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BLOCH CONSTANT AND VARIATION OF BRANCH POINTS
By AKIRA YAMADA

1. Introduction.

Let F be the set of functions f regular in the unit disc A normalized by
the conditions f(0)=0 and f’(0)=1. For z€A, let B(f) denote the least upper
bound of the radii of all unramified disc centered at f(z) which is contained in
the Riemann surface of f. The Bloch constant B is defined by

B 50

Although, the precise value of B is not known, we have the estimate [4]
B>i4§. In 1937 Ahlfors-Grunsky [1] obtained an upper bound B= B(g)=0.47 ---
by constructing a function g&F called the Ahlfors-Grunsky function. Also,
they conjectured that B=B(g). The function g:A—C is obtained as follows.
Let S be the interior of the N. E. (non-Euclidian) triangle in A with the angles

%, % and % and the vertices at ¢, we and w?¢ where g=(+/3+1)-% and

w=e%**"3, Let T be the interior of the regular triangle with the vertices at z,

wr, w’t where
= r(3)r()/r(3)=os-

By Schwarz’s reflection the analytic function mapping S conformally onto T
with g(w*e)=w*r (=0, 1, 2) is continued analytically to a function g F defined
on A, which is the Ahlfors-Grunsky function. It is well known that g is a
normal branched covering of the complex plane C which is simply branched at
every point of the regular triangular lattice {(n+wm)r | n, mEZ} but is not
branched elsewhere.

A.W. Goodman [3] introduced a variation of branch points for an analytic
function in A. We denote by f. ; Goodman’s branch variation of f.

The aim of this paper is to prove

THEOREM. For every branch point c€A and sufficiently small 2€C (2+0),
the Ahlfors-Grunsky function g satisfies
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B(g)<B(gc, 1/8¢ 200).

Note that g., /g4 :(0)eF. The above Theorem asserts that the Bloch radius
B(f) attains a local minimum at the Ahlfors-Grunsky function g when we vary
its branch points slightly. For related results the reader is refered to H.
Yanagihara’s recent paper [7].

2. Proof of Theorem.

Goodman’s branch variation [3] is described as follows. Let f(z):A—C be
regular in A with f7(0)>0, and map A onto a Riemann surface, having a simple
branch point at f(c¢). For AeC sufficiently small we form a new Riemann
surface R*, from R, by moving the branch point at f(¢) to f(c)+2, while
holding the boundary and all other branch points of R fixed. Since R* is
simply-connected, there is a unique function f, ; mapping A conformally onto
R* such that f} ;(0)>0. The function f, ; is called a Goodman’s branch vari-
ation of f.

LEMMA 1. For sufficiently small 2 C, we have

c+z —I—A l—l—cz

furd=r@~5af @45 £ o,

where A::-—'{»— and the estimate 1s uniform for z in compact subsets of A.

chI/<C)

Proof. See [3]. For another derivation of the above formula using g.c.
variation, see [6]. q.e.d.

In particular, for Ahlfors-Grunsky function g, Lemma 1 shows

g:,:0)=1—Re——,—+0(2%. (1.1)

Zf/l
Let #(x, », z) denote the (Euclidian) radius of the circle passing through the
points x, ¥ and z (€C). Since, if yz=az+b (a, bel),

r(rx, 1y, ra)=lalr(x, y, 2),
we have
_lalor
<rx 19, 1)="_" 7-(%, 3, 2). (1.2)
On the other hand, an elementary calculation gives

(1.3)

Thus, if we move the branch point g(c) to g(c¢)+4, the maximal radius p(2) of
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all unramified disks in R* is given by
— . 1 kr1/3 2
p(l)—r—l—x?éich Re[l 5 e ]—}—0(1 ). (1.4)

This follows from the fact that the branch points of g forms a regular triangular
lattice and from the identities (1.2) and (1.3).

LEMMA 2. If the inequality

lctg”(c)| >2+/ 37 (1.5)
holds, then we have
B(g)<B(g,1/8¢(0))

for sufficiently small A=C (A+0).
Proof. Since B(g.,)=p(2) and B(g)=r, the identities (1.1) and (1.4) give
B(g., /8¢ 0)=B(g.,1)/g¢ 0)
_ A 3r kni
=r-+max Re-3—[————~+e /3]+0(22)

czg//(c)
IZI[ 3r ]
> AN (kmy/3)+60 __ | __ YY" 2
=B(g)+ 3 | max Ree ng,,(c)) +0(2%)
with §=argi. Since
max Re e"‘“”’”’;ﬁ for any 6<R,
rez 2

(1.5) easily implies the desired inequality. g¢.e.d.

Let I' be the group of N.E. isometries of A generated by /,, /, and I,
where [, (=1, 2, 3) are the reflections in each side of N.E. triangle S. We
denote by I', the conformal subgroup of I'. Poincaré’s polygon theorem [5]
implies that the group I" is discontinuous and that the triangle S is a funda-
mental polygon for I

LEMMA 3. For any c€A with g’(¢c)=0, we have

lc*g”(e)| =z 10°g"(a)]. (1.6)

Proof. Observing that ¢ is of the form y(w*g) for some y=/', and keZ,
we may assume by symmetry that c=ye¢ (rl). Next, note that, for yerl,,

g(rz)=w*g(z)+const., keZ.
Differentiating the above identity, we have

g’ 21’2+ g ()" z=w*g"(2),
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so that, by g’(¢)=0,
g”(C)(TIO')z':(ng”(U).

Hence,
lc]®

2 — A1 — 322 o”
[c*g”(c)|= A=1c" (1—a%?|g"(a)l.
The Lemma will be proved if we show that |¢c|=¢. This is easy. Let z=7y,0
(roeI') be a point in A such that

Izl=rrrélplral.

The existence of such a point z is clear from the discontinuity of the group 7.
Then we have
d(Z, 0)§d(lﬁ’oo', 0); Z=1y 2; 3;

where d(-, ) denotes the hyperbolic distance. Hence,
d(Z, 0)§d(2; Z‘L(O)) ’ Z:1, 2) 3:

so that zeS. Since S is a fundamental polygon, we conclude that z=g¢, as
desired. g¢.e.d.

” =— + 2- J3-5/8 , =572, Z l / l
g (0') ('\/ 3 1)2' 81/12.,3-5/8 . p=5/2 2( ) 3( 3 ).

Proof. Here, our basic reference is [2]. Let S, be the interior of the N. E.
triangle in A with the angles %, % and % that has its vertices at 0, ¢, ¢"*%g,
with some positive constant ¢4, and let T, be the interior of the regular triangle
with the vertices at 0, 7z, ¢**°z. We denote by g, the function mapping S,
conformally onto T, with g,(0)=0, g.(¢;)=7 and g,(e**'®¢;)=e""*z. Then it is
easy to see that there exists a Mobius transformation ¢ with ¢(0)=0 satisfying
the identity

g:(2)=e"(g-¢p(z)—1)
with some real constant #. Differentiation shows
g"(e)y=—(1—a%"g{(0), a.mn

since geometrically it is clear that g”(¢)<0 and g#(0)>0. On the other hand,
we can express g; as a composition veu~! where u (resp. v) is the function
mapping the upper half-plane {Im z>0} onto S; (resp. T,) in such a way that
the origin is kept fixed and the other vertices of the triangle correspond to 1
and co. By [2, Vol. II, pp. 162-163], u(z) and v(z) have the expansion at the
origin,
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u(z)=C,z'*+higher order terms,
and
v(z)=C,z'*+higher order terms,

where the coefficients C; and C, are given explicitly by
V2 I'5/6)I'(3/4)

C= V7311 TG/ /6)
and
Co— V3 . I'2/3)I'11/12)
TNN3H1 TA/AHTA/3)
Hence,
g1(2)=v-u*(z2)=C,Cy?% - z*+higher order terms,
so that

81(0)=2C,Cy".
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(1.8)

(1.9

(1.10)

By applying standard formulas for the function I'(z), the identities (1.7)-(1.10)

yield the value of g”(s¢), as desired. g¢.e.d.

Lemmas 2 and 3 imply that to conclude our THEOREM it is only necessary

to show
le%g”(e)]| >2v/ 3.

However, a computation using Lemma 4 gives
la2g”(0)| =2.34 -+ >24/37=1.63 ---.

This completes the proof of the THEOREM.
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