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SOME EXAMPLES EXHIBITING THE PROCEDURES OF
RENORMALIZATION AND GAUGE FIXING.

—SCHWINGER-DYSON EQUATIONS OF FIRST ORDER

By ATSUsHI INOUE

Abstract

In this note, a ‘definition’ of the useful but notorious Feynman measure
corresponding to bilinear Lagrangeans with ‘singular’ coefficients is given
through functional derivative equations. Especially, the procedures of re-
normalization and gauge fixing are clarified at the equation level.
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§1. Introduction.

When a mathematician wants to study the non-relativistic quantum theory,
he may find the Schrédinger equation which is considered as governing the
dynamics of non-relativistic quantum mechanics. Without taking physics into
account, he may study properties of the solutions of the Schrodinger equation.
Moreover, if he is lucky, he may say something to physicists.

In spite of this, when he wants to study the quantum field theory (Q.F.T.),
he may be a little bit confused because there exists no mathematically well
defined equation.

From our point of view, the so-called Schwinger-Dyson (S-D) equation,
derived by using the functional derivative, seems a candidate of the equation
governing the dynamics of the Q.F.T., but in general, it contains infinities be-
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PROCEDURES OF RENORMALIZATION AND GAUGE FIXING 135

fore ‘renormalization’. (cf, for example, C. ltzykson & J.B. Zuber [13], IL.M.
Gelfand [9].)

In this paper, we take up two ‘formal’ S-D equations of first order. The
points in our discussions are: (1) we may define directly from such formally
given S-D equations, the equations called ‘renormalized’ ones, which do not con-
tain ‘apparent’ infinities and (2) we may construct explicit solutions of them
without solving corresponding classical field equations. Moreover, the meaning
of the gauge fixing is considered at the equation level in the second example.

In other words, using the functional derivative equation (F.D.E.), we may
‘define’ the quantity represented formally by notorious Feynman measure.

For physicists, the first order S-D equations are regarded as trivial objects
to consider, so no one presents the renormalized S-D equation explicitly. In
general, physicists calculate something what they want by the analogy of the
procedure which they have already used with success ((?) even the success of
calculations in QED is now doubted by physicists themselves) and there is no
need of the exact representation of the ‘equation’ itself because it does not help
their calculations.

But for mathematicians, the equation itself has a meaning in general if it is
well-defined and without explicit representation of it, we have no thought of
‘solving’ it.

Now, we describe two ‘formal’ S-D equations whose derivations will be ex-
plained in Appendix A.

(1) Find a functional Z=Z(p, u) of real functions p(f) and u(x, ), teR,
x < R? such that it satisfies the following ‘equations’.

. .
(‘ddz_zﬂ’g)é%':%pm‘z”gma(");’auz 5 dx, (1.1
D%t—):%uu, t)Z—Rﬁ(x)% (1.2)
and
Z0, 0)y=1. (1.3)
Here d(x) is Dirac’s delta function D:—ai —A A-:Zsj 8; 0 and g
’ ot? ’ =1 0x27 8p(@) Sulx, 1)

stand for the functional (or Frechet-Volterra) derivatives with respect to p(¢) and
u(x, t) whose definitions will be given in § 2.

() Find a functional Z=Z(p, B) of real vecter functions p(t)=(p.(1), ps1),
ps@), teR and B(x, 6)=(B%x, 1), B'(x, 1), B¥x, 1), Bx, 1)), (x, )ER*XR=R*
such that it satisfies the following ‘equations’:

d* N 02 i ~
(g +b) o0 P97
0 0z 0 0Z
“8335(’”(‘6}“ 6B (x, 1) 0x 6B(x, ¢

)>dx, (m.1)
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02 _ig o 8 oz
B Rl e s T 5<") 51) (t) (I.2)
6z i .
Dm——zB’(x, I3V

_8 (08 oz 8 987 N o( )j_i

%7 \ax* 6B x, 1) ot oB(x, /) O dt 3p,0

and (1.3)
Z(0, 0)=1. (11.4)
oz 3

Hereafter, we use Einstein’s convention, that is, 5 stands for 2
, Ox* 0By(x, I (%, t) i=1
0x* 0B*(x, 1)

Our results are: (1) Instead of the equation (I1.1) which contains ‘apparent’
infinity in the last term, we may derive in § 2 the renormalized one given as

a ey d oz i i »
(71}7 +op—i E‘)Ep(—t)_;pa)Z—szma(x)(DF Wx, HdxZ . (1.1)

Where, the operator [%} will be defined by (2.9).

2

A
The term —— appears as the counter term of the term contains infinity, i.e.

@
Zzgmlsl‘?ds, which is dicarded under the name of renormalization. Oz' is the

inverse operator of [J with the kernel GZ(x, ¢) given by
ezzf ~2IT

w0 B0

GHx, =) |~
whose meaning will be explained in Appendix B. Then we may give an ex-
plicit solution of (1.1)g (1.2) and (1.3) in §3.

(2) As the last term in equation (II.1) contains ‘apparent’ infinity, we
renormalize it as

d

e2

d?
( ar T e

3 YA ) 7 . a ;
35,0 = p0Z—e | o) (0F 5 B)x, DdxZ.

(m.1y

e* 3
(74

The term — appears as the counter term of %92533 [&{-'dé. This term

dt
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and also the term %eiﬁd& are deleted in deriving (II.1)z , by eliminating the

‘variable’ B%x, t). After reformulating the problem (II) as in §4, we may con-
struct an explicit solution of them in §5.

In Appendix C, we discuss the possibility of extending these results to more
realistic cases. For example, the so-called Zachariasen model is solved there.
There appears Heaviside function #(x) instead of 6(x) as a ‘singular’ coefficient
in a bilinear Lagrangean. And other examples are discussed there.

§2. Derivation of the renormalized S-D equation corresponding to (I).

First of all, we define functional dervatives. Let E be a function space on
R” containing C7(R™) (=the space of infinitely differentiable functions with com-
pact support) whose dual space, denoted byE’, being contained in D'(R™) (=the
space of distributions). <(,> stands for the duality between E and E’ and it
represents also other dualities which will be explained for each instances.

DEerFINITION 2.1. Let Z=Z(f) be a functional on E. If at feE, there ex-
ists DZ(f)ye E’ such that for all g F

4 2 e lee0=DZ), B, 2.1

then Z is called differentiable at f and DZ(f) is called the functional (or Frechet-
Volterra) derivative of Z at f. We represent formally the right hand side of
(2.1) as

w2, =, SZL) garax. .2

0Z(f) is sometimes called the functional derivative of Z by f at x or of Z at

of(x)

S(x).
If a functional Z depends on many ‘variables’ (f,, f., *--, fm), then we may
define ‘partial’ functional derivative oZ(f "5}[2(’%')”’ fm) analogously. (cf. V. Vol-
i

terra [19].)
Even if the independent variables of ‘variables’ are different, for example,

VA YA .
Z(p, u), p=»{) and u=u(x, t), we may define 0 and E ) in the same

manner as above.

DEFINITION 2.2. Let Z be a differentiable functional on E. If for each h,€F,
KDZ(f), h,y is differentiable as a functional of f, Z is called two times differer
tiable at f and its two times derivative D*Z(f) is given by
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L DZ(f+ehd, k) luws=DZ(), D> @.3)

Here, <, ) appeared in the right-hand side of (2.3) stands for the duality between
E=E(R*) and E'=E'(R*) and (h,Qh,)(x, v)=h,(x)h.(v), x, yER™ Moreover,
by the kernel theorem of L. Schwartz [18], we may represent the right-hand
side of (2.3) as

2 vz
D*Z{f), h1®h2>—glzzn Of (x)af(y)
:g 0z

&2n §f (y)0f (x)

Higher order derivatives as well as higher order partial derivatives of a
functional with many ‘variables’ are defined analogously.

hy(x)ho(y)dxdy

hy(x)he(y)dxdy . (2.4)

Remark 2.3. The use of the equation containing the functional derivatives
appeared at least in the famous paper of E. Hopf [11]. But there exists scarce
paper treating the existence of the solution of F.D.E., except for statistical
studies of Navier-Stokes equations, e.g. M.D. Donskar & J.L. Lions [6], P.
Levy [14], E. Hopf, C. Foias [7, 8], etc.

By the definition of functional derivatives, the last term in (].1) contains
the product of distributions, which is undefined in general. This is the mean-
ing of ‘apparent’ infinity. Using (1.2), we want to redefine the last term in
(1.1) by specifying and discarding the infinity.

Applying OF* to (1.2) and inserting it to (I1.1), we get

d? 0Z
(7{2‘+ )%*1% (), ( < (- )W»( t)>
=2 pOZ— ), (ORI, 7. (2.5)

Here <{v, w) stands for the formal expression Sv(x)w(x)dx. and 8(x) is treated as

if it is a function.
Now, we consider the following operator

(Ao))= (e FaB)ott) o0, (RGO, 1) 2.6)

Renormalization in this case is to define the finite operator A% by subtracting
the infinity from the last term in (2.6).
Let p.(x) be a function defined by p.(x)=¢*p(x/e), p(x)=p(ix])=CFR?),

o(x)=0 and me(x)dx:l. Then p.(x)—d(x) as e—0 in D'(R?). We define an

operator A5 as
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(A O=(~g FaR)oO~1p.(), (TP, 1.

Applying Fourier transform and using Plancherel’s formula, we get

(A)e)=——| At
et (1O
(bl L] e 460
=(—~r*+w})i(r)
P a— FEXGIRPAR
e LG e e el L

2.7

Making e—0 and neglecting the last term which diverges to oo, we may
show readily that the right hand side of (2.7) converges to

{( T @f)—i—— in Jfl}v(f 2.8
Defining an operator A% as
d? id
R —_—
(AFo)O) =g et =1 | 5| o), (2.9)
we have
07 7 7
R _ v =1,

Here the operator ’%} stands for

d 1
’_d?;?j(t):“\/Z? SR{z'Ie‘””(r)df for veS(R).
Remark. There is no special reason why the infinity of the above form is
subtracted. But we think, at least for the time being, that it is intuitively
‘natural’ to define the renormalized operator as above.

§3. Construction of an explicit solution of renormalized S-D equations (I).

Though Z is a functional of ‘variables’ p(f) and u(x, t), we may not con-
sider those as equal weight ones because the independent variables of p and
those of u are different. So we want to separate the x-variable of u(x, t). To
do so, first of all, we consider the case where the ‘variable’ u(x, ¢) has its sup-
port with respect to x in a bounded domain £ in R?® containing the orgin and
having the smooth boundary 0£.
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For such £, we consider the following problem: Find a functional Zg=
Zo(p(+), u(-, ), for supp u(-, )R satisfying

s \
A?%z% POZo— 3O, (D), D) Za, 3.1)
82, i 6z
Diﬁﬁu(?,»zr)“ P w(x, ) Zg—A0(x) 0 3.2)
and
Z0(0, 0)=1. (3.3)

Here Cip!e is the operator with kernel

GE o(x, 3, =33 LiEwily)

(BB rit L 9(—t)er ), (3.4)
=1 2[1[

Here the following notations are used: {g;}, {w.(x)} are eigenvalues and eigen-
functions of

—Aw (x)=gdw,(x) in 2 with w,;[zp=0.

Using the expansion u(x, t)zlf} w,Ow(x) for u with supp u(-, HCLR, we
=1

may identify u(x, t) as {u,;(t)}.
Then we may rewrite the problem as follows: Find a functional Zg=
Za(p(), ul+), usl+), -+-) such that

8Zo 1 1 L&
R 2 _ L -1
F 50 = POZa— A3 puBisu)® Za, 3.5)
0Zg _ i 2, 9Za 1D
and
Zo0, 0)=1. 3.7
Here A% is given in §2, Bl:—d?;—-hu%, B7'e is defined as
B;}F:~1—(H(t)e“”’”+0(—t)e”‘”) (3.8)
2;,!5

and p,=w,(0)=43, w.

To solve (3.5)-(3.7), we regard these equations as if they form a system of
partial differential equations of first order with infinite independent variables.
That is, we construct a solution u(x, y)=u(x, y1, ¥, ---) of the following equa-
tions. (Here p(?) and u,(f) corresponds to x and y,, respectively. Be careful,
we abbuse symbols a little bit because of the lack of them.)

a;uz:%xu—«%lglplb[’ylu, (3.9)
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blu“:%ylu-l‘olux for =12, - (3.10)
2(0, 0)=1 3.11)

where we regard ‘scalars’ a; and b; as if they correspond to operators AF and
B;, respectively.
By simple calculations, we have a following solution for the above problem.

2h 2h =\ b, 2h = b
(3 0
2055 (2 b: )] (3.12)
Here we assume implicity that (i)a; is invertible, and (i) y=(y, V. )R>
must satisfy ﬁ(”yi>2<00 and f} Lo <oo, Assuming moreover, lima,=a,,
AN =1 b i~

d2
where a, corresponds to AO:E;qu%, we get

lim um<o>:,z—za;*, (3.13)

lim uy,,(0) /’75lkb;1 (3.14)
and

lzuﬂ gy, (0)=0. (3.15)

Remembering that {w,} forms a orthonormal basis in L*{), we have the
following formulas at least formally :

(Diter, o= 3 Bisvi, v (3.16)
where v(-, t):évl(t)wl@), and supp v(-, HCTR.
@, Cllavye=(Tren(0, =3 pu( Bilrr)(0) (3.17)
ARG, Ciptevde, O Oty =((AD 5 piBilrvs, 3, puBrlrv) (3.18)
where Cw(-, 1), v(-, t)>g:SQu'(x, Blx, Hdx and (p(e), gl- >:gz>(t)q(t>dt,

For the sake of completeness, we derive the above formulas. Consider the
equation

Oulx, ty=vlx, B in £2x(—co, c0)
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with u(x, 1)]50=0 and wv(x, t)|;0=0. Using the expansion of v(x, )=

ngl(t)wl(x) and u(x, t)zgluz(t)wz(x), we have

Byu,(t)=v,(t) for any /.

So, applying Bi'% to both sides and summing up with respect to [, we have the
formula (3.16). (3.17) comes from the fact (J, w;>=w,(0)=p, where we consider
wi{x)eCy(R% by extending 0 outside of 2. (3.18) follows from (3.16) and (3.17)
if (AF)-! is applicable to <3, TIFievdg.

From (3.12) and above formulas, we may put

Zo(p, w)=exp {Zih«flf) Py P+ <mp o, wo

-{—2—}1—,22((/13) 10, Or'oudg, <0, Orloudey

— - <0, Dipteuda, (AD7p). (3.19)

Then, we may check easily that (3.19) gives a solution of (3.1)-(3.3) by the
same calculation which will be given below.

Apart from the convergence of Trlg to 7' when £ tends to R®, we may
define a functional Z(p, u) as

Z(p, w=exp |5 <(AD, p>+f—<DF 4, u)
+§%22<<A§>*<5, O, <6, OF'udy

— 5 K(AD7, &, OF ). (3.20)
Now, we want to give an exact meaning to the expression above.

LEMMA 3.1. (a) The operator AF(A>0) 15 invertible and (A%¥)~* sends H(R)
boundedly to HY(R). So the bracket {{AY)'p, p> is well-defined for peH (R).

(b) For us SR, O7'u belongs to S'(R*). Moreover, if usC3(R*"), then
lsiirg<p5(-), (OFWC, 1> exists in HYR) and denoted by <8(:), (Or'u)(-, 1)y or

<0, OF'u>(®).

Here, H¥(R) stands for the Sobolev space of order k, S(R*) denotes the space
of rapidly decreasing functions and S'(R) means the space of tempered distribu-
tions.

Proof. By the deﬁmtxon of the operator A%, the claim (a) is rather trivial

because for 2>0,—7%— 21— 7] +wi+0 for any r= R. Other statements are proved
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in Appendix B.

The above lemma guarantees that the functional Z(p, u) is well-defined on
HY(R)XC3(R*).
Calculating the functional derivatives of Z, we have

M=[L(A§)"p(t)—%2(A§>“<6, OFuC, ]2, 0 32D

ap() h
and
bYA ' '
—5%:[% Oru(x, t)+%22ml(5<x)<A§>'l<5, OrF'u(:, )

AR AR P, D] 20, ). (3.22)
From these equations, we have easily the following theorem.

THEOREM L. The functional Z{p, u) given by (3.20) is well-defined on H-'(R)
X Co(RY), is infinrtely differentiable and satisfies (1.1)g, (1.2) and (1.3).

Remark. Concerning the uniqueness of the solution, see the remark at the
end of this section.

From above, we may calculate 2-points functions readily.

COROLLARY L1.

e o 8°Z(0,0)
CREU=S=th G an(s)
e-z(t—s)r
=<2z)-1g dr=(AR)(—s). (3.23)
® —72+w§—i'4;|fl
, 8200, 0)
GEE((x, 1), (, S))—zh—ﬁ—gu(x, Douly. s)
=GE(x—y, t—s)

—i—PSRS GBI (t,—1)0(x )0(x)GB(x,—x, t,—1)GE(xy—y, ty—8)dx,d x,dt,dt,

e—z(t—s)z‘+7.(x—y)5

:(2”)_4SR4WMS

e—z(t-s)r—zzé—zy;y

+ 22~ drdedy. (3.24)

(et as—if o )@t 10— | 1240)
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3*Z 0, 0)
O SN=h g ou(y, 5

GEIG,

I—ZSMG?:f(l‘r-l‘ﬁ(xl) Bx,—y, ti—s)dx,dt,

i(t-8)t+ryé
—3ea, ¢

- drd&. (3.25)
" (—rttag—ig 7))@ 18154i0)
From these equations, we have

COROLLARY [.2.

lim ;—I;Z,—%)% —GR—s), (3.26)
i 5u(iZt§gu?; o =GRy 19, (3.27)
Im %Z,(gbg)(sj_: . (3.28)
prepare

In order to calculate all Green functions which will be given below, we

LEMMA 3.2. Put f(x, y)=exp[—i((a/2)x®cxy-+(b/2)y%].
(%>"<5%>mf(x, ) zey=0o=0 for n+m=odd
0

= . (3.29)
S CANES oy Ep

=" (2n) 1 2m) |/ (n—

Then

Vm—R) V2RI a/2)m* 2 (b/2)™*

. (3.30)
Z-n+m+1(_£c_>2n+1<—a—a§>2m“f(,\‘ I oy

m‘“’:z::;m’ (@n-+1)1@m--

DY =) Ym—R)1QE+1) " a/2)m ke (b /2y,

(3.31)
Proof. These follows from Bell’s formula for the derivatives of composite
functions.

The following formula is also well-known

il

LEMMA 3.3, Put S(y

{x, yip(xmlyidxdy with a switable svimmetric
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kernel.
o™ exp (—»,’%S(;y))
(e n(xn) 720:0 for n=odd. (3.32)
e(gsn) | y
Gh) On(xy) -+ dn(x2n) ‘leozccgle(lll’ y“) “'K(xz"’ y]"> (3.33)
where %b indicates the summ over all (2n)1/(2"n) ways of writing 1, 2, -+, 2n as

n distinct wunordered pairs (i, 71) -+ (in, ), and we denote it for brevity by
2n

3K, .

co
Applying these, we have
COROLLARY 13, Put

G(n'm)(tl» tn: (}’1, Sl)”'<ym’ 5m>)

AV 1))

=@Eh)"" Op(ty) - 0p(tn)0u(yy, s0) -+ 0uYm, Sm)

Then we get
G ™t ot (s, S1) - (Vmy Sm))=0 for n+m=odd. (3.34)

G2t oot (91, S0 (Vemy Sam))

min(n, m

= kZ;)O ) {2m)1Cm) Y (n—R) V im—k) L(2R) 1} 2nrm -2k

(S Grzc, (5 crre, IS ersc, e 639

GUERFLEMID(L e Loy, W1 S Vems1, Semar))

min{n, m)

= kgo {Cn+D)1Cm+D )V (n—k) on—Fk) Y (2k41) 1j2ntm -2k

2(n-k) 2k+1 2(m=~ k)
{2 erre, (S Grre, o ST 6REC, mt . 3.36)

Using L-S-Z formula (see, the formula (16.81) in p 149 of J.D. Bjorken-S.D.
Drell [4]), we may define T%(|£]) as

2mid([€1 =1 DT D)

:(Zn)‘*SRse'”é””e-ly’f““’mu,an,wG?:f((x, B, (v, s)dxdtdyds|--
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2 aZ
_AZ and D (y,8)—

0
where D(r,t)zgt? W—Ay.
The right hand side is calculated easily and gives
2
TEk)=— A for £>0. (3.37)

{ lez~}—cu0—z£i2 }

This is essentially equal to the transition matrix for bosons calculated in A.
Arai [3] using the Hamiltonian formalism.

Remark. We are not sure, for the time being, whether (I.1)-(I.3) has at
most two solutions. (Because there exists at least two choice in defining the
Feynman propagator, that is, as in Appendix B, we may define another E(x, t)
replacing —is by -+-7¢. But this choice is fixed by the behavior of the two point
function when A—0 by Corollary 1.2.)

But if the formula (3.20) affords an unique solution of (I.1)-(I.3) after fixing
the behaviour of two points functions for 4—0, then, comparing the expression
(A.2) in Appendix A, we have ‘defined’ the ‘renormalized complex canonical
ensemble’ represented by Feynman measure.

§4. Derivation of the renormalized and gauge fixed S-D equations
corresponding to (II).

Differentiating both sides of (I1.2) by ¢, we have

d 0z a * 0 0Z 6 d oz

- AT — 0 =
sty =i e B 02 G 5B D) Caw O dt an,0
4.1

. 7} . . . .
Applying PP to both sides of (II.3) and summing up with respect to j,

we get
F R Y 3 8Z i 9 o .d oz
E R R A L I AT T T T TR
4.2)
Adding (4.1) and (4.2), we have
3 P
(—aTB%x, D+ 5oy B, z))z_o. 4.3)

Inserting the relations (4.1) and (4.3) into (I.3), we obtain

0Z o 9 0z

U BBf(x 5 o7 ox* 6B (x, B

] 0 0 VA 0 d oZ
T A g B 02t gy B T ar 5pk<t>}
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7
——h—B’(x, NZ—ed(x)~— 5p (t) (4.4)
Using the relation (—A)(—A)-'*=Id, we may rewrite (4.4) as
o , .., 0 0Z i o L0 _,
(ot 5 W)Ma3k<x Hhow Y g B 02
i _ 4 oz
=—B(x, )Z e( it (A5 ) ORIk (4.5)

On the other hand, differentiating both sides of (Il.1) by ¢ and using (4.2)
and (4.3), we have

d? d 07
<<th+ >dt 09,

:iip](t)z+e< & ( st an (—A)'1%>Wi(%>

ndt o 3
Y 9 p a i 5z
—ei<5 S (A1 B, t)§Z+e< () 75pk<t)>'

4.6)

Using the relation Oz'0=1Id, we insert the relation (4.5) into the second
term of the right-hand side of (4.6). Then we get
SR
dt Bpk(t)
7 d

(ﬁ%,z)i 8Z +ez<5, {07 (050 aa] (—A)
:EWPJ(Z)Z—(Z%@, {5jk+AD;J(5]k+ aa] (—A) axk>}Bk(" t)>Z
@7

dt? / dt dpyt)

Now, we consider the following system of ordinary differential operators.

(Azop 0= (- a0 +0(5, {5, A0 (3,0 o (8 2o ).

4.8)

for v(t)=('Q®), v¥1), v*(®)).
Let p.(x) be defined as in §2. We define an operator A; as

L))o oo {Bsat AT (Biu b oy (— )05 .00,
4.9)

(Azyin=(-2;

Calculating as before, we get

2 e 16:(8)1*
4r® SR3 €l dé) 0'(t)

(A (r)=—(1
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2 ef 1 B 1 . eqp s
+-§;4;2~SR3(12—|$I2-H‘0 ' ISI2>IPE(EH dé -t (r)

,, 1 e I
(e M XCIRLO)

From here on, the term 1/3 appears several times because we assume implicitly
that in our problem all directions in R® have same weights.
Discarding the terms which tends to oo as ¢—0, we define an operator AF as

(AFVI)()= ( e i u(t). (4.10)
So we get
R d 0Z
©dt 8pyt)
. 7 » %) ., 0 ,
= 2 L 0, 07— (8, ot A0 (Bt (— D) BAC, D). @D)

Combining this with (4.5), we have eliminated the ‘variable’ B%x, t) in (IL1)-
(11.4).
In order to eliminate % in (4.7), we proceed as follows: In (4.5) and (4.7),

there appears the operator §; ,,—!— ( A which projects the vector to its

0
xt’
divergence free part. So, it seems natural to assume that ‘variable’ B is div-

. 0 .
ergence free, i.e. e ,;B"’(x, #)=0 for any ¢. In this case

0 0 . 0°
{3 ATR (0t (— ) ST ) Br =2 L B (4.11)
Inserting this into (4.7)’, we get the following as the renormalized one of (IL.1)
with suitable constant C7.
d

22

2 8 0Z 0
—_— T I, -
dll2 40)0 >5p]<t> p(t)d 4 <5 DF o B( ,t)>Z,C
Here, we may put C?=0 because Z=0 is a solution of (IL.1)-(I1.3) without Z(0, 0)
=1.

So we get, for Z=2Z(p, B’) for B'(x, t)=(B'x, »), B¥x, 1), B¥x, 1)) independ-

ent of B%x, 1),

€2

e, af]352~dz,~zﬂ,87 5
(Wﬂuu,z |77 | ) Wﬁp,(z‘>2—eﬁ< LD B z>>/ (4.12)

&t ) 5,0
and
, 0 L 0N &7
Aot 5 A ) 550,
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hYA

RO

=B, DZ Bty (A5 o) o

with
Z(o 0)==1, (4.14)

is assumed to be divergence free, then

0B*(x, t)} -
our problem are simplified in the following form: Find a functional Z%=
Z®(p, B') for p(t)=(p:(t), p=(t), ps(t)) and B'(x, )=(B*(x, t), B¥x, t), B¥x, t)) sat-

Moreover, if the vector {

isfying »—Q—B”(x, $)=0 such that

ox*
d? et VA ] ., 0 -
(dtz +C00‘*Z‘*'l— )51)](2‘) —D; (t) h<5’ Or _&_BJ(., t)>zR’
(1.1
PYA: i d 82"
) hB(" nZr- {”Jr 7 (=4 }5(’” TRTIOR
(I.2)
o §Z* )
Gt B (1.3)
and
27, 0)=1. (I.4)

Remark. (1) Here the procedures of renormalization and gauge fixing (in
this case, this means the procedure of eliminating the ‘variable’ B°x, t) and of

. 0
assuming é-x—kB’*(x, 1)=0) occurs altogether.

(2) The condition (I.3)" is called Ward-Takahashi identity in physics litera-
tures.

3) If Z(p, B’) was known to be represented by the characteristic function
of a certain measure p(q, A’) on the space of

4 . a —
X={(q@), A'(x, 1):5 75 Aulz, =0}
Le.
Z(p, B)={ exp——(g, P+, BY)dpa, 47,

then this equality is naturally satisfied by Z.

§5. Construction of an explicit solution of renormalized S-D equations (II).

In this section, we abbreviate prime and tilde in the problem (II).
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As in problem (I), we first consider the case where vector ‘variable’ B(x, t)
satisfying (0/0x*)B*(x, t)=0, has its support with respect to x in a ball 2z=
{xeR*: [x|<R}.

In this case, our problem reduces to the following: Find a functional Zp=
Zo(p(), B(-, ), pl) = (p:1(®), po(8), P:(D)), Blx, 1) = (BYx, 1), B*(x, 1), B¥x, 1)),
(0/0x*)B*(x, )=0 and supp B’(-, t)C Q2 satisfying

529 7 7 N 0
r 940 _ * T 9 )
A= PO a—e h<5, R B, )70, 5.1)
0Zo i a —x_ﬁﬁ ﬁ-aZQ

O spe =1 B 0Za—e(bpt 55 (-~ 00 ) 5 62

a 8Zo
3x* 0B, D 0 (5.2)

and

Zg(0, 0)=1. 5.4)

Let {p?}, {w,(x)} be eigenvalues and eigenvectors satisfying ;=1 2, 3, =
1,2 -,

0 .
~Aw]z(X>+—a;7m(X):y%w’z(X> in Qg,

a
Ww]z(X)ZO
and
wi(x)lan,=0. (5.5)

Here, w,(x)-w,(y)= 3217,¢/Jl(x)uﬂk(y) and w,(x)’s are normalized as SQ wHx)wl{x)dx
= R

=(1/3)0::0:,. (We assume as if w,(-)’s are taken to be symmetric in all direc-
tions in R®.)

afk B*(x, )=0 and supp B(-, 1)C 2%, we may
expand B(x, t) as B(-, t):;i)lbl(t)wﬂ(-) where bl(t):&o B(x, t)-w,(x)dx. So we
= R

If ‘variable’ B(x, t) satisfies

may identify B(-, t) with {b,{f)}. (Be aware that B’(-, ¢) is assumed to be iden-
tified with {b,(#)} independent of j.) Moreover, we assume, for the time being,
pit) is j independent.

Putting ¢%,=<0, w’(-))=a,;, we reformulate the above problem as follows:
Find a functional Z=Z(p, {b;}) such that

0z _ 1 i d 8z

R _t i L d 8z

Al D)k b, 72 —e 3 a’Cil IO (5.6)
o7z ) d 8z

Clmwﬁbz(ﬁz—edﬁz{—m (5.7)
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and
Z(0, 0)=1. (5.8)
d2
Here Cl:‘-EtT-{—ﬂ% and
Criem o (B()e=t#4" -+ f(—t)e ). (5.9
2}1[
As before, the kernel of the inverse operator of O in Q% is given
Ghalr, 3, = F I (e-rirpi—nermsy. 610
= !

Instead of above problems, we consider the following first order partial dif-
ferential operators with countable variables:

aeux:%—xu——:g%—éolc?y‘u, (5.11)
cluyz:%y’u—?)émux (.12)

and
u(0, 0)=1 (5.13)

d . . .
where 2 corresponds to TS A solution of this system is given by

l

. N o 2
u(x, y)=eXP[ﬁae_lx2+ﬁz=Ex< i >

I_i_~2 1 oy 2_j_~ 1 = s g,y }
T2/’le 3ae<z=1 ct ) hegaexlg( CL ) (5.14)

Ms

From this expression, we may put as

ZR(p, BY=exp | s (AP, p>+—<OF B, B?
2h 2h

gl 5 ) o 0o F e, (0 )]
Or, we may define (5.15)

Z%(p, B)=exp[zl—h<(A§>“pJ, zb,>+—2%<D;‘ B, B
2 Z. Ry-1 -1 a k —1 a k
+e ﬁ<(Ae) <5, OF ija_ZB >, <5, Or jkgB >>

—e%<(/l§)‘l by <5, O7 Py %Bkm (5.16)
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6

where PJk~5,k+ ( A)- ’

THEOREM II. A functional Z® defined above is well-defined on the space

(x, t):o}

(B BYEH RIX(CHRY; 5=
and infimtely differentiable. Moreover, it satisfies (IL Dk, ., (1L2)’, (11.3)" and (11.4).

Remark. (1) If we consider Z% instead of Z®, then we define the functional

. . 0
on the spate where B does not necessarily satisfy FpTs

(2) Assuming the symmetry in {w;(-)}, we get the result (5.15) or (5.16).
So, at least formally, there exists another possibility of the non-uniqueness of
the solution of (II), but we conjecture that this solution is essentially unique.
(3) Calculations of Green functions of this problem is omitted here.

Appendix A. Derivations of formal S-D equations.

(I) Let a Lagrangean L{g, v) be given as

Lig, =4 (@0 —atatonar

03

i, t)l —1Vulx, D) dxdi— 5345(x)q(t)v(x, fdxdit

(A1)

where Vu(x, )= (4r aal Wz, 1), aazvu 0, 833 v(x, 1)) and (](t):-;i—tq(l‘).

Following Feynman’s idea, we quantize the dynamics governed by L(g, v),
that is, we consider the functional

Sexp*Z-L(q, v)-exp—-({g, p>+<v, w))dpgdsv Ao
(A.2)

Z(p, u)= ;
SeXp“h‘ L(q, U)dpqdpv

where & is Planck’s constant divided by 2z, drg and dzv are Feynman measures
on the spaces {g(t); teR} and {v(x, t); (x, {)eR*}, respectively. Here, we
assume that functions ¢(f), v(x, t) and p(), u(x, t) are real valued. (p(¥) and
u(x, t) are called external sources.)

Z(p, u) is considered as the characteristic functional of the ‘complex canoni-

%—L(q, v) dpgdpv with the normalizing constant.
Though there exists no Feynman measure mathematically (R. H. Cameron

[5]), we may derive (I.1) and (1.2) from (A.2) assuming as if it exists.

cal ensemble’ exp
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Putting Z:Z(q, v):eXp%L(q, v), we have

8Z _ igd N s 5
5 =R (-G *Jra)o)q(z)l—zlgmﬁ(x)v(x, Ndx2 (A.3)
and
52 ) 2 7 ~
o5 = DL e 2. (A.4)

Assuming that the integration by parts holds, we have

3z i
“Satt) &XP— (g, po+<v, w)drgdrv
V*S q(8) h :%p(t)Z(P, u) (A.5)

SZAdpquv

and

(oot exp— 1-<a, P>+, w)drgdw

E =Lute, 02w AB)
dpqdpv

On the other hand, interchanging formally the integration and the differentiation,
we get

8z jﬁq(t)z”(q, v)exp—"é"(@, P>+, ud)degd v n
apt) SZAdpqa'Fv )
and
iz f»,’;gv(x, 0Z(, v)exp— L (g, P4, W)dngdp "
oulx, t) gdequU .

Inserting (A.3) into (A.5) and using (A.7) and (A.8), we get readily (I.1). Ana-
logously (1.2) is obtained.

The equations governing the classical mechanics corresponding to (A.1) are
given by

(% +w3>61(t):~2§k35(x)u(x, Ddx, (A.9)

Ovlx, H=—20(x)q(t). (A.10)

These equations are first introduced by F. Schwahbl & W. Thirring [17] and
the classical initial value problem is studied by P. C. Aichelburg & R. Beig [1].
On the other hand, the quantization of this system by using the Fock space
representation after smearing 46(x), that is, replacing 8(x) by p.(x) is given
mathematically by A. Arai [3].
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(I1) In this case, we consider a Lagrangean L(q, 4) given by

L, A>=%Slz(mzqf(t)?—wzqf(t)z)dt

1 0 1¢ 8 P .
+?Sk4[{8xf Alx, O— A ix, t)} {8 7 Alx, H— e = Ay x, z)} }a’xdt
0
—f—egmﬁ(x)w(t) {WA](X’ t)--a-}ng(x, t)} dxdt. (A.11)
Corresponding physical studies are made by R. E. Norton & W. K. R. Watson

[15], and K. Rzazewski & W. Zakowicz [16].
As before, Z(p, B) is defined formally as

fexp? Lia, 4)-exp—7 (a, B>+<A, B))dradrA

lexp; L, A)dradea

Z{p, B)= (A.12)

where q=(¢%, ¢%, ¢*) and A=(A,, A;, As, As). Then, we get (IL1)-(11.4) after the
same procedure as we derive (I.1)-(I.3) from (A.2).
The equations governing the classical mechanics corresponding to (A.11) are

. 0
m24f<z>+w%qf<t>=e§ 5<x>{ Ay, D= A, D, (A.13)
0 0 o 0 .
- T A, Dy o A, D= (A1)
and
0 0 0
AAy(x, t)— £ 81‘ Alx, t):e—a—;ﬁ(x)q](z‘). (A.15)

Eliminating Ay(x, ¢) from above equations, we have

mga)-+ (st | L1900 17dx) ')
9 RN
:eSR35<x>( iy ()7 o ) o A, Ddx (A.16)

and
Ot 5 (805 ) Astx, D=8 5y (A0 YO 0 . (AT
I k T Oxt q T
As before, we treated d§(x) as if it is a function.

On the other hand, we may derive the equations (A.16) and (A.17) from the
following Lagrangean.

I, A'>~—S (P — g (1))t
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ol et 5 -m L) a0

_%{aifoi(x’ t)—%/l,-(x, t)}z]dxdt

" 0 9
ol SR OBt oy (7 L) o Aux, D)drdt (A18)
where A'=(A,, A,, A;). Here w is given formally as
o=ai+ -2 g 160x) | dx . (A.19)

For such IN,(q, A’), we define Z:Z(p, B’) as same as before. Then, we get

<m2 ;:2 +w2)%

i = ) 67 .
= p 02| (st oy (0 DYoL SHG e (A

9 L aN 6z
D@t 55 (=) W)*"—amx )

— e A.
a(x) PRI (A.2D)
After eliminating the product of distributions in (A.20) as same as in §4,
we may say that Z also satisfies the equations (4.12)-(4.13). So, in this case,
using the information obtained by eliminating Ao(x, t) from (A.13)-(A.15), we
get the same quantized version.

VR ~ 0 d 62
zzBJ(X, t)Z—e(B,H— %l ( A) 1 )

Remark. (1) In spite of the above calculations, ‘quantization after elimi-
nating A,” and ‘eliminating B° after quantization’ must be distinguished in
general.

(2) The reason why the condition (4.3) is naturally satisfied in problem (II)
is explained as follows:

As the Lagrangean L(q, A) is gauge invariant, i.e.

L(g, A)=L(q, A+Vp) for any @<cCy(RY) (A.22)

where %:(@tgo, V), combining this with the translational invariance of the
Feynman measure, we get

Z(p, B)zexp%(B, Yo>Z(p, B)  for any ¢. (A.23)

This equation is equivalent to (4.3).
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Appendix B. The Feynman propagator.

To derive renormalized S-D equations in §3 and §5, it is necessary to
consider the following division problems in D’(R").

AE(x)=8(x) in D/(R% B.1)
and
OE(x, H)=d(x, 1) in D'(RY). (B.2)
The solution of (B.1) is rather well-known and it is given by

i 1

By=(m)| | G de= o (B.3)
On the other hand, we define
EGx, H=lim@m| | f+t$lz ------ drd. (B.4)

This is the definition of the distribution G2&(x, ). (In L M. Gelfand & G. E.
Shilov [10], a slightly different definition is given.)

Remark. In defining (B.4), we use —ie¢ to regularize the integral. But,
mathematically, there exists no preference to use —ie or +ie.

Moreover, using the polar coordinates, we have another expression.

GHx, D=5 [P0y ml;;t i@ x|~ ol x HO)). (B

Here, p.v. means to take the principal value. In fact, by putting

Jxf—t

ezxf
5 —f €] Pz

Using the polar coordinates and without bothering the interchange of integral,
we get readily

Culx, 1)2(272‘)'3g de. (B.6)

Cle, x)= SXRI XV e (B.7)
ir| x|
Here, the branch of the square root is taken so that the imaginary part is
positive.
Making ¢ tends to 0, we get

1 eil:‘ll-tl

N dzlx] -~

Applying the Fourier inverse transform in 7, we get (B.5). Putting the right
hand side of above equation by G(x, 7), we define the following operator.

S GE(x, Detedi=-% (B.8)
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Gho= 6, Dfx, Ddx. (B.9
Then, for N>>1 and any m, we get
A+z2™|(Gf) ()| Zconst. sup[(1-+75)™(L+ | x |H¥| f(z, x)|]  (B.10)

From this, we obtain the proof of Lemma 3.1.
Remark. This suggests that we may extend Lemma 3.1. to more broader

space than Cy(R*). But this point is not considered further here.

Appendix C. Generalizations.

We may extend our results to the following cases.
(1) Instead of (A.1), we may consider

1
L¥(q, vs {a,h)= | @30O—wigi)ds
1
] (180, 0121900, D1dede
R

—~Z§R45(x—ap)q,,(t)v(x, tdxdt (C.1)

where {a,} are N points in R%
The equations corresponding to the classical mechanics of (C.1) are

G0+ = =2 3(x—auix, dx, (C.2)

Ov(x, H=—40(x—a,)q.(1) . (C.3)

An initial value problem of these equations for the case N=2 and w,==w,
is studied in P.C. Aichelburg & H. Grosse [2]. The quantized case for N
arbitrary and a,=0 with d(x) replaced by p.(x) is treated in A. Inoue [12].
Defining Z=Z(p, u; {a,}) for (C.1), we have

& )07 1 al steman 0% 4,
<_d~i2 +wﬂ>mj— /’[ j)y(l‘)Z ZSRS(S\A a/g) 5u(.\‘y t) d,& , (C4)
YA t R oz :
L e, 02— i) 2 5
Suie B = ulx, HZ—20(x—a,) 5h.0 (C.5
and
Z(0, 0)=1. (C.6)

In this case, the renormalized operator AZ y becomes a AN XN matrix operator
with
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(A2 wD),(@)=8 e Hat—i 121 )o,t2)

— A ———l——e““#‘“v””ﬁv(f) (C.7)

et la;z_av]

In other word,

2 d
(A2 0 =00y a1 |- Youtt)
. ; 1 1
4z snzm,,—a,lgk{p‘”' s Jap—a] TPV s la—al

—in(t—s—|a,—a,)+ot—s+|a,~ajds  (CT)

Here, we interprete the last term of the above equation as equal to

A d

Tl

v(t) if la,—a,]=0.
By the same argument as before, we get

Z(p, u;{al,n:exp[ﬁ«A 07 P+ (OF, )
+§%22<<A£N>-1<6<-—a.,>, O, 3 —ay), OFud

— AR )P O —a), D%’u>>} (C.8)

where (A% y)-! is the inverse operator of A%fy when it exists.
(2) In [20], Zachariasen proposed to quantize the following equations.

(O+m®u(x, z):-x§kf<s>w<x, ¢ $)ds, (C.9)
(O+s)wlx, t, s)=—2f(SHulx, t) (C.10)

where f(s)=%(—slf&>mﬁ(s—4y§>.

These equations are derived from the following Lagrangean.

L(u, w)zig (10,ulx, H12—Vulx, t)|2—m2u(x, ))Hdxdt

2 Jrt

%S (18uw(x, 1, $)1*— |Vw(x, 1, $)*—sw(x, {, $))dxdtds

S ulx, Dwlx, ¢, s)dxdtds. (C.11)
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Defining Z=Z(¢p, ¢) as before, we have the following equations.

.
(Otmp s o fx 5= et 23] f s gl (€12
oZ 7 0Z
(EH—S)W zéb(% Z S)Z_/zf(s)m (€.13)
and
20, =1 C.14)

The structure of these equations are same as those of (I.1)-(I.3) except 8(x) is
replaced by f(s). Here f(s) is a function but is not infinitely differentiable, so
it is singular when it is multiplied to distributions.

In this case, instead of A* in §2, we consider

O~ulx, )=(O+m?ulx, £)— S (s), (O+s)F f(SHulx, ). (C.15)
Using the Fourier transform with respect to (x, t), we get

Lf()1*aE, )
e ds. (16

(@), o)=(—r*+[§1*+mMa(, T)—ZZSR

1 1 ri—|€°
—72 &2 s—i0 s s(—z2|€|2F5s—i0)

and the last term in the above equation is integrable in s at infinity, we define

DfuZ(D—l—m2)u—ZZDSR(D—9—s)}‘@uds. (C.17)
Then, we have

Z(g, $=exp| 5 (OPF, o>+, (D+97%, ¢
+i12<(mf)}’<f, (O+9)5D, <f, (O+8)FP>>

—— (DD, <f, (D+S)F</)>>]. (C.18)

(3) Same considerations may be work on the study of non-relativistic QED
with the Schrodinger field as an exterior field. But this model will be studied
in the forth comming paper.
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