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0. Introduction

Let :: S*>FE*® be a constant mean curvature immersion. Then : must be an
imbedding onto the round sphere. This is a well-known theorem of H. Hopf
([5]). In addition, the only closed hypersurface with constant mean curvature
in any euclidean space is also the round sphere [1]. These phenomena, of
course, are restricted to the case of codimension 1. Once we turn to the case
of higher codimensions, the situation is more complicated. First of all, there
does not seem to be a unanimously approved concept of constant mean curvature
submanifolds. Anyway, it should be related to the mean curvature vector, be-
cause the latter appears in the first variation of the volume in the essential way [7].

The simplest concept of constant mean curvature submanifold is the one of
submanifolds with || =const., where ) is the mean curvature vector. This is
the definition of the present paper. Hence any submanifold of E¥ on which a
subgroup of Iso(E¥), the group of euclidean motions, acts transitively is a
constant mean curvature submanifold in our sense. Such constant mean curva-
ture submanifolds will be called “of homogeneous type” in what follows.

The purpose of the present paper is to construct examples of constant mean
curvature submanifolds of higher codimension which are not of homogeneous
type in E¥ (with standard metric g).

Now let us state the way of constructing such manifolds in a precise
manner :

Let X be a k-dimensional algebraic manifold and j: X—P"(C) be a projec-
tive embedding of X into an n-dimensional complex projective space with
Fubini-Study metric of constant holomorphic sectional curvature 2. Here we
furnish the manifold X with the metric induced from the embedding ;. Let
2o, ***, 2, be normal homogeneous coordinates of z=P"(C) where the word
“normal ” means that z,Z,+ - +2z,Z,=1 holds for them.

Let S¥(c) denote an N-dimensional sphere of curvature ¢. We define an
isometric imbedding m of P™(C) into the round sphere S™*+»(1), in this way:
m(z) is the point of E‘*V* with cartesian coordinates

1 _ -1 _ _
ZnZn, 77(2n2k+2n2k), 1(77_(2112;»—2;,213) (h, k=0, -, n:h<k).
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Then the (isometric) imbedding m-; is of constant mean curvature (not only in
E®+0% byt also in S*™+»(1)). Moreover, DY does not vanish unless J(X) is a
linear subspace of P*(C), where D stands for the usual covariant derivative in
the normal bundle of X in E*P2  Hence most of our examples are not constant
mean curvature submanifolds in the sense of [9].

An immediate consequence of this fact is that there exists a constant mean
curvature imbedding : S2—E® whose image is not the round sphere (e.g., take
the Veronese imbedding of degree 2: P*C)—P*C) for j).

The authors wish to thank Professor K. Ogiue for his useful comments.

1. In this section we follow the notations of the introduction and prove the
following.

THEOREM. Let Y) be the mean curvature vector of me-j(X) in E®*D%  Then
191 =~(k+1)/k and |DY|=|B,|/k, where | B,| is the length of the second funda-
mental form B, of X in P™C).

Proof. First of all we note the following: The isometric imbedding m of

P*»(C) into E*Y? js decomposed into two imbeddings (cf. [8]); m: P™(C) L»

S""‘*”“(nTH) ﬁ»E‘"“ﬂ, where f, is the standard minimal imbedding cor-

responding to the first eigenvalue of the Laplace-Bertrami operator of P™(C)
and f, is a totally umbilic imbedding.

Now we denote by B the second fundamental form of P*(C) in E®+D?
through m. By virtue of the above decomposition, B is described as follows

(cf. [2]):
(1) &BX, Y), BZ Wi=g(X, V)g(Z, W)+ (&(X, Wg(Y, 2)

+g(X, Z)gY, W)+g(JX, Z)g(JY, W)
+g(JY, Z)g(JX, W),

where X, Y, Z and W are vector fields on P*(C).

From (1) we see that B(JX, /Y)=B(X, Y) for all vectors X and Y, where
J is the complex structure of P™(C).

Due to the above discussion, we find that P*(C) is a parallel submanifold
of E+1? through m (cf. [2]).

We choose a local field of orthonormal frame ey, -, e, er1=Jey, =+, €2
=Je, on X. Since X is a minimal submanifold of P*(C), we have

H=(1/2k) 22}23(@, ¢,). Consequently,

(2) h=(1/%) 3 Ble,, e
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From (1) and (2) we find |§|2=(k+1)/k.
Moreover a straightforward calculation yields that

D,jy=(2/k) % B(Bi(eq, ¢5), e
and
Dyoh=2/8) X BlBile, Je), e)  for j=1,2, -, k.

Then from (1) we obtain
|DY1*= 3 g(De b, D)+ 35, 8(Dsed, Daef)=C1Bil /1Y,

where | B,| is the length of the second fundamental form B, of X in P™(C).
Q.E.D.

2. In this section, using our theorem, we construct constant mean curvature
imbeddings (with mean curvature vector not parallel) of an algebraic manifold
X into a euclidean space.

The theorem of the preceding section tells us that our method of construct-
ing constant mean curvature submanifolds in a euclidean space is closely connected
with the ways of embedding an algebraic manifold into complex projective
spaces.

Let us recall some relevant facts on projective embeddings and construct
various (compact) constant mean curvature submanifolds diffeomorphic to a given
algebraic manifold X.

Let L be a line bundle over X. We denote by E the C-vector space of
holomorphic sections of L. Hence E=H%X, L) and dim¢cE<+oco. We write
P(E) for the projective space of all lines in E and P(E)* for its dual projective
space. E is called base-point free if, for every x< X, there is a section s of E
with s(x)#0. Suppose E is base-point free. Then we can define a holomorphic
map Z, of X into P(E)* by setting Z,(X)={s€E; s(X)=0} (eP(E)*). Z.
becomes a projective embedding if L is very ample.

Write N=dim¢E. The problem of determing N is nothing but the Riemann-

Roch problem [4]. Since P(E)* —% P¥-Y((C), we may consider that Z, is a map
of X into P¥-Y(C). Then m-Z, (X) is a constant mean curvature submanifold
in EV?,

Now let us turn to the case that X is a compact Riemann surface of genus
g (=2). Let L be the canonical line bundle of X. Then L is very ample and
Z;, gives rise to a projective embedding, unless X is hyperelliptic. Suppose that
X is non-hyperelliptic. It is known that dim¢E=g ([3]). Hence m-Z.(X) is a
constant mean curvature submanifold in E4* and its mean curvature is +/ 2.
Now suppose X is embedded in P*(C) and let Sec(X) be the secant variety of
X. We know dimcSec(X)<3. Hence we can find a point x in P*(C)—Sec(X),
if n=4. Let px be the projection with center X: P*(C)— a hyperplane. This
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yields another embedding: X—P"-(C) and we have another constant mean
curvature submanifold. We can proceed consecutively and get one in E?.
(Actually any compact Riemann surface can be realized as a constant mean
curvature surface in F* as will be seen from Theorem 2, [6].)

Let us take for L the tensor product of the hyperplane bundle of P*C)
with itself n times. Then we have Z,: PYC)—P*(C), which is defined alter-
natively by [1, t]J—[1,t, -, t*]. The image is the normal rational curve and
the image of m-Z; is not the round sphere.

Finally let X be a torus, i.e., C/ZB®Z. Take r from the upper half-plane
Hin C. Write X, for abelian variety C/I'. where I'.=Z&®Zz. Then we have
a natural diffeomorphism I,: X —> X,. Let P(z) be the Weierstrass $-function
with period I'.. We define j.(I".)=[0, 0, 1] and j.(z+1".)=[1, PB(z), P'(z)].

Then j.:X.—P¥C) is a projective embedding. Let us define a map
¢ XXH—-E® by ¢(x, t)=mej.~I(x). This gives rise to a family of constant
mean curvature spaces with mean curvature +/ 2 in 9-dimensional real euclidean
space.
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