YAMADA, Q.c. variations for analytic functions, to appear.
- [7] H. YANAGIHARA, Local minimality of Ahlfors-Grunsky functions for affine variations, to appear.

Department of Mathematics Tokyo Institute of Technology 405