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SOME EXAMPLES EXHIBITING THE PROCEDURES OF

RENORMALIZATION AND GAUGE FIXING.

-SCHWINGER-DYSON EQUATIONS OF FIRST ORDER

BY ATSUSHI INOUE

Abstract

In this note, a 'definition' of the useful but notorious Feynman measure
corresponding to bilinear Lagrangeans with 'singular' coefficients is given
through functional derivative equations. Especially, the procedures of re-
normalization and gauge fixing are clarified at the equation level.
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§ 1. Introduction.

When a mathematician wants to study the non-relativistic quantum theory,
he may find the Schrodinger equation which is considered as governing the
dynamics of non-relativistic quantum mechanics. Without taking physics into
account, he may study properties of the solutions of the Schrodinger equation.
Moreover, if he is lucky, he may say something to physicists.

In spite of this, when he wants to study the quantum field theory (Q.F.T.),
he may be a little bit confused because there exists no mathematically well
defined equation.

From our point of view, the so-called Schwinger-Dyson (S-D) equation,
derived by using the functional derivative, seems a candidate of the equation
governing the dynamics of the Q.F.T., but in general, it contains infinities be-

Received May 23, 1985

134



PROCEDURES OF RENORMALIZATION AND GAUGE FIXING 135

fore 'renormalization'. (cf, for example, C. Itzykson & J.B. Zuber [13], I.M.
Gelfand [9].)

In this paper, we take up two 'formal' S-D equations of first order. The
points in our discussions are: (1) we may define directly from such formally
given S-D equations, the equations called 'renormalized' ones, which do not con-
tain 'apparent' infinities and (2) we may construct explicit solutions of them
without solving corresponding classical field equations. Moreover, the meaning
of the gauge fixing is considered at the equation level in the second example.

In other words, using the functional derivative equation (F.D.E.), we may
'define' the quantity represented formally by notorious Feynman measure.

For physicists, the first order S-D equations are regarded as trivial objects
to consider, so no one presents the renormalized S-D equation explicitly. In
general, physicists calculate something what they want by the analogy of the
procedure which they have already used with success ((?) even the success of
calculations in QED is now doubted by physicists themselves) and there is no
need of the exact representation of the 'equation' itself because it does not help
their calculations.

But for mathematicians, the equation itself has a meaning in general if it is
well-defined and without explicit representation of it, we have no thought of
'solving' it.

Now, we describe two 'formal' S-D equations whose derivations will be ex-
plained in Appendix A.

( I ) Find a functional Z—Z{py u) of real functions p(f) and u(x, t), ί ε β ,
such that it satisfies the following 'equations'.

i M j ) τ j k ( I 2)

and
Z(0, 0) = l . (1 .3)

92 * d2 δ δ
Here δ(x) is Dirac's delta function, D = -~^ — Δ, Δ = Σ a ^) ' δp(t)
stand for the functional (or Frechet-Volterra) derivatives with respect to pit) and
u(x, t) whose definitions will be given in § 2.

(Π) Find a functional Z—Z{p, B) of real vector functionsp(t) = (p1(t), p2(t),
pΆ(t)), t^R and B(x, t)=(B°(x, t), B\x, t), B\x, t), B\x, t)), (x, t)^RsxR=R"
such that it satisfies the following 'equations' :

\df

, t) dx3 δB\x, t)
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δZ -^B"(x,t)Z+d 8 δZ

δB\x, t) h dt dxk δBk(x, t) ^ dxk , (Π.2)

and

δZ
dx>\dx» δBk(x, t) dt δB°(x, t)t

δz \ d δz
•)-eδ(x)

Z(0, 0)=l.

Hereafter, we use Einstein's convention, that is,
δZ

• d δZ dxk δBk(x, t)

dt δpj(t)

(Π.3)

(Π.4)

3

stands for Σ

etc.dx\δBk{xy t)
Our results are: (1) Instead of the equation ( I . I ) which contains 'apparent'

infinity in the last term, we may derive in § 2 the renormalized one given as

Where, the operator
dt

will be defined by (2.9).

The term -τ—
4ττ dt

appears as the counter term of the term contains infinity, i.e.

\ z

\ξ\~2dξ, which is dicarded under the name of renormalization. D^1 is the

inverse operator of D with the kernel Gf(x, t) given by

whose meaning will be explained in Appendix B. Then we may give an ex-
plicit solution of ( I Λ)Rf (1.2) and (1.3) in § 3.

(2) As the last term in equation (Π.l) contains 'apparent' infinity, we
renormalize it as

d |3\ δZ _i

The term -
6π dt

t 2 f
appears as the counter term of-τre2\ \ξ\~1dξ. This term

O JΛ 3
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and also the term -^eA dξ are deleted in deriving (Π.1)Λ,* by eliminating the

'variable' B\x, t). After reformulating the problem (Π) as in §4, we may con-
struct an explicit solution of them in §5.

In Appendix C, we discuss the possibility of extending these results to more
realistic cases. For example, the so-called Zachariasen model is solved there.
There appears Heaviside function θ{x) instead of δ(x) as a 'singular' coefficient
in a bilinear Lagrangean. And other examples are discussed there.

§2. Derivation of the renormalized S-D equation corresponding to (I ) .

First of all, we define functional dervatives. Let E be a function space on
Rn containing C™(Rn) (=the space of infinitely differentiable functions with com-
pact support) whose dual space, denoted by£', being contained in D\Rn) (=the
space of distributions). <,> stands for the duality between E and E' and it
represents also other dualities which will be explained for each instances.

DEFINITION 2.1. Let Z—Z{f) be a functional on E. If at / e £ , there ex-
ists DZ(f)eE' such that for all g^E

-j-Z(f+εg)\t=0=<DZ(f), g), (2.1)

then Z is called differentiable at / and DZ(f) is called the functional (or Frechet-

Volterra) derivative of Z at /. We represent formally the right hand side of

(2.1) as

0 JLt \ I )

si 7 ( f\

is sometimes called the functional derivative of Z by / at x or of Z at
OJ\X)

If a functional Z depends on many 'variables' (flff2, * ,/m), then we may

define 'partial' functional derivative 'J/', ' ^ - analogously, (cf. V. Vol-

OJj\X)

terra [19].)
Even if the independent variables of 'variables' are different, for example,

•? 7 •? 7

Z{p, u), p—p{t) and u — u{x, t), we may define y - r r and -y——— in the same

manner as above.

DEFINITION 2.2. Let Z be a differentiable functional on E. If for each h^E,
(DZ(f), hi) is differentiable as a functional of /, Z is called two times differer
tiable at / and its two times derivative D2Z(f) is given by
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^ j®Aβ>. (2.3)

Here, < , > appeared in the right-hand side of (2.3) stands for the duality between
E=E(R2n) and E'=E'(R2n) and (h&h^x, y)=hx{x)h2{y)} xy y^Rn. Moreover,
by the kernel theorem of L. Schwartz [18], we may represent the right-hand
side of (2.3) as

=5. fi27( f)
KJ) hλ{x)h^y)dxdy. (2.4)**» δf(y)δf(x)

Higher order derivatives as well as higher order partial derivatives of a
functional with many 'variables' are defined analogously.

Remark 2.3. The use of the equation containing the functional derivatives
appeared at least in the famous paper of E. Hopf [11]. But there exists scarce
paper treating the existence of the solution of F.D.E., except for statistical
studies of Navier-Stokes equations, e.g. M.D. Donskar & J.L. Lions [6], P.
Levy [14], E. Hopf, C. Foias [7, 8], etc.

By the definition of functional derivatives, the last term in ( I . I ) contains
the product of distributions, which is undefined in general. This is the mean-
ing of 'apparent' infinity. Using (1.2), we want to redefine the last term in
( I . I ) by specifying and discarding the infinity.

Applying D^1 to (1.2) and inserting it to (1.1), we get

, 0

), (D?u)( f t)>Z. (2.5)

Here <v, w} stands for the formal expression \v(x)w(x)dx. and δ(x) is treated as

if it is a function.
Now, we consider the following operator

t)-λXδ(>), {Πj>Kδv))( , ί ) > . (2.6)

Renormalization in this case is to define the finite operator Λf by subtracting
the infinity from the last term in (2.6).

Let pε(x) be a function defined by p£{x) = ε~$p{x/ε), p{x) = p(\x\)tΞC™(Rs),

p(x)^0 and f p(x)dx = L Then pε(x)-+δ(x) as ε^O in D\RZ). We define an

operator A\ as
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Applying Fourier transform and using PlanchereΓs formula, we get

(2.7)

Making ε-^0 and neglecting the last term which diverges to oo, we may
show readily that the right hand side of (2.7) converges to

(2.8)

( 2 ' 9 )

ι Λ)

Defining an operator Λf as

we have

Here the operator
dt

stands for

v(f)= L - [ \= L- [ \τ\e-itτv(τ)dτ for vείS(R).

Remark. There is no special reason why the infinity of the above form is
subtracted. But we think, at least for the time being, that it is intuitively
'natural' to define the renormalized operator as above.

§ 3. Construction of an explicit solution of renormalized S-D equations (I).

Though Z is a functional of 'variables' p(t) and u(x, t), we may not con-
sider those as equal weight ones because the independent variables of p and
those of u are different. So we want to separate the x-variable of u(x, t). To
do so, first of all, we consider the case where the 'variable' u(x, t) has its sup-
port with respect to x in a bounded domain Ω in R3 containing the orgin and
having the smooth boundary dΩ.
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For such Ω, we consider the following problem: Find a functional ZQ—
ZQ(P(-), W( , •)), f°Γ supp w( , t)dΩ satisfying

( 3 1 }

(3'2)
δu(x, t) h

and

Z f l(0,0) = l . (3.3)

Here D^a is the operator with kernel

GitΩ{x, y, t)=±~Wι{xJWι{y) (ΘWe-w+θi-VeW). (3.4)

Here the following notations are used: {μj, {i^tU)} are eigenvalues and eigen-
functions of

) in Ω with

Using the expansion u(x, ί ) = Σ uι(t)wι(x) for M with supp M( , ί)cί?, we

may identify u(x, t) as
Then we may rewrite the problem as follows: Find a functional ZQ=

ZΩ(p( ), WJC ), U2('), •••) such that

(3.5)

^ i t for z==1'2'- (3 β)

and
ZΩ(0, 0 ) = l . (3.7)

Here τ4f is given in §2, Bι = -τγ+μ2

h Bj^F is defined as

> ^ 0 ^ ' " μ ) (3.8)
2μt

and pι = ιvι(O)=0) wi).

To solve (3.5)-(3.7), we regard these equations as if they form a system of
partial differential equations of first order with infinite independent variables.
That is, we construct a solution u(x, y)—u(x, ylt y2, •••) of the following equa-
tions. (Here p(t) and uι(t) corresponds to x and yu respectively. Be careful,
we abbuse symbols a little bit because of the lack of them.)

^ 1 y ι u } (3.9)
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bιuyι-=jyιu-λpιux for 1=1, 2, ••• (3.10)

w(0, 0) = l (3.11)

where we regard 'scalars' ax and bt as if they correspond to operators Λf and
Bh respectively.

By simple calculations, we have a following solution for the above problem.

Here we assume implicity that (i)aχ is invertible, and (ii) y = (yly y2,

must satisfy Σ ( - τ - ) <°° and Σ-^-r—<°°. Assuming moreover, limαλ-=α0,
l = l\ Uι ' 1 = 1 Uι Λ-+Q

d2

where a0 corresponds to Ao ——j-γ+ωl, we get

\wciuxx(0) = γa^f (3.13)

lim uyίyk(0) =—δίkbiι (3.14)

and
WmuxvM=Q. (3.15)

Remembering that {wt) forms a orthonormal basis in L2(Ω), we have the
following formulas at least formally:

<ΏF)QV, v>Ω=Σi<Bτt

lFVh vί> (3.16)

where v(-, ί) = Σ vι(t)wι(-), and supp v{-, t)dΩ.
1=1

(3.17)

r > i , Σ piBTkvi) (3.18)

where <w(., ί), v( , 0 X Q = ^ ' ( X , 0^(X, ί)dλ- and </>(•), g(-)> = \p(t)q(t)dt.

For the sake of completeness, we derive the above formulas. Consider the
equation

Πu(x, t)-—v(x, t) in βχ(-co, 00)
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with u(x, t)\da=O and v(x, t)\dQ=O. Using the expansion of v(x, t) —
oo oo

Έvι(t)wι(x) and u(x, ί ) = Σ uι(t)wι(x), we have
i=l 1=1

BιUι(f)=vι(t) for any /.

So, applying i^V to both sides and summing up with respect to /, we have the
formula (3.16). (3.17) comes from the fact (δ, wLy—Wι{0)—pι where we consider
Wι(x)^C0(Rz) by extending 0 outside of Ω. (3.18) follows from (3.16) and (3.17)
if (Λf)-1 is applicable to <ί, Π^QV^Q.

From (3.12) and above formulas, we may put

ZΩ(p, M)=exp[^-<(i4?)-1ί, p>+-^<Π?lΩu, u)Q

(3.19)

Then, we may check easily that (3.19) gives a solution of (3.1)-(3.3) by the
same calculation which will be given below.

Apart from the convergence of ΠF]Ω to D^1 when Ω tends to R3, we may
define a functional Z(p, u) as

Z(p, u)=exp[-^<(Af)-1pt py+^iΠΫu, u)

j i p , <δ, D ^ u ) ) ] . (3.20)

Now, we want to give an exact meaning to the expression above.

LEMMA 3.1. (a) The operator Af(λ>0) ts invertible and (Af)-1 sends H'\R)
boundedly to H\R). So the bracket <(Af)"1i, p> is well-defined for p^H\R).

(b) For MGS(/2 4), ΠF'U belongs to S'{R4). Moreover, if u^Cζ(R4), then
lim</>β( ), (Π^wX , ί)> exists in H~\R) and denoted by <δ( ), (•F1W)( , 0> or

e>0

Here, Hk(R) stands for the Sobolev space of order k, S(R*) denotes the space
of rapidly decreasing functions and S'(R) means the space of tempered distribu-
tions.

Proof. By the definition of the operator Af, the claim (a) is rather trivial
iλ2

because for λ>0,—τ2—-Γ-\τ\+ω2

Qφ0 for any τ^R. Other statements are proved



PROCEDURES OF RENORMALIZATION AND GAUGE FIXING 143

in Appendix B.

The above lemma guarantees that the functional Z(p, u) is well-defined on

. u) (3.21)

Calculating the functional derivatives of Z, we have

δZ{p, u)

δp(t)

and

δZ(p, u)

M). (3.22)

From these equations, we have easily the following theorem.

THEOREM I. The functional Z{p} u) given by (3.20) is well-defined on H~ι{R)
χC~(i24), is infinitely differentiable and satisfies (I.1)Λ, (1.2) and (1.3).

Remark. Concerning the uniqueness of the solution, see the remark at the
end of this section.

From above, we may calculate 2-points functions readily.

COROLLARY I.I.

δp(t)δp(s)

β'ίU's)τ dτ=(Af)-\t-s). (3.23)

δu(x, t)δu(y, s)

= GB

F{x-y, t-s)

Xi—x, t1—t)GF

>(x2—y, t2—s)dx1dx2dt1dt2

S
p-ι(t-s)τ+x(x-y)ξ

R* τ2— \ξ\2+ιQ\ξ\2+ιQ

p-ι(t-s)τ-ιxξ-ιyη

+λ\2π)-Λ —— γ, • dτdξdη (3.24)
J s {τ>+ωli^ I τ | ) ( r 2 - |ξ 12+/0)(τ2- | , 12+/0)
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Gftfft (y, «»=i Λ dp^u{y!s)

= -λ(2π)A - e ϊ " " S > Γ + Γ { dτdϊ- ^3 2 5 )
J # 4 / — 2 ι x . v 2 „ Λ _ ι ι \ / 2 1 * 1 2 I Λ " Γ \ \

From these equations, we have

COROLLARY 1.2.

,. δ2Z(0, 0)

"-S δp(f)δp(s) h

lim ^ ( ^ } ,- = f G ^ ^ , ί-s), (3.27)
a 3M(X t)δu(y, s) h

ZΦ> 0) n /ooo,
i"ί δu(x,t)δp(s)

In order to calculate all Green functions which will be given below, we
prepare

LEMMA 3.2. Put f(x, y)=exp[-i((a/2)x2+cxy+(b/2)y2)^. Then

f(x, 3>)L=ί,=o=O /or n+77?^odd. (3.29)

\oχ/ \oy/

m m (TO, 771)

= Σ {(2w)! (2m) !/(w-J5?)! (m-/?)! (2k) \}(a/2)n~kc2k(b/2)m-k. (3.30)

( ^ \2n + l/ ^ \2m + l
) f ) f(χ ΛΛ I

αx / \όv'^dy

mm(n, m)

= Σ {(2n+l)! (2m + l) \/{n — k)! (m-/a)!

(3.31)

Proof. These follows from Bell's formula for the derivatives of composite
functions.

The following formula is also well-known.

LEMMA 3.3. Put S(η)~ — \ K(x, y)η(x)η(y)dxdy with a suitable symmetric
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kernel.

= 0 for n=odd. (3.32)

(ιft)n- = ΈK{xXvy3χ)'"K{xlnyyJn) (3.33)
=0 comb

Σ indicates the summ over all (2n) \/(2nn) ways of writing 1, 2, •••, 2w as
comb

n distinct unordered pairs (ilf jΊ) ' (tn, in), and we denote it for brevity by
271

71 \Jtl\ , ')) .
comb

Applying these, we have

COROLLARY 1.3. Put

G(n'm)(t1} '~tn, (ylf sj 'iy™-, sm))

δn+mZ(0, 0)
=(ih)n+m-

δp(t1)" δp(tn)δu(y1, sj- δuiym, sm) '

Then we get

&»•"»&, -, tn, (ylf Sl)-(ym, sm))=0 for n + m - o d d . (3.34)

G ( 8 n 81Λ)(ί l f - , t2n, (ylf sx)'»(ytn, s2m))

mm(n, m)

= Σ {(2n)! (2m) \/(n-k)! (7n-έ)! (2ife) \}2n+m~2k

k = 0

ΓΈ\GΨ,?{-, •))'-••}( Σ (G£f( , - H f ' Σ ^ G f fί , ))m-4. (3.35)
L comb J \comb J I comb J

{t>l, f Ϊ2ra+i> V^l* s l/ ) V ^ m + lj S 2 m + J y

mm(n, m)

= Σ {(2w + l ) ! (2?72 + l) \/(n-k)! ( m - ^ ) ! (2^ + 1) !}27i+m-2/'>

ft=o

(2(71-k) Λ /2k + l \ (2(.m-k) 1

I Σ ( G £ f ( , •))"-*[( Σ (Gf;f( , ) ) 2 * + 1 [ | Σ Gf;f( , • ) ) " - * . (3.36)
L comb ) \comb J I comb )

Using L-S-Z formula (see, the formula (16.81) in p 149 of J.D. Bjorken-S.D.
Drell [4]), we may define TB

λ{\ξ\) as

2πiδ{\ξ\-\η\)TB

λ{\η\)

e'ιvr'^σU^t,U,y,9,Gψtf{{x9 ί), (y, s))dxdtdyds\T=iξ>
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where D u , t ) = - ^ - - A * and Π („,,> =-g^- -Δ,,.

The right hand side is calculated easily and gives

Tf(k)= ^ — - for £ > 0 . (3.37)

This is essentially equal to the transition matrix for bosons calculated in A.
Arai [3] using the Hamiltonian formalism.

Remark. We are not sure, for the time being, whether (I.I)—(1.3) has at
most two solutions. (Because there exists at least two choice in defining the
Feynman propagator, that is, as in Appendix B, we may define another E(x, t)
replacing —iε by +iε. But this choice is fixed by the behavior of the two point
function when λ-*0 by Corollary 1.2.)

But if the formula (3.20) affords an unique solution of (I.1)-(L3) after fixing
the behaviour of two points functions for λ—>0, then, comparing the expression
(A. 2) in Appendix A, we have 'defined' the 'renormalized complex canonical
ensemble' represented by Feynman measure.

§ 4. Derivation of the renormalized and gauge fixed S-D equations
corresponding to (II).

Differentiating both sides of (II. 2) by t, we have
9 Λ $z * 3 m . Λ7Λd* d δz d Άd δz
dt δB\x, t) h dt κ ' j dt2 dxJ δB>{xy t) ' dx> dt δp3{t) '

(4.1)

Applying -~-j to both sides of (II.3) and summing up with respect to j ,

we get

S2 d δZ d δZ _ i• 3 d d δZ
of- dx1 δB\x, t) dt δB\x, t) h dx> (X> ' e dx> dt δpj(t) •

(4.2)
Adding (4.1) and (4.2), we have

£ ) = 0 . (4.3)

Inserting the relations (4.1) and (4.3) into (II. 3), we obtain

δz d d δz
δBJ(x, t) dxJ dxk δBk{x, t)

, t) ^"dxk" dt
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= j-BKx,t)Z-tiW-^. (4.4)

Using the relation (—Δ)(—A)'1—Id, we may rewrite (4.4) as

Λ 4- d ( ΛW 5 \ 8 Z i d ( ΛW d Rk(r ϊ\7

ox3 dxk/ oBk(x, t) h ox3 oxk

= JτBKx, t)Z-e(δJk + ̂ {-ά)'1-^)δ{x)^TΊ^r. (4.5)
h \ ox3 oxkJ at opk(t)

On the other hand, differentiating both sides of (II. 1) by t and using (4.2)
and (4.3), we have

/ d2

 2\d δ

V df + f i ί V dt δpj (t)

(4.6)

Using the relation Π^Π—Id, we insert the relation (4.5) into the second
term of the right-hand side of (4.6). Then we get

(4.7)

Now, we consider the following system of ordinary differential operators.

(4.8)
for v(t)=(vKt), v\t), v\t)).

Let p,(x) be defined as in § 2. We define an operator A\ as

(4.9)

Calculating as before, we get
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w) i w

From here on, the term 1/3 appears several times because we assume implicitly
that in our problem all directions in RB have same weights.

Discarding the terms which tends to co as ε->0, we define an operator Aζ as

(4.10)

So we get

d δZAR_
e~dt δpj(t)

Combining this with (4.5), we have eliminated the 'variable' B°(x, t) in (II. 1)-

(Π.4).

In order to eliminate —— in (4.7)', we proceed as follows: In (4.5) and (4.7)',
3 3

there appears the operator δjk + -~-j(—Δ)-ι-~-^, which projects the vector to its

divergence free part. So, it seems natural to assume that 'variable' B is div-

ergence free, i.e. -^-j-Bk(x, t)=0 for any t. In this case

(4.11)

Inserting this into (4.7/, we get the following as the renormalized one of (II. 1)
with suitable constant O.

df 6τr dt

Here, we may put CJ=0 because Z=0 is a solution of (Π.1)-(IL3) without Z(0, 0)
= 1.

So we get, for Z=Z(p, B') for B\xy t) = {B\x, t), B2(x, ί), B\x, t)) independ-
ent of JB°(JC, ί),

or dt ΊPiKt -B;{-, (4.12)

and

D
dxk dx*)δB"(x,Ί)
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( 4 l 3 )

with

Z(0, 0 ) = l . (4.14)

Moreover, if the vector \ k -i is assumed to be divergence free, then
I OD \X, ZJ J

our problem are simplified in the following form: Find a functional ZR=
ZR(p, B') for p(t)=(pM PS), />»(*)) and B'(x, t)=(B\x, t), B\x, t), B\x, t)) sat-

isfying -^zτBk(χ> 0 = 0 such that

(Π.l)'

(Π.2)'

oc.0 " ( π 3 ) '
and

ZΛ(0, 0 ) = l . (Π.4)

Remark. (1) Here the procedures of renormalization and gauge fixing (in
this case, this means the procedure of eliminating the 'variable' B°(x, t) and of

assuming ~^-^Bk(x, t)=0) occurs altogether.

(2) The condition (Π.3)' is called Ward-Takahashi identity in physics litera-
tures.

(3) If Z(p, B') was known to be represented by the characteristic function
of a certain measure μ(q, A;) on the space of

χ—ί(q(t), A'(x, t)):-~-j-Ak(x, O=θ|

i.e.

l',B'»dμ(q,A'),

then this equality is naturally satisfied by Z.

§ 5. Construction of an explicit solution of renormalized S-D equations (II).

In this section, we abbreviate prime and tilde in the problem (II).
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As in problem (I), we first consider the case where vector 'variable' B(x, t)
satisfying (d/dxk)Bk(x, 0=0, has its support with respect to x in a ball ΩR—
{χG/23: \x\<R).

In this case, our problem reduces to the following: Find a functional ZΩ—
ZΩ{p{-), J8( , •)), Pit) = iPiit), Piit), pM, B{x, t) = (BKx, t), B2(x, t), B\x9 *)),
(d/dxk)Bk(x, 0 = 0 and supρ£'( , t)czΩR satisfying

(5.1)

(5.2)JδB>(χ,t)-h"κ"

d δZΩ - = 0 (5.2)
dxk δBk(x, t)

and
0, 0) = l . (5.4)

Let {μ\}, {ιvι(x)} be eigenvalues and eigenvectors satisfying j = l, 2, 3, /=

1, 2, - ,

d j _

and
w\(x)\dΩR=0. (5.5)

3 r

Here, Wι{x)'Wk{y)— Σ wJι(x)wJ

k(y) and Wι(x)'s are normalized as I w\(x)wJ

k{x)dx

=(l/3)δikδij. (We assume as if Wι(Ύs are taken to be symmetric in all direc-
tions in R3.)

If 'variable' B(x, t) satisfies -^-τ-B\x, 0 = 0 and supp £'(-, ί)CflΛ, we may
ox

expand B(x, 0 as BJ(-, 0 = Έ,bι{t)w\(') where bι(t) = \ B(x, t) Wι(x)dx. So we

may identify 2?( , 0 with {bι(t)}. (Be aware that BJ(-, t) is assumed to be iden-
tified with {bι(t)\ independent of /.) Moreover, we assume, for the time being,
pj(t) is j independent.

Putting σ3ι=(δ, wJι( )y = σh we reformulate the above problem as follows:
Find a functional Z—Z{p, {bt}) such that

' T F ^ W ' (5.6)

ΊΓΓ77Γ- (5.7)
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and
Z(0, 0) = l . (5.8)

Here Cι — —τγ-\-μ\ and

Cj}F~——(θ(t)e~ιμιtJrθ(—t)eιμιt). (5.9)

As before, the kernel of the inverse operator of D in ΩR is given

GjrΛx, y> 0 = Σ W ι M ' W ί ^ (θφe-w + θi-fieW). (5.10)

Instead of above problems, we consider the following first order partial dif-
ferential operators with countable variables:

i i
aeux — — xu—-^7-eoιCT1yιu, (5.11)

CιUyi — — yιu—3eσιUx (5.12)

and
M(0, 0) = l (5.13)

where e corresponds to e~τr> A solution of this system is given by

u { x , y ) = \

e h

From this expression, we may put as

ZR(p, B)=exp[^A?)-1p), p^ + ^ωϊB',

Or, we may define

ZR(p, β)=exp[~<

δ, Ώφ>))-ej^A.*)->p,. (δ, nφ
(5.15)

>J, p;> + -~<.UYPjkB
k, B>y

δ, Πfpφ'), (δ, Uϊpφ

(δ, nj'Pjk^B"))] (5.16)
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where P^ί^+^-Δ)- 1-^.

THEOREM II. A functional ZR defined above is well-defined on the space

{{p, B)^H-\R)x(C-0(R')Y; ^prBk(x, f)=θ}

and infinitely different!able. Moreover, it satisfies (II. 1)*,*, (II.2)', (II.3)' and (II.4).

Remark. (1) If we consider ZR instead of ZR, then we define the functional
ri

on the spate where B does not necessarily satisfy ^ k Bk(x, t)—Q.

(2) Assuming the symmetry in {u?ι( )h we get the result (5.15) or (5.16).
So, at least formally, there exists another possibility of the non-uniqueness of
the solution of (II), but we conjecture that this solution is essentially unique.

(3) Calculations of Green functions of this problem is omitted here.

Appendix A. Derivations of formal S-D equations.

(I) Let a Lagrangean L(g, v) be given as

Z JR

( | J ^ ( J C ' ^ Γ " 1 7 ^ ' t)\*)dxdt-λ\Biδ(x)q(t)v(x, t)dxdt

(A.I)

where Ίv{x, O=(-g^τt>(*, 0, g ^ ^ 0, - ^ T ^ ^) a n d ^^Ό^^'

Following Feynman's idea, we quantize the dynamics governed by L(q, v),
that is, we consider the functional

\exp4-L(g, v) exp—?-«?, ί>+<^, u})dFqdFv
Z(p, u)= j

 f Γ - ^ (A.2)
\exp-j~L(q, v)dFqdFv

where h is Planck's constant divided by 2π, dFq and dFv are Feynman measures
on the spaces {q(t); t^R} and {v(x,t); (x,t)<=R4}, respectively. Here, we
assume that functions g(t), v(x, t) and p(t), u{x, t) are real valued, {pit) and
u(x, t) are called external sources.)

Z(p, u) is considered as the characteristic functional of the 'complex canoni-

cal ensemble' exp —L(^, v)dFqdFv with the normalizing constant.

Though there exists no Feynman measure mathematically (R. H. Cameron
[5]), we may derive (I.I) and (1.2) from (A.2) assuming as if it exists.
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Putting Z—Z(q, v)=exp — L(q, v), we have

δ Z ' ' ~ — - * . - * , 9Ϊ)dχZ ( A > 3 )
δq(t)

and

(A.4)

Assuming that the integration by parts holds, we have

\2dFqdFv

and

\2dFqdFv

P{t)Z{p, u) (A.5)

^^{X, t)Z(p, U) (A.β)

On the other hand, interchanging formally the integration and the differentiation,
we get

xy ~~~ΰ\q(t)Z(,Q> ι^)exp—u{(q, p} + (,v, u))dFqdFv
dZ - ^J Δ (A.7)

and

(v, u))dFqdFv

\zdFqdFv
(A.8)

Inserting (A.3) into (A.5) and using (A.7) and (A.8), we get readily (I.I). Ana-
logously (1.2) is obtained.

The equations governing the classical mechanics corresponding to (A.I) are
given by

( ΐ 0 4 x M x > t)dx> (A 9)

Πv(x, t) = -λδ(x)q{t). (A. 10)

These equations are first introduced by F. Schwahbl & W. Thirring [17] and
the classical initial value problem is studied by P. C. Aichelburg & R. Beig [1].
On the other hand, the quantization of this system by using the Fock space
representation after smearing δ(x), that is, replacing δ(x) by pε(x) is given
mathematically by A. Arai [3].
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(II) In this case, we consider a Lagrangean L(q, A) given by

L(q, A) = ̂ \ (mψ(t)2-ωlq\t)2)dt

(A.ll)

Corresponding physical studies are made by R. E. Norton & W. K. R. Watson
[15], and K. Rzazewski & W. Zakowicz [16].

As before, Z(p, B) is defined formally as

\expj-L(q, Λ) exp-4-«g, p>+<A, B»dFqdPA
Z(p, B)=-* (A. 12)

\ex-pjj-L(q, A)dFqdPA

where q=(q\ q\ qz) and A=(A0, Alt Ait A3). Then, we get (II.1)-(II.4) after the
same procedure as we derive (I.l)-(1.3) from (A. 2).

The equations governing the classical mechanics corresponding to (A.ll) are

δ(x){~^(x, f ) - ^ Λ ( x , t)}dx , (A. 13)

ΠAj(x, 0+g^7 J^ ^ 7 4f

and

AA0(x, t)-~ -JpΛ*(x, t) = e~δ{x)q'{t).

Eliminating J4 0(^, ί) from above equations, we have

and

( έ ) ( έ ) 0 ) (A 17)

As before, we treated δ(%) as if it is a function.
On the other hand, we may derive the equations (A. 16) and (A. 17) from the

following Lagrangean.
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, t)}dxdt

where A'=(AU A2, As). Here ω is given formally as

x. (A. 19)

For such L{q, A'), we define Z=Z(p, B') as same as before. Then, we get

' ( A 2 0 )

= B(«, , )f | |

After eliminating the product of distributions in (A. 20) as same as in §4,
we may say that Z also satisfies the equations (4.12)-(4.13). So, in this case,
using the information obtained by eliminating A0(x, t) from (A.13)-(A.15), we
get the same quantized version.

Remark. (1) In spite of the above calculations, ' quantization after elimi-
nating AQ and ' eliminating B° after quantization' must be distinguished in
general.

(2) The reason why the condition (4.3) is naturally satisfied in problem (II)
is explained as follows:

As the Lagrangean L(q, A) is gauge invariant, i. e.

L(q, A) = L(q, A-\-lφ) for any φ^C^{RA) (A.22)

where y7φ=(dtφ, V̂ >), combining this with the translational invariance of the
Feynman measure, we get

Z(p, B)=expj<B, lφ>Z{p, B) for any φ. (A. 23)

This equation is equivalent to (4.3).
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Appendix B. The Feynman propagator.

To derive renormalized S-D equations in §3 and §5, it is necessary to
consider the following division problems in D'{Rn).

AE(x)=δ(x) in D\R") (B.I)

and

ΠE(x,t)=δ(x,t) in D\RA). (B.2)

The solution of (B.I) is rather well-known and it is given by

£«=(2*)-^fg^4T (B.3)
On the other hand, we define

E(X, 0 = H m ( 2 , ) - J B 4 ^ ^ - drdξ. (B.4)

This is the definition of the distribution Gf (x, t). (In I. M. Gelfand & G. E.
Shilov [10], a slightly different definition is given.)

Remark. In defining (B.4), we use —iε to regularize the integral. But,
mathematically, there exists no preference to use —iε or +iε.

Moreover, using the polar coordinates, we have another expression.

. (B.5)

Here, p.v. means to take the principal value. In fact, by putting

ίεdξ. (B.6)

Using the polar coordinates and without bothering the interchange of integral,
we get readily

Here, the branch of the square root is taken so that the imaginary part is
positive.

Making ε tends to 0, we get

4π\x\
(B.ί

Applying the Fourier inverse transform in τ, we get (B.5). Putting the right
hand side of above equation by 0(x, τ), we define the following operator.
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)/(x, τ)dx . (B.9)

Then, for Λ/>1 and any m> we get

From this, we obtain the proof of Lemma 3.1.

Remark. This suggests that we may extend Lemma 3.1. to more broader
space than C™(R4). But this point is not considered further here.

Appendix C. Generalizations.

We may extend our results to the following cases.
(1) Instead of (A.I), we may consider

LN(q, v; {aμ}) = ^ R

M (\dtv{x, t)\*-\lv{x, t)\*)dxdt
42 J Λ 4

, t)dxdt (C.I)

where {aμ} are N points in Rz.
The equations corresponding to the classical mechanics of (C.I) are

f t)dx , (C.2)

Πv(x, t) = -λδ(x-av)qu(t). (C.3)

An initial value problem of these equations for the case ΛΓ=2 and ω1~ω2

is studied in P. C. Aichelburg & H. Grosse [2]. The quantized case for N
arbitrary and aμ=0 with δ(x) replaced by ρe(x) is treated in A. Inoue [12].

Defining Z—Z(p, u; {aμ}) for (C.I), we have

^ h d x (C 4)

and
Z(0, 0) = l . (C.β)

In this case, the renormalized operator A*>N becomes a NxN matrix operator
with
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/ λ2 \
(AftNv)μ(τ)=δμJ—τ2jrωl—i-— | r | )v»(τ)

\ 4ττ /

In other word,

-λ2 Σ -T-Γ^ ?e"af-a»"T%(τ) (C.7)
μψv Aπ\aμ—av\

-2π(δ(t-s-\aμ-a»\)+δ(t-s+\aμ-a»\))}v(s)ds (C.7)'

Here, we interprete the last term of the above equation as equal to

λ2 d
—i-j -T7 vv(t) if \aμ—a»\=0.

By the same argument as before, we get

P2W>, <d( — aμ), Ώγu)y

(C.8)

where (^f,^)"1 is the inverse operator of AftN when it exists.
(2) In [20], Zachariasen proposed to quantize the following equations.

, 0 = - 4 f(s)w(x, t, s)ds, (C.9)

(Π + s)w(x, t, s)=-λf(s)u(x, t) (CIO)

where f(s)=

These equations are derived from the following Lagrangean.

L(u, u;)=yjΛ4(|3ttt(*, t)\2-\Ίu{x, t)\2-m2u(x, t)2)dxdt

\dtw(x,'t, s)\2-\Vw(x, t, s)\2-sw(x, t, s)2)dxdtds

-λ[ f(s)u(x,t)w(x,t, s)dxdtds. (C.ll)
JR5
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Defining Z=Z(φ, φ) as before, we have the following equations.

0^)(X, t) hT JR δφ{X, t, S)

/ *τr^i—τ = τΦ(χ> t> s)Z-λf(s) ,Z

 +λ (C.13)
δφ{x, t, s) h oφ{x, t)

and
Z(0, 0 ) = l . (C.14)

The structure of these equations are same as those of (I.l)-(1.3) except δ(x) is
replaced by /(s). Here f(s) is a function but is not infinitely differentiate, so
it is singular when it is multiplied to distributions.

In this case, instead of Λ°° in §2, we consider

, t)-λ\f{s)}

Using the Fourier transform with respect to (x, t), we get

(D-Λ)«, τ)=(-r 2+|f |2+m2)£(f, r ) - ^ g ̂ ^ g f f ^ - p ^ • (C16)

As

1 1 r 2 - | ί | 2

-τ2+|ίl2+s-f0 s s(-τ2+\ξ\2+s-i0)

and the last term in the above equation is integrable in s at infinity, we define

Then, we have

Z(ψ, ί«=exp[ ̂ <(Df)ity> φ>+-^«Π + s)γφ9 φ>

(3) Same considerations may be work on the study of non-relativistic QED
with the Schrδdinger field as an exterior field. But this model will be studied
in the forth comming paper.
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