
A. YAMADA
KODAI MATH, J.
9 (1986), 401—405

BLOCH CONSTANT AND VARIATION OF BRANCH POINTS

BY AKIRA YAMADA

1. Introduction.

Let F be the set of functions / regular in the unit disc Δ normalized by
the conditions /(0)=0 and /'(0)=l. For ^GΞΔ, let B(f) denote the least upper
bound of the radii of all unramified disc centered at f{z) which is contained in
the Riemann surface of /. The Bloch constant B is defined by

β=inf £ ( / ) .
f&F

Although, the precise value of B is not known, we have the estimate [4]

β > ^ - . In 1937 Ahlfors-Grunsky [1] obtained an upper bound B^B(g)=0A7 •••

by constructing a function g^F called the Ahlfors-Grunsky function. Also,
they conjectured that B=B(g). The function g:A->C is obtained as follows.
Let 5 be the interior of the N. E. (non-Euclidian) triangle in Δ with the angles

TΓ, ~τr and -pr and the vertices at σ, ωσ and ω2σ where σ = ( V 3 +1)~1/2 and
6 6 6

ω=e2πί/3. Let T be the interior of the regular triangle with the vertices at τ,
ωτ, ω2τ where

By Schwarz's reflection the analytic function mapping S conformally onto T
with g(ωkσ)=ωkτ (k=0, 1, 2) is continued analytically to a function g^F defined
on Δ, which is the Ahlfors-Grunsky function. It is well known that g is a
normal branched covering of the complex plane C which is simply branched at
every point of the regular triangular lattice {(n+ωm)τ | n, m^Z) but is not
branched elsewhere.

A. W. Goodman [3] introduced a variation of branch points for an analytic
function in Δ. We denote by fc, x Goodman's branch variation of /.

The aim of this paper is to prove

THEOREM. For every branch point C G Δ and sufficiently small 2 G C (λΦO),
the Ahlfors-Grunsky function g satisfies
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B(g)<B(ge,i/g'e,λ(0)).

Note that ge,x/gi.x(0)^F. The above Theorem asserts that the Bloch radius
B{f) attains a local minimum at the Ahlfors-Grunsky function g when we vary
its branch points slightly. For related results the reader is refered to H.
Yanagihara's recent paper [7].

2. Proof of Theorem.

Goodman's branch variation [3] is described as follows. Let f(z): Δ->C be
regular in Δ with / /(0)>0, and map Δ onto a Riemann surface, having a simple
branch point at f(c). For ΛeC sufficiently small we form a new Riemann
surface R*, from R, by moving the branch point at f(c) to f(c)+λ, while
holding the boundary and all other branch points of R fixed. Since R* is
simply-connected, there is a unique function fCtχ mapping Δ conformally onto
R* such that /ί,^(0)>0. The function fCtλ is called a Goodman's branch vari-
ation of /.

LEMMA 1. For sufficiently small 2eC, we have

where A— and the estimate is uniform for z in compact subsets of A.
c j \C)

Proof, See [3]. For another derivation of the above formula using q. c.
variation, see [6]. q. e. d.

In particular, for Ahlfors-Grunsky function g, Lemma 1 shows

^ (1.1)

Let r(x, y, z) denote the (Euclidian) radius of tne circle passing through the
points x, y and z (eC). Since, if γz=az+b {a,

r(γx, γy, γz)=\a\r(x, y, z),

we have

On the other hand, an elementary calculation gives

t{ί'ω'ωη=τ (L3)

Thus, if we move the branch point g{c) to g(c)+λ, the maximal radius p(λ) of
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all unramified disks in R* is given by

/oW)=τ+max2 Re\λ~ek7:ι/3]+0<iλ2). (1.4)

This follows from the fact that the branch points of g forms a regular triangular
lattice and from the identities (1.2) and (1.3).

LEMMA 2. / / the inequality

k V / W I > 2 V T r (1.5)

holds, then we have

B(g)<B(gc>λ/g'c>λ(0))

for sufficiently small λ^C (λΦO).

Proof. Since B(gCjλ)=ρ(λ) and B(g)=τ, the identities (1.1) and (1.4) give

3 L c2g"(c)

with <?=argiί. Since

^ for any
Z

(1.5) easily implies the desired inequality, q. e. d.

Let Γ be the group of N. E. isometries of Δ generated by llt l2 and l3

where lt (i=l, 2, 3) are the reflections in each side of N. E. triangle S. We
denote by Γo the conformal subgroup of Γ. Poincare's polygon theorem [5]
implies that the group Γ is discontinuous and that the triangle 5 is a funda-
mental polygon for Γ.

LEMMA 3. For any c<=Δ with g\c)=ΰ, we have

ky'WI^kVWI. (1.6)

Proof. Observing that c is of the form γ(ωkσ) for some γ^Γ0 and
we may assume by symmetry that c=γσ (γ^Γ0). Next, note that, for

g(γz)=ωkg(z)+const, k(=Z.

Differentiating the above identity, we have
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so that, by g'(c)=0,

g"(c)(fσ)2=ωkg"(σ).
Hence,

I d 2

The Lemma will be proved if we show that \c\^σ. This is easy. Let z=γoσ
(fo^Γ) be a point in A such that

The existence of such a point z is clear from the discontinuity of the group Γ.
Then we have

σ,O), ι = l, 2, 3,

where d( , •) denotes the hyperbolic distance. Hence,

U0)), 2-1,2,3,

so that Z G S . Since S is a fundamental polygon, we conclude that z=σ, as
desired, q. e. d.

LEMMA 4.

Proof. Here, our basic reference is [2]. Let Sj be the interior of the N. E.

triangle in Δ with the angles —, — and -pr that has its vertices at 0, σly eπι/6σ1

Ό Ό D

with some positive constant σlf and let Tλ be the interior of the regular triangle
with the vertices at 0, r, eπiιzτ. We denote by gλ the function mapping SΊ
conformally onto Tx with #i(0)=0, gάσ^τ and g1(eπi/6σ1)=eπi/3τ. Then it is
easy to see that there exists a Mobius transformation φ with ^(0)=σ satisfying
the identity

gi(z)=eίθ(g>φ(z)-τ)

with some real constant θ. Differentiation shows

(1.7)

since geometrically it is clear that g"(σ)<0 and ^i;(0)>0. On the other hand,
we can express gi as a composition v^w1 where u (resp. v) is the function
mapping the upper half-plane {Imz>0} onto S2 (resp. TΊ) in such a way that
the origin is kept fixed and the other vertices of the triangle correspond to 1
and co. By [2, Vol. II, pp. 162-163], u(z) and v(z) have the expansion at the
origin,
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u(z)=C1z
1/GJrhigher order terms,

and
v(z)=C2z

1/3+higher order terms,

where the coefficients Cλ and C2 are given explicitly by

n _ VΎ Γ(5/6)Γ(3/4)
x~~ V V T + ϊ ' Γ(5/12)Γ(7/6) U ° ;

and

n _ V 3" Γ(2/3)Γ(11/12)
Γ(l/4)Γ(4/3) U * y ;

Hence,

gi(2)=v M~1(2θ=C2Cr2 22+higher order terms,

so that

2C2Cr2. (1.10)

By applying standard formulas for the function Γ(z)y the identities (1.7)-(1.10)
yield the value of g"(σ), as desired, q. e. d.

Lemmas 2 and 3 imply that to conclude our THEOREM it is only necessary
to show

\σ*g"(σ)\>2VJτ.

However, a computation using Lemma 4 gives

I σ2g"(σ) I =2.34 - >2V"3"τ=1.63 - .

This completes the proof of the THEOREM.
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