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0. Introduction.

The set Eq(X) of homotopy classes of self-homotopy equivalences of a based
space X forms a group under the composition of maps, and it is called the group
of self-homotopy equivalences of X. The group Eq{X) has been studied by
several authors since the paper of W. D. Barcus and M. G. Barratt [1] appeared.

However, we have not yet obtained an effective method for calculating it
except classical ones, and its structure also has not been clarified sufficiently.
Furthermore, very little is known about this group even when I is a simply
connected CW complex with three cells which is not a //-space. In particular,
when X is a total space of Sm-bundles over Sn, the group Eq(X) was already
considred for X=SmxSn in [7], [8], [17], for a principal S3-bundle over Sn

in [9], [13], [16], and for the real and complex Stiefel manifolds Wn>2 and Vn,2
in [10]. Recently, S. Sasao studied the group Eq(X) in [15] for the total space
of Sm-bundles over Sn under the stable range, 3 < m + K n < 2 m - 2 .

On the othe hand, it seems to be very difficult to investigate it under the
unstable range. However, we would like to consider it when X is simply con-
nected and the total space of Sm-bundles over Sn for a small pair of integers
(m, n). Since X is simply connected, n, m^2 and the cases (m, n)—{2} 2) or
(2, 3) were already considered by P. J. Kahn [7] and N. Sawashita [8].

Then the purpose of this paper is to study the group Eq{X) for the case
(m, n)=(2, 4) and we will treat its application in the subsequent paper in [22].

1. Notations and Results.

All spaces have base points, and all maps and homotopies preserve base
points throughout this note. We denote by [Z, F ] the set of based homotopy
classes of maps from X to Y, and we will not distinguish between a map and
its homotopy class. Let Z{x} (resp. Zm{x}) be the infinite cyclic group (resp.
the cyclic group of order m) generated by the element x. Let RPn (resp. CPn)
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and SOn be the n-dimensional real (resp. complex) projective space and the n-th
rotation group, respectively. We denote by the map p : SS->RP3=SO3 the double
covering projection, and it is trivial to see π3(SO3)=Z{p}. In the exact sequence
A-+B-+C-+1, we write the group composition in the group A as addition, and
the compositions in the groups B and C as multiplication. Then our main
results are stated as follows:

THEOREM 1.1. For each integer m, let Xm be the total space of S2-bundle
over S4 with its characteristic class X(Xm)=mp^π3(SO3).

If m is a non-zero integer, the sequence

λ φxώ

πG(Xm) > Eq(Xm) > Gm —+ 1

is exact, where

Z2 if (m, 2)=1

,Z2XZ2 if (m, 2)=2
and

0 if (m, 6) = 1

Z3 if (m, 6)=3

Z2,®Z(^m') if m—2mf for some integer mf

Here we denote by (m, n) the greatest common measure of integers m and n.

COROLLARY 1.2. // (m, 6)=1, then Eq(Xm)=Z2.

PROPOSITION 1.3. // (ra, 6)=3, then the group Eq{Xm) is isomorphic to Z2

or Z 6 and ImCJ?: Eq{Xm)—>Eq{lXm)~\ = Z2f where Σ denotes the suspension homo-
morphism.

Remark 1.4. (1) If m=0, X0=S2xS4 and the group Eq(X0) was already
well-known. In fact, the following sequence is split exact [17] :

0 — > Z2@Z2 — > Eq(Xo) — > Z2XZ2XZ2 — > 1

(2) If ra=2m/^0, the homomorphism λ: π&{Xm)-^Eq{Xm) is not trivial. In
fact, ImΛ contains the subgroup isomorphic to Z2.

This paper is organized as follows:
In section 2, we will determine the homotopy groups π*(Lm) and π*(ΣLm),

and in section 3, we will calculate Eq(Lm) and Eq(ΣLm). In section 4, we will
study the image of the homomorphism φxψ, and in section 5, we will give the
proof of our main results.

2. Homotopy Groups τr*(Lm) and π*(ΣLm).

Let cn be the oriented generator of πn(Sn) and η2(=π3(S2) be the Hopf map.
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We put ηn=En-2η2, ηl=ηn

oηn+i and ηi=^ηnoVn+i°ηn+2 for n > l , where En~2

denotes the iterated suspension homomorphism. Let ωe/r6(S3) be the Blackey-
Massey element, and p: S3-+RP3=SOS be the double covering projection. Then
the following is well-known;

LEMMA 2.1. (H. Toda, [19])

(1) πn(Sn)=Z{cn\ and ^ ( S w ) = 0 for i<n.

(2) πn+1(Sn)=Z2{ηn} for n>2 and π,(S2)=Z{η2}.

(3) πn+t(S*)=Zt{η*} for n>l.

(4) πb(S2)=Z2{ηl] and πβ(Ss)=Z12{ω}.

(5) J(p)=±ω,

where J: π3(SO3)~Z{p}-+πG(S3) denotes the J-homomorphism.

(6) η\—{2c3, η3i 2r4} modulo zero,

where { ,,} denotes the Toda bracket.

Let Lm be the CW complex formed by attaching the 4-cell e* to S2 with the
map mη2^πz(S2), and am:(D4, S3)-»(Lm, 52) be the characteristic map of the 4-
cell in Lm and Xm be the total space of S2-bundle over S4 with its characteristic
element X(Xm)=mp^πs(SOz=Z{p} for an integer m. We denote by the map
p: SO8-^SOZ/SO2=S2 the natural projection map, and by the map i:S2-*Lm

(resp. iι: Lm->(Lm, S2)) the inclusion map. Then we have

LEMMA 2.2. (1) ρ*(ρ)=η2.

(2) π4(Lm, S2)=Z{am}.

(3) π5(Lm, S2)=Z{lam, ;2] r}0flm*;r5(i)4, S3),

where [, ] r denotes the relative White head product.

Proof. The statements (1) and (2) are obvious, and the statement (3) follows
from (3.1) in [3]. Q. E. D.

Since ί*(X(^OT)):=^^2, we also have

LEMMA 2.3. (I. M. James and J. H. C. Whitehead, [5], [6])
(1) The space Xm has the CW-decomposition Xτn — Lm\JbΊJte* for some element

bm^π5(Lm), and

(2)

where iλ* denotes the induced homomorphism



THE GROUP OF SELF-HOMOTOPY EQUIVALENCES 311

2i* ftδ(Lm) — > πδ(Lm, S 2).

Proof. The above statements follow from (3.3) in [5] and (5.1) in [6].
Q. E. D.

LEMMA 2.4. (1) π1(Lm)=0 and π2(Lm)=Z{i}.

0 if m = l (mod 2)

(3) π 4 (L m )= Z2{i°η2} if m=Q (mod2) and m^O

where the map i4: S 3^-S 2VS 4=L 0 denotes the inclusion map to the second factor.

Proof. Without loss of generalities, we may suppose ra^O and it suffices
only to show the statement (3). Consider the homotopy exact sequence of the
pair (Lm, S2):

πδ(Lm, S2) - Λ τr4(S2) -^> π4(Lm) - ^ π4(LTO, S2) - Λ τr3(S2) — > π3(Lm) — ^ 0.

Since d4(am)=mη2, it follows from (2.2) that the homomorphism z^ is epimorphic.
By using the equation \_η2y ̂ 3=0, dδ([am, c2~]r)— — [34(flm)> ^3=0. Similarly,

π4(S2) if m=l (mod 2)

0 // WΞO (mod2).

Hence the assertion (3) easily follows from (2.2). Q. E. D.

COROLLARY 2.5. // m^O, then

(πδ(LmfS
2) if m=0 (mod 2)

Ker [3 β : π 5(Lm, S2) — ^ π 4 (S 2 )]-^
l ^ { [ ^ ] r } if m=l (mod 2).

LEMMA 2.6. // m^O, then

πδ(S2) if m=l (mod 2)
Im [3 6 : π 6(Lm, ) 5 ( ) ] ^

0 // mΞθ (mod 2).

Proof. First, we suppose that m is an odd integer. Since 36(αm*7r6(Z)4, 53))
), the boundary homomorphism 36 is epimorphic.

Next, we assume that m is a non-zero even integer. Consider the commut-
ative diagram
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, S 2 ) G

where An denotes the boundary homomorphism induced from the flbration

Since X{Xm)—mρ, we have

(2.7) ,

Because ηt=E(ηi), A6(ηl)=A4t(c4ι)oηi=(mη2)oηl=m(ηl)=0. Hence Δ6 is a trivial
homomorphism. Thus the assertion follows from the above diagram. Q. E. D.

Let qm: Lm-+Lm/S2~Si be the pinching map which pinches S2 in Lm to its
base point. Then we have

LEMMA 2.8. (S. Oka)

Let m be an even integer. Then there is an element ym^7zb{Lm) satisfying
the following two conditions:

(1)
and

(2) the order of γm is 2 if m=Q (mod 4) and 4 if m = 2 (mod 4).

Proof. We put m—2mf. For each positive integer n, let Mn be the Moore
space of type (3, Zn), Mn—Sz\Jncze\ Consider the following commutative
diagram:

where three horizontal sequences are cofiber sequences. It follows from the above
diagram that there are two maps

f:M2—>Mm and g : Mm—> Lm
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satisfying the following conditions:

(2.9) g' f=q", f'i"=ϊ<m'cs), qm°g=g', and g*i'=i*η2.

On the other hand, since (2e9)°η3=ηs°(2c4)=0, there is a coextension of 073,

9j: S 5 — > M2

satisfying the condition,

(2.10) tf" ? = ?4.

From Prop. 1.8 in [19],

•=i"*i)\ (by (6) in Lemma 2.1)
Hence we have

(2.11) 2?=/*- 7 S.

Now we put γm—gof°rj- Then,

Similarly,

i'ηt«(.m'ca)°ηl

0

(by (2.9))

(by (2.10))

(by (2.11))

(by (2.9))

if m'=\ (mod 2)

if m'=Q (mod 2)

Since the order of i*(ηl) is 2, the order of γm is 4 if m=2 (mod 4) and 2 if m=Q
(mod 4). This completes the proof. Q. E. D.

Remark. 2.12. The order of the element γm is essentially determined by the
suspension order of S2\Jmi2e

s.

PROPOSITION 2.13. (1) // m=l (mod2), then π5(Lm)=Z{bm}.
(2) If m=0 (mod 2), then

rJ if m=2 (mod4)
\
[Z{bm}®Z2{γm}®Z2{t°ηl\ if m=0 (mod4)
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where we can put bm=[i, z4] and γm=ii°ηi if m=0, and 2γm=i*η\ if m~2

(mod 4).

Proof, Consider the homotopy exact sequence of the pair ( L m , S2),

d6 i* zΊ* dδ

π6(Lm, S2) — > πδ(S*) — > πδ(Lm) —+ πδ(Lm, S2) — > ;r 4(S 2).

First, we suppose that ro=l (mod 2). Then it follows from (2.3), (2.5) and (2.6)
that we have πδ(Lm)=Z{bm\. If m=0, then L 0 = S 2 v S 4 and the assertion
clearly holds. Hence, we assume m=0 (mod 2) and mΦO. Then, from (2.3),
(2.5) and (2.6) we have the following results:

(2.14) (1) π5(Lm)=Z{bm}®Ύor(π5(Lm)).

(2) The sequence

0 —-> τr5(S2) - Λ Tor(τr5(Lm)) - ^ am*πδ(D\ S3) — > 0

is exact. On the other hand, it follows from Theorem 2.1 in [2] that the
sequence

0 — > π,(S2) — > πδ(Lm, S2) ^ t τr5(S4) — > 0

is exact, where the homomorphism Q is defined by the relative Whitehead pro-
duct, Q(c2)=lam, c2lr- Hence the map qm induces the isomorphism qm*:

a jn^π^D^y S3) - ^ τr5(S4), and we have the following exact sequence,

(2.15) 0 — * τr5(S2) —^> Tor(;r5(Lm)) - ^ π5(S4) — ^ 0.

Hence it follows from (2.8) and (2.15) that we have

ym) if m=2 (mod4)
(2.16) Tor(τr 5 (L m )H

Zt{γm}®Zt{i<>η\} if m=0 (mod4).

Therefore, we obtain the desired results. Q. E. D.

In the rest of this section, we will consider the homotopy group π*(ΣLm),
First, we remark that

f S3VS5 if m=0 (mod2)
(2.17) ΣLm=\

(ΣCP2 if m=l (mod 2)

For each even integer m, let iδ:S
5-^ΣLm=S3\/S5 denote the inclusion map to

the second factor.

LEMMA 2.18. Let m be an even integer. Then thesusp ension homomorphism
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Σ : Tor(;r5(Lm)) — >

is injective, where π6(2rLm)=π6(S3VS5)=Z12{(2Όoω}0Z2{z5ooy5} and we can choose
the map γm^Ύoτ{πδ(Lm)) to satisfy the condition

{ i5°η5 if m=0 (mod4)

iδ° η5+3(Σi)oω if m=2 (mod4).
Remark 2.20. It is easy to see that there are two possibilities of the choice

of fm, γm and γm+i*(ηl). However, if γm satisfies the condition (2.19), then it
is uniquely determined.

Proof. Since ΣLm=S3VS5, we have the following commutative diagram:

0 _ * π5(S2)-ίU Tor (π,(L m)) -2=ί-» **&) —+ 0

E\ \Σ s E'

0 π*(Sη - ^ ! - τrβ(^L J 4 τr6(S5) - ^ 0

n*

where Ef E
r and Σ denote the suspension homomorphisms. Since E is monic

and E' is isomorphic, it follows from the five Lemma that Σ is also monomorphic.
Hence the order of Σγm is 2 if m=0 (mod 4) and 4 if m=2 (mod 4). Then it
follows from ^m*(Γm)=^4 that we have Σγm=i5°η5 modulo Im(2ϊ)* Therefore,
there exists some integer n satisfying the condition

{ hfl*Λn(Σiyrι\ if WΞO (mod4)

i5oη5+3(Σi)-ω+n(Σi)or]l if m=2 (mod4).
Then by using the base change γm->γm+n(i°ηl), it is easy to see that γm

satisfies the condition (2.19). Q. E. D.

An easy calculation shows the following results, and we will omit the proof.

LEMMA 2.21. Let m be an odd integer. Then we have the following results-

(1) πi(ΣLm)=0 for ί = l , 2 or 4,

(2) π>{ΣLm)=ZlΣi),

(3) πδ{ΣLm)=Z{^}} and

(4) π9(ΣLm)=Z.{(Σi)*ω},

where we denote by 2c4 the coextenston of 2c4 which satisfies the condition (Σqm)°2ci
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3. The Groups Eq(LJ and Eq(ΣLm).

In this section, we will determine the group structure of Eq(Lm) and
Eq(ΣLm).

DEFINITION 3.1. Let K be a CW complex with dim K<n. Let X be a CW
complex formed by attaching the n-cell en to K with the map f^πn-i(K)>
X—K\Jse

n. We denote by /, μ and 7 the inclusion map, a co-action map and a
folding map, respectively. Then we define the homomorphism λ: Im [/#: πn(K)

by the following:

μ idx\/z°g V

( g ) ( i g ) ° μ : X — > XvSn >XvX—>X for g^πn{K).

Similarly, we define two homomorphisms

φ : Eq(X) — > Eq(K) and φ : Eq(X) — > Eq(Sn) = Z2

by the restriction of maps and the degree of the top cell en. (See in detail,
[12])

Secondly, we construct the elements of Eq(Lm) and Eq{ΣLm).

DEFINITION 3.2. (1) For m—0, we define the map h0 by the equation,

For each even integer m, we define the map h'o by the equation

Λί=f8V(-*B): ΣLm=SsvS5S5

Clearly, if m=0, h'0=Σh0. For each odd integer m, let h'o: 2 rLm->2TLm be one
of the maps which has a degree + 1 on S3 and —1 on the cell e5 in ΣLm.
Since ηs= — r]s, the map h'o always exists.

(2) For each integer m, let hλ: L m ->L m be one of the maps which has a
degree — 1 on S2 and a degree + 1 on the cell e* in Lm. Since

)=c3 and [>2, <r2]=2^2,

Hence the map hλ always exists. We define the map hΊ:ΣLm-+ΣLm by the
equation

-cs)Vcδ:ΣLm=S3\/S5->ΣLm=S*VS5 if m=Q (mod2)

.Σh1:ΣLm-+ΣLm if m=l (mod2).

(3) For each integer m, we define the map h2 by the equation h2—λ{η2

2).
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In particular, if ra=Q, then h2=idLo+i°ηl°pr, where pr denotes the projection
map to the second factor, pr: L 0 =5 2 v5 4 ->5 4 . For each even integer m, we
define the map h'2:ΣLm-*ΣLm by the equation hf

2=Σh2. Then it is easy to
see that hί=idΣLn+(Σi) ηl*(Σpr).

THEOREM 3.3.

Z2{hλ) if m = l (mod2)

(1) Eg(Ln)= Z2{Λ1}XZ2{A2} if m=0 (mod2) and mφΰ

Z \ht\\ X Z \h \ X Z \h \ if Ύϊiz= 0

f Z2{K}xZ2{h[} if m=l (mod2)

(2) Eq(ΣLm)=\
{Z2{hr

0}xZ2{h[}xZ2{hf

2} if m=0 (mod2).

(3) The suspension homomorphism Σ : Eq(Lm)—>Eq(ΣLm) is monomorphic and
isomorphic if m=0.

Proof. First, we consider the case m=Q. Since L0=S2\/Si, the homotopy
set [Lo, Lo] has a natural ring structure which is induced from the track addi-
tion and the composition of maps. It is easy to see that the ring [Lo, Lo] is
isomorphic to the matrix ring

Γ7Γ2(S
2) 7Γ4(S

2)] \Z{C2\ Z2{7]

Hence Eq(L0)={±h0, ±hu ±h2), where ho=c2\/(—:4)= . ,

o l j 2~~z L° ι V2° r~~[o lSince hn^hn—ιdLo and hn°hk — hk°hn for O^n, ^ ^ 2 , we have

A!} XZ2{Λ2}.

A similar argument shows Eq(ΣL0)=Z2{hΌ} xZ2{h{} xZ2{hr

2], and it follows from
h'n—Σhn that the suspension homomorphism Σ: Eq(Lo)->Eq(ΣLo) is isomorphic.

Next, we consider the case m^ψO. It follows from the Barcus-Barratt theorem
[2] and Theorem 3.13 in [12] that we obtain the following commutative diagram:

λ φ
Im [/* : 7Γ4(S2)--7Γ4(L J ] *Eq{Lm) >Eq{S*) > 1
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where Σ, 2Ί and Σ2 denote the suspension homomorphisms, and two horizontal
sequences are exact.

Now we suppose that m is an odd integer. Since π4(Lm)=lm(Σi)*=0 and
Σ2 is monomorphic, Eq(Lm)=Z2{h1}, Eq(Σ Lm)=Z2{h'0}xZt{hΊ} and Σ is a
monomorphism.

Finally we assume that m is a non-zero even integer. Since ΣLm=SzvS5,
we obtain

(3.5) Eq{ΣLm)=Z2{h'Q}xZ2{h[)xZ2{h'2}, and lm(Σi)*=Ztl(Σi)'ηl}.

Hence Σλ is an isomorphism and the homomorphism λ:\mi*^=Z2{i°η\)-+Eq(Lm)
is a monomorphism. Because Σ2 is monic, according to the Five Lemma, Σ is
a monomorphism. Therefore, it follows from (3.5) that £^(LTO)=Z8{Ai} xZ2{/z2}.

Q. E. D.

4. The Image of the Homomorphism φxφ.

The purpose of this section is to determine the image of φxψ,

(4.1) Gm=lmtφXψ: Eq(Xm) —> Eq(Lm)xEq(SG)l.

According to Lemma 2.2 in [12], if we identify Eq{SG)=Z2={±l},

LEMMA 4.2. Gm={(Λ, e ) e £ ^ ( L m ) x { ± l } : h<>bm=εbm}.

Thus it suffices only to determine the action of Eq{Lm) to the homotopy group
πδ(Lm) which is induced from the composition of maps,

(4.3) Eq(Lm)Xπ5(Lm) —•* τr5(Lm).

Let /':Z,TO->LOTVS4 and / " : S4-+LTOVS4 denote the inclusion maps to the first
factor and second factor, respectively. Let μ:L m ->L T O vS 4 be a co-action map.
First, we note the following

LEMMA 4.4. (I. M. James, [3])

(1) Ai*(6m)=y/oftm+[/,y-'].

(2) jK*(r»)=/ / er»+/ / e?4-

Let o/ be the generator of πδ(D\ S 3 )^Z 2 . According to (2.3), (2.8)
and (2.13), ί1*(6J Λ)=[αJ Λ, * 8 ] r , 2i*(rm)=^m*(^/) and zΊ*(z*()7!))=O. Then the above
results follow from Lemma 5.4 in [3]. Q. E. D.

LEMMA 4.5. (I.M. James, [4]) Σbm=m{(Σi)°ω).

Proof. Since J(X(Xm))—Kmp)=1±m<i), the assertion follows from (3.1) in [4],
Q. E. D.
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Then the action (4.3) is described as follows:

THEOREM 4.6. (1) // m=l (mod2), then hx-bm^-bm.
(2) // m=0 (mod 2), then

and

(3)

and

(a)

(b)

(c)

(d)

(e)

In

(a)

(b)

(c)

hi°bm=—bm,

hsbm=bΛ,

particular, if m=0,

ht>°bo=—bo,

) if

if

=ί*(ϊ

then

m=2 (mod 4),

m=0 (mod 4),

4) if m^O (mod4).

Proof. According to the cellular aproximation theorem, we may assume
Λi(S8)cS8. Hence h^i^i^h^. Therefore,

(by (2.3))

Thus, we have

(4.7) h1obm=-bm modulo ι*πB(S ).

(1) First, we suppose m=l (mod 2),
According to (2.13), /*7Γ5(S

2)=O and we have h^bm ——bm.
(2) Next, we assume m^O (mod 2).
(a) Since i*π5(S2) is contained in Tor(τr5(LTO)), there exists some element

γ<=Tor(π5(Lm)) such that h1-bm=-bm+γ. Then
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Σγ=Σ(h1'bm+bm)

={ΣhΛ).Σbm+Σbm

= hΆm(Σi°ω))+m{Σι°ώ) (by (4.5))

= — m(Σi°ω)+m(Σi°a>)

= 0 .

Therefore, according to (2.18), γ=0. Hence h1°bm=—bm.
(b) Since [*„ ηf]=O,

=7.(fd£ mvι i?i).θv 6»+p, /"]) (by (4.4))

—bm+i'ίis, ηϊ]

(c) If m=2 (mod 4), then

(by (2.19)

= -Σγm

Hence, according to (2.18), we have h1°γm=γm+i*(ηl). If m=0 (mod 4), then it
follows from (2.19) that Σγm=i5°ηδ. Hence, a similar calculation shows h1°γm=γm.

(d) A, r«=i(7l) r«

(e)
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Hence, according to (2.18), we have h^i^ηD—i^ηl).

Thus,

(3) If m=0, then it follows from (2.13) and (3.2) that ho=c2V(-cA), ^o=
[/, z4] and γo=i4°y]4. Therefore, it is easy to see the assertion (3) and we omit
the proof. Q. E. D.

In particular, it follows from (4.2) that we obtain the following

COROLLARY 4.8.

Z2 if m~\ (mod2)

Z2xZ2 if m=0 (mod2) and m^O

. Z2XZ2XZ2 if w=0.

5. The Proof of the Main Results.

In this section, we will prove (1.1) and (1.3).
Let j : Lm->Xm be an inclusion map and b'm^π6(Xm, Lm) denote the charac-

teristic map of the top cell e6 in Xm. Consider the homotopy exact sequence

π6(Lm) -^ πG(Xm) — * π6(Xm, Lm)=Z{b'm} -L π5(Lm)=Z{b

Since τr6(Zm, Lm)=Z{b'm} and d{b'm)=bm, we have

LEMMA 5.1. Im[/* : π6(Lm) — > π 6 (Z T O )]=π 6 (Z m ).

Hence, according to the Barcus-Barratt Theorem and (4.8), we obtain

LEMMA 5.2. The sequence

λ φXφ
τre(Xm) — > Eq{Xm) > Gm —> 1

is exact.

Therefore, to prove (1.1), it suffices only to show the following

PROPOSITION 5.3.

f 0 if (m, 6)=1

πβ(Xm)^\ Za if (m, 6)=3

,nf) if ?n=2m /^0.
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j°i Pm
Consider the homotopy exact sequence of the fibration ξm : S2 — > Xm — > S\

(5.4) πn(Sr

Here, according

(5.5) π,(S2)

Then we have

LEMMA 5.6.

(1) Ae(ηΐ)—m(η

(2) Δ7(£ω)=m(:

(3) A,(v4)=±(™

Δ7

) —» π6(S

to [19],

Ho

2 ) -

we

ι/

Proof. (1) Since ηl=E(ηl),

Pm* Δ 6

—> ^ 6 v A T O ; — > 7C6{o ) — > TΓδVo .

note

ζT^Γ1 πe{S^ZAm

m=l (mod 2)

m=0 (mod 2).

C ϋ ) .

according to (2.7),

(2) Similarly, since [V8, ^ ] = 0 , A1{Eω)=Ai{ci)
(3) Consider the induced fibration vffTO:

}•

Then we have the commutative diagram

i :

Hemce
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(5.7) Δ7(ι/4)

Since p : SS-^RPS—SO3 is a double covering projection, the induced map Bp : HP00

=BS3->BSO3 is a fibration with its fiber BZ2=K(Z2, 1). Then, if n>2, we
have the composite of isomorphisms

Bp* ad
(5.8) πn(HP~)=πn(BS*) — — * πn(BSO3) > πn-i{SO9),

where ad denotes the adjoint isomorphism. Since πz{SO3)=Z{ρ}y there exists a
map ρ'<Bπ4(HP°°) such that,

(5.9) ad°Bp*(p')^p and πήt{HPto)^Z{pf}.

Furthermore, according to the celluar approximation theorem, we have

(5.10) p'=J2°Ji,

where the maps j1:S
4-^HP2=Si^JHe8 and j2:HP2-^HP°° denote the natural

inclusion maps. Let c(ξm)^π4(BSOs) and c(ρ?fTO)eτr7(J55O3) denote the charac-
teristic classes of the S2-bundles ξm and ρ?£m. We put p'^
Since X(Xm)=mp, according to (5.8) and (5.9), we have

(5.11) c{ξm)

Since [c4, t^\—2v±±Eω and H(vA)—cΊ,

Because HP2 is a mapping cone of v4, y1ov4=0. Hence
Bρ°U2oji)<>V4=0, and

Thus, according to (5.8) and (5.9), we obtain

(5.12) X(X)=±(m(m-l)/2)p*ω,

where X(X)^π6(BSO3) denotes the characteristic element of i/f£m. Then, if
p: SOB->SOS/SO2^=S2 is a natural projection map, p*(p)=η2 and
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AM=A&7) (by (5.7))

=P*(ΆX))

= ±(m(m-l)/2)ί*(/o) ω (by (5.12))

=±(m(m-l)/2)(η2°ω).

This completes the proof. Q. E. D.

Proof of Proposition 5.3. Consider the homotopy exact sequence (5.4). First,
we suppose m = l (mod 2). Then according to (5.6), we have

0 if (m, 3) = 1

Z 3 if (m, 3)=3.

Now, we assume that m=2m'^0 for some integer m'. According to (5.6),
the following is exact:

(5.13) 0 — > Z ( l t > m , , { 7 2 ω} >*e(*m) >τr 6 (S 4 )—>0.

Since (mη2)
o7}l=m(ηl):=0, there exists a coextension of -η\, ^eτr 6(Lm) such that,

(5.14) q**ίj = η\.

Furthermore, because π6(Lm) is a finite group, the order of η is 2. Hence it
follows from pm\Lm=gm that the sequence (5.13) is split exact. Hence πβ(Xm)

Q.E.D.

Proof of Theorem 1.1.
The assertion easily follows from (4.8), (5.2) and (5.3). Q.E.D.

Proof of Proposition 1.3.

Let m be an integer which satisfies the condition (m, 6)=3. Then it follows
from the proof of (5.3) that π6(Xm)=Z3{(j<>i)*(η2°ω)}. According to [19], τr6(S3)
=Zl2{ω}^Z,W)®Zz{ai&)}' Hence (/ ί)*(372βω)=(y«O*(372°αi(3)). Thus, it follows
from (1.1) that the group Eq(Xm) is generated by two elements,

(5.15) 0 i = W O*(7£ *i(3))) and θ2,

where θ2 denotes the map in \_Xm, Xm~\ which satisfies the conditions,

(5.16) φ(θi)=h1^Eg(Lm)=Zi{h1} and

According to (3.3), the suspension homomorphism Σ: Eq(Lm)->Eq(ΣLm) is
monomorphic. Therefore

(5.17) ΣΘ2*idΣXm and (ΣΘΛHΣΘt)=tdΣZm.



THE GROUP OF SELF-HOMOTOPY EQUIVALENCES 325

Since E(^2

o«i(3))^=)73o5αi(3)=0, according to the naturality of the Barcus-Barratt

operation λ, we have

Then it follows from (5.15) and (5.17) that we obtain

Im IΣ : Eq(Xm) — ^ Eq(ΣXm)l=Z2{ΣΘ2} = Z 2 .

This completes the proof. Q. E. D
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