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A VARIFOLD SOLUTION TO THE NONLINEAR EQUATION
OF MOTION OF A VIBRATING MEMBRANE

By DAISUKE FUJIWARA AND SHOICHIRO TAKAKUWA

§1. Introduction.

Let 2 be a bounded domain in R™ with the boundary 0£ which is a
Lipschitz manifold. Then the equation of motion of a vibrating membrane is
as follows :

(1.1) ult, x)— éDj{D,u(t, x)(1-4- 1 Du(t, x)|?)~?} =0, xe,

where D, denotes d/0¢ and D, denotes d/dx,, j=1, 2, ---, n. The initial and the
boundary conditions we shall consider are

(1.2) u(0, X)=us(x),  Du(0, x)=uy(x),
(1.3) u(t, x)=0 for x in 0Q.

If uo(x) and u,(x) are sufficiently smooth, there exists a unique genuine
solution of (1.1), (1.2) and (1.3) for a short time interval. (cf. Kato [9] and
Shibata-Tsutsumi [10]). On the other hand, existence global in time of even a
weak solution is not proved in the case n>1.

The purpose of the present paper is to treat the above equation by virtue
of the theory of varifolds introduced by Almgren Jr. [2]. A varifold is a
generalization of the notion of a function and was successfully used in the
direct approach of the Plateau’s problem. We shall define a generalized solution
of the equation (1.1) in terms of varifolds, which we call the varifold solution.
And we shall prove existence, global in time, of a varifold solution of (1.1), (1.2)
and (1.3). Thus this paper is closely related with the works of Tartar [11],
[12] and that of DiPerna [5].

Although a varifold solution is quite a weak notion, it satisfies a general-
ization of the Hamilton’s principle :

(1.4) BS:dtSQ{é—IDtu(t, X)|*— (1| Dult, x>|2>1/2}dx=o

under appropriate assumptions.
Before introducing a varifold solutien, we shall formulate, in § 2, the notion
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A SOLUTION TO THE NONLINEAR EQUATION 85

of a weak solution of (1.1) in terms of functions of bounded variations of
n-variables. (cf. De Giorgi [4] and Giusti [8]). This is interesting in itself and
will help us to treat varifold solutions.

§3 is devoted to the definition of the notion of a varifold solution of (1.1).

In §4 we prove existence, global in time, of a varifold solution of (1.1),
(1.2) and (1.3). This is done by the Ritz-Galerkin approximation method.

In §5 we show that the approximating sequence of Ritz-Galerkin method
coverges to a function u(¢, x) of bounded variation in x.

In §6, we shall prove that the global varifold solution can be identified with
u(t, x) if u(t, x) satisfies the energy conservation law. This will be done in
Theorem 4.

A generalization of Hamilton’s principle is proved in §7.
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Notations.

The following usual notations are used: If x and y are two vectors in R*,
x-y is the Euclidean inner product of x and y, and |x| is the length of x. If
M is a Radon measure on a g-compact metric space X and ¢ is a continuous
function on X then

M, g[:):Sng(x)dM(x)

and spt M is the support of M. .4, denotes the Hausdorff measure of dimension
n. Let m=0 be an integer. Then

c™(£2) denotes the space of functions of class ¢™ in £.
Cr@)={usc™2); sptu is compact}.

If Y is a topological vector space and U is an open subset of R*,

c™U, Y) stands for the space of Y-valued functions of class C™.

crU, Yy={uec™U, Y); sptu is compact}.

L?(U), 1=p=oo, denotes the space of p-summable functions with respect
to the k-dimensional Lebesgue measure L,.

Wmr()={ucs L?Q): Duc L?(Q) for |a|<m}.

W ?(2)=the closure of Cc3(R) in W™ ?(Q).
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§2. A weak solution.

We shall denote by BV(Q) the space of all functions of bounded variation
in the domain QCR", i.e., ucBV(Q) if and only if ue L) and its gradient
Du=(Du, Dyu, ---, D,u) in the sense of distributions is an R®valued Radon
measure. (See Giusti [8] for the detailed theory.) We denote its total variation
measure by |Du|. Let U be an open subset of £. Then |Dul(U) is defined
by the equality

@.1) |Du[(U>:sup]SQu div ¢(x)dx

b

where ¢(x)=({(x), -, ga(x))ECHKU ; R™) satisfies [¢(x)| =1 for each x. Similarly
we can define the measure (14 |Du|)'/? by the following equality :

2.2) (11 Dul) () =sup| | {ge(0)+u div g} x|

where ¢(x)eCy(U; R™) and ¢y(x)eCi(U) such that
Go(x)*+|P(x)?<1  for each xeU.
If ueci(Q), then

SQIDuI—-:SQIDu(x)Idx, and SQ(1+IDuI)1’2:SQ(1—‘rlDu(x)l)”zdx.

The latter equals the area of the hypersurface y=u(x), the graph of u(x), in
the space 2 XR. If u(x)eBV({2), then we can define its boundary value (the
trace of u) yu to 02. 7yu belongs to L'(0£2). Let geCY(R™; R"). Then we
have the Green-Stokes formula

2.3) Sgu div g dx:~S9Du'g+Sagru g i dd -y,

where 7 is the unit outer normal to 042.

If ueBV(), then E={(x, y)€Q2XR: u(x)>y} is the subgraph of u. The
characteristic function Xz(x, y) of E is a function of bounded variation on every
bounded open subset of @ XR. DXz is an R"*-valued Radon measure on 2 XR.
We know that spt|DXz| COE.
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For p>0, weset B(x, y; p)={(z, w) ER"XR: lz—x|*+]w—y|®*<p?. Then
the reduced boundary 0*E of E is the set of all points (x, y)€R2 xR with the
following properties :

(1) S |DXg|>0 for each p.
B(z,y" p)

(i) The limit »(x, y)=limy,(x, y) exists, where
0—0

S Dty
2.4) v,(x, J,):Mﬂ_
[ DXg|
B(z,y p)
and
[u(x, »)[=1.

It is known that |[DXz|(2x R\N0*E)=0 and that for each Borel subset A of
O2XR

(2.6) DXg=v|DXg|.

The vector v(x, y) is considered to be the unit inner normal at (x, y)E0*E to
0*E in a generalized sense. In fact, if u=C(2) then spt|DXz|=the graph of
u, and

2.7 vi(x, u(x)=Du(x)(1+|Du(x)|®~%,  j=1,2, -, n,
Yasr(%, u(x))=—(14|Du(x)|®)-*2.

If a function u(¢, x) is of bounded variation with respect to x€Q for each
fixed ¢, then the subgraph of u(¢, *) will be denoted by E(f). Notations DXz,
and »(f; x, y) etc. have obvious meanings.

DEFINITION 2.1. Let @ be an open subset of £ and (a, b) be a time interval.
Then a function u(t, x)e L. ((a, b)Xw) is said to be a BV-solution of the
equation (1.1) in (a, b)Xw if u(t, x) is a function of bounded variation with
respect to x<w for any fixed t=(a, b) and it satisfies the equation

2.8) SidtS Aprgc, v, 0+ le Dgtt, it x, )}

X

XVns1(t; 2, ¥)| DAgey| =0
for any function ¢, x)=C5((a, b) X w).

As to the initial-boundary value problem (1.1), (1.2) and (1.3) we use the
following definition.

DEFINITION 2.2. Assume that u,€BV(2) and u,e L¥2). Let T>0 be any
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number. Then a function u(t, x)€ L (RXQ) is called a BV-solution of the
equations (1.1), (1.2) and (1.3) for 0=¢<T if the following conditions hold :

(i) For each teR, u(t, x) is a function of bounded variation with respect to

x such that yu=0.
(ii) For each ¢@, x)ec[0, T); Co()NC(0, T); C*(2)) vanishing near ¢=T,
we have

@9 |a, (D, u D+ D, 0uitt; v, Dppuntts 5, ) Dz

=—{ 90, Dudx+] D0, Do)

If u(t, x)€CY[0, T)x8), then the above definition coincides with the usual
definition of a weak solution.

§3. Definition of a varifold solution.

Let G=G(n+1, n) be the Grassmann manifold of all n-dimensional vector
subspaces of R"*!. Let S=G be an n-dimensional vector subspace in R"*:,
Then we denote the unit normal to S by »(S)=(S), -, var:(S)). We choose
v(S) so that v,,:(S)<0. If v,4,(S)=0, then v(S) is not unique. We call the set
irr(G)={S€G : v,4,(S)=0} the set of irregularity. Functions v,.+,(S) and
Vo1 (SW,(S), j=1, 2, -, n, are single-valued continuous functions on G. A
point of @ X RX G is denoted by (x, y, S).

A varifold (an n-varifold, more precisely), V(x, y, S) is a positive Radon
measure on 2 X RXG. (See Allard [1] for detailed discussions).

Example 3.1. If ueBV(2), then u (or the graph of u, more precisely) is
identifiled with a varifold V(x, ¥, S) in the following manner: For any
¢(x) y; S)ECO(QXRX G)’

GO, ey 9V, v, 9=] o(x, v, Tane. @B Dz,

where Tan(,,,,0*E is the tangent hyperplane at (x, y) to the reduced boundary
0*E. We call this identification canonical.

Keeping this example in mind, we can introduce the following
DEFINITION 3.1. Let w be an open subset of 2. A varifold V(¢; x, v, S)

depending on a parameter t<(a, b) is called a varifold solution of the equation
(1.1) for (a, b)xwCRX R if and only if the following two conditions hold:

b
(3.2) Sadtgwdm Sx,y, S)<oo.

And the equality
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b
(3.3) 0="at|  Digtt, DSVt x, 3, 9)

et AZ D Du S}V £, 5, 9)

=1
holds for any function ¢(¢, x) in C7((a, b) X w).
Corresponding to Definition 2.2 we introduce the following

DEFINITION 3.3. Let T be a positive number. A varifold V(t; x, v, S)
depending on a parameter t<R is called a varifold solution of the equation
(1.1) and (1.2) for [0, T) if and only if the following two conditions hold :

T
3.4) Sosz AV %, g, S)<eo.
And the equality

T
(35) [larl, . D0 Dyu(S1AVE 5, 3, S)

+oat, B Dt s Spnn S}t 2, 3, 9)

:——Sgsb(O, x)uy(x)dx +Sth¢(o, O ug(x)dx

holds for any function ¢(f, x) in C*[0, T); Co(@)NC([0, T); C*(&)) vanishing
near {=T.

If a varifold solution V({; x, y, S) can be canonically identified with a
function u(¢, x) of bounded variation as in Example 3.1, then u(¢, x) is a BV-
solution of (1.1) and (1.3). This is because

(36) SQxRxGD%gb(t’ x)yvni-l(S)dV(l‘; X, ¥, S)
:SQxRD%gb(t, Xut, Xni(t; x, ¥) Dhgew ],

and

(3.7) L Dl 0SSV x, 3, S)

ZSQXRDM(L X)Wt %, YWan; x, | DAgay .

§4. Existence of a global varifold solution.

Now we state the main theorem.
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THEOREM 1. Assume that u,cWi*Q) and u,€ L¥Q). Then there exists a
varifold solution V(t; x, v, S) of (1.1) and (1.2), that s, V(t; x, v, S) satisfies
3.2) and (3.3) for any T >0.

Proof is done by the Ritz-Galerkin method, which occupies the rest of this
section.

Let ¢n(x), k=1, 2, ---, be the normalized eigen-functions of the Dirichlet
problem in Q:

(4.1) —A¢k(x)=2k¢k(x) s xeR ’
du(x)=0 if x<df.

The system {¢,}7-; forms a complete ortho-normal system in L*Q). For m=
1,2, .-, we put

Paf(x)= 3/, g:)n(x).

The m-th approximate solution of (1.1) is of the form

4.2) um(t, ©)= 3 apOPsx)

and satisfies the equation

4.3) Pm{ fu™(, x)——é}le(D,um(t, )1+ Du™(, x>|2>—1/2>}:0,
4.4 u™0, x)=Pnu,,  Du™0, x)=Pnu,.

This is equivalent to the system of equations

“5) 1ap )+ 33 | Digue) (Dumt, 2L+ Dunt, )17 dx=0,
4.6) aF O, =(u, ), DR O, H)=(us, $1),

for k=1,2, ---, m.
PROPOSITION 4.1. The m-th approximate solution u™(, x) exists for all t=R.
Proof. Let An(t)=(a™®), al@®), -, am@®). Then the correspondence
Am(t)—eij(A"‘):SQDﬂ/;k(x)Dju"‘(t, )1+ Du™@, x)|®)~"%dx

is uniformly Lipschitz continuous for k=1, 2, ---, m, and j=1, 2, ---, n. This
proves Proposition.

PROPOSITION 4.2. (Energy estimate). For m=1, 2, -+,
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(.7 %SQIDcu’"Of, X)lzderSp(l—l—lDu’”(t, x)|9)Vedx

= —;-SQ|Pmu1(x) | 2dx—{—SQ(1—}— | DPuo(x) |2V 2dx .

In particular,

1
4.8) -Z—Sngtu’"(t, x)lzdx—l—gg(l—i— | Du™(t, x)|5)*dx <M,
where
4.9) M= -;—SQI u(x) 1 2dx (121 +uollwrz0)?1 2112

Proof. Multiply both sides of (4.3) by D,u™(¢, x) and integrate with respect
to x. Then

D] 1 Dame, 01+ (1 1D, 1} =o0.
This and the initial condition (4.4) give (4.7).

To prove (4.8) we note that SIPmul(x)lzdx§SIul(x)lzdx and that

/
|, 1 DPau 1 rax ={{ (141 DP o) 9x} 12112
Since ¢, satisfies (4.1), we have

g DPmitox) == APpte, )= 3 2, $0)°

= fllj(uo, ¢r)=—(du,, uo)——S [ Duo|*dx .
=1 @
This proves (4.8) and (4.9).

For each m=1, 2, 3, ---, the function u™(, x) is of class ¢*. We identify
this with a varifold V™(t; x, y, S) as in the Example 3.1 of §3. We rewrite
(4.3) and (4.4) in terms of V™(; x, v, S). Let ¢(t)=C*R) vanishing near t=T.
Then we multiply both sides of (4.3) by ¢(®)¢.(x), k<m. After integration by
parts we have

(4.10) 30| uu(0gax)dx —DigO)| uolr)gatx)d

:STdt D%¢(t)SQ¢k(x)u"‘(t, x)dx

0

—I—S:dt ¢(t)SQ £ Dagux) D, X141 Dunt, )19 o
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On the other hand, we have, by definition,

Ge(X) Yy (SAV™(E; x, v, S)

Q%xRxG

Sg‘ﬁk(x)um(t’ x)dx= _S
and

SQD;¢k(X){Djum<t, )1+ Du™, x)|%)7* dx

= g DDA SV (E; 5, 3, 5).
Therefore V™(¢; x, y, S) satisfies the following equation :

4.11) S:D%gﬁ(t)dtgmmngk(x)yvnn(s)dV"‘(t; %, 9, 5)

K3

T
+[rowa, | {5 Dgum S}V x, 3, 9)

= —{ FOuEP D+ | DPOux)padx
where k=1, 2, ---, m and ¢(¢) is an arbitrary function in C§(R) vanishing near
t=T.
We wish to choose a subsequence {m’}C{m} so that li,m Vm'i(t; x, v, S)

exists. In fact we have

PROPOSITION 4.3. There exist a subset R, of R, subsequence {m’} of {m}
and a varifold V(t; x, y, S) depending on a parameter t< R, with the following
properties: L(R~R;)=0 and

4.12) S:gs(z)dtgmwax, 3, AV(E; x, v, S)

— lim S_mgé(t)dtggxmaé(x, Y, S)AV™(t; %, 3, S),

m’ —co,

for any ¢@)e LY (R) and &(x, y, S)EC(2XRXG). We have

dvit; x, v, =M.

@13 Jovn

Proof. Let M be the constant in (4.9). Then we note that

m . J—
SQxRdeV &%y, S)—S(wumu,zn

=§g<1+|Dum<z, )19 dx

<M.
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If &x, y, S)EC(2XRXG) then
@& Vrtd=|, &, 3 SV x, 3, S)

is a bounded function of ¢, because we have the estimate
(4.14) [<§, V™| £ Mmax|&(x, v, S)I.

We consider the family of mappings Co(2 X RX G)2&—<(E, V™(#)ye L*(R). The
estimate (4.14) implies that this family of mappings is equicontinuous and that
for each & the image of mappings is relatively compact in the weak* topology
of L*(R). We can apply the Ascoli-Arzela theorem because Co(2XRXG) is
separable. And there exists a subsequence {V™(¢; x, y, S)}» such that

(4.15) w*-Im <&, V™ (6)=/(; &)
exists in L*(R) for each & It is clear that f(¢; £&)=0 if £=0. And we have

(4.16) Ift; Ol ==Mmax|é(x, v, S)I.

The function f(¢#;&) may not be defined for ¢ in an exceptional set of
L,-measure 0 and this exceptional set may depend on & To avoid this incon-
venience we choose a good representative V(¢; &) of f(¢; &) as a function of £:
We define

. 1 ct+n
(4.17) v o=lim o\ pie; e
This exists and is equal to f(t; &) at L,-almost every t€R if & is fixed. Let
{§:}%-, be a countable dense subset of Co(2XRXG). Then the set
R,={tesR: V(t;&,) exists and is finite for all k}

is measurable and L,(R\R,)=0.
We claim that V(¢; &) exists for all £€C,(2 X RXG) and for teR,. In fact,
for any ¢>0, there exists a function &, such that

(4.18) |&(x, v, S)—&(x, ¥, S)| <e for any (x, y, S)EQXRXG.

Then we have for each teR,;

1

(4.19) '27] S

t+

hf(t; 5)dl‘—§:i:f(t; fk)dzj

t-h

1 (t+n
=5 —gldr

<Ms.

The last estimate follows from (4.16) and (4.18). Hence
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Vi <tim inf—- (" £t )d
(¢; 0 —estim int 5| 5 eat

+h

<lim sup-l-j‘ Ft; OBZV(E; E)+e
h-+0 2/’1. t

-h

Since ¢ is arbitrary,

. 1 (e+n e .
lim = 5 ©at=Ve; )

exists at every teR,.
If teR,, then it follows from (4.16) and (4.17) that

[V(t; )| =Mmax|&(x, y, S)|.

This implies that the correspondence é—V(¢; &), t€R,, defines a Radon measure
V(t; x, v, S) such that

viso=l, ey 9¢x 5,9,

We know that V(¢; &)=0 if £=0. Therefore V(¢; x, v, S) is a varifold. Clearly
we have

(4.20) SMdeV(t cx,y, S)= M.

Equality (4.15) leads us to the equality
w*-Hm <&, V™ (6))y=<§, V()

as an element of L=(R). This proves Proposition.

End of the Proof of Theorem 1. We complete the proof of Theorem 1 by
showing that the varifold V(¢; x, v, S) satisfies the equality (3.3). We choose
the subsequence {m’} as in Proposition 4.3 and denote it as {m} in the following
for the sake of brevity. Take ¢(t)eC*(R) which vanishes near (=7. Then
Dip(t)e LY(R). On the other hand, we know that ¢;(x)yv,+.(S)EC(2XRXG).
Therefore the above Proposition 4.3 asserts that

@.21) lim Dig@d|, | gue) (Vs 7, 5, 9)

T
=["Dtpwat|, | gV ;s 5, 5, 5).
Similarly we have

4.22) ngf ¢<ndzj 32 Dbl (San(S)AV ™t x, 3, S)

QxRxG )=1

=[le0dr], | B DG Sn(SIAVE; 5, 3, 5),
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because ¢ LY(R) and D¢ (x)v(Se:1(S)EC(2XRXG). Letting m go to oo in
(4.11), and using (4.21) and (4.22), we have

@2 ["pged| g0V x, 3, 9)
+fiowd, B DG SISV E; 5, 3, S)

=~ BOu g+ DPOu g,

for k=1, 2, ---. Since functions of the form ¢(t)¢,(x) are total in the space
CY[0, T); coNNC(O, T); c¥8)), the equality (3.5) follows from (4.23). Inequal-
ity (3.4) is a consequence of (4.13). This proves our theorem.

§5. Convergence of u™(t, x) in the BV-space.

As we have proved the global existence of a varifold solution, we wish to
identify V(¢; x, v, S) with a graph of a function. A graph of a function is,
measure theoretically, a special case of an n-rectifiable subset of @xR. Thus
we can state our problem in the following form:

(Q) Can one identify the varifold solution V(t; x, y, S) of the preceding section
with an H, rectifiable subset of QXR for all t?

Unfortunately we did not succeed in giving answer to this fundamental
question. Of course the most probable candidate of the H,-rectifiable subset of
2XR is the graph of the function u(¢, x)=Ilim u™(¢, x) if the limit exists. In

m—co

the present section, we prove that wu(¢, x)=I1im u™(¢, x) actually exists in the
m-—oco

space BV(Q). We shall discuss the relationship of V(¢; x, y, S) and u(t, x) in
the next section.

In the following we choose the subsequence {m’} as in Proposition 4.3 and
denote it by {m} for the sake of brevity. For any fixed teR the sequence
{u™(, x)} of BV-functions are bounded because of Proposition 4.2.

PROPOSITION 5.1. There exists a subsequence {m”} C {m} such that {u™(t, x)}
converges strongly, for any fixed t, to a function u(f, x) m L?(2), 1=p< n—iT’
and that {Du™(t, x)} converges to Du(t, x) with respect to the w*-topology of
measures. u(t, *)€BV(2) for fixed t€R. The function u(t, x) is a Lipschitz

continuous function of t with values in L*£).

Proof. Since



96 DAISUKE FUJIWARA AND SHOICHIRO TAKAKUWA

um, x)=g:Dsu"‘(s, s+ o) |

we have
lum™@, x)lrece =t supllDsu™(s, #)l 2o+l ol 22

@MY ol 2o -
For any ¢, 'R,

6.1 hun(e', = unt, Dl =, Dants, xds| @my e —el.

Hence t—{u™(t, *)} € L¥Q) is an equicontinuous family. The Ascoli-Arzela the-
orem enables us to choose a subsequence {u™(f, x)} such that
w-lim u™'(¢, *)=u(t, *) in L¥Q)

m"—co

exists for each teR. As a consequence of this and (5.1), we have
(5.2) lu@, *)—ult, *)| L2y =@2M)"* |t/ —1].

Therefore u(¢, *) is an L%£2)-valued Lipschitz continuous function.

We know from Proposition 4.2 that {u™'(f, x)} is a bounded set in BV(Q).
Since the inclusion BV(@)CL(Q), 1sp<—",
sequence of {u™'(¢, x)} contains a subsequence which converges strongly to
u(t, *) in L?(Q) because {u™(t, *)} converges weakly to u(?, *) in L*Q). This
implies that {u™(t, x)} converges to u(¢, *) strongly in L?(£2). It is clear that
u(t, x) € BV(2) for eacht. For j=1, 2, -, n, {D;u™(t, *)} converges to D,u(t, *)
in the sense of distribution. Therefore {D;u™(¢, %)} converges to D;u(t, *) in
the sense of w*-topology of measures.

is a compact map, every sub-

Remark 5.2. We expect that u(t, x) above is a BV-solution of the equation
(1.1). However we failed in proving it. We shall prove later in Theorem 4 that
u(t, x) is a BV-solution if it satisfies the energy conservation law.

We let E,(f) and 2*(x, v) denote the subgraph of «™(, x) and its character-
istic function, respectively. Similarly E(t) and X,(x, y) stand for the subgraph
of u(?, x) and its characteristic function, respectively.

COROLLARY 5.3. We may choose the subsequence m” so that {DXP'} converges
to DX, in the w*-topology of measures.

Proof. Let ¢(x, y)ECT(RXR). Then

lSQxROC?V(x’ Y)—Xx, y)NP(x, y)dxdy
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m”

=[§atsll.,. ot 9]
<max|¢(x, )| [um(t, H—ut, »ldx.

As a consequence of this and Proposition 5.1, {X7*'} converges to X, in the sense
of distribution. Hence {DXP} converges to DX, in the sense of distribution.
This implies that {DX*} converges to DX, in the w*-topology of measures,
because |DXP*'| are bounded.

For the sake of brevity we denote {m} instead of {m”}.

PROPOSITION 5.4. There exists a set R,CR and a function R,=t—D,u(t, *)
e L¥2) such that L,(R~R,)=0 and

63 |, Dautt, D@ dr=lim h"{SQu(t—l—h, 0gdx—| utt, Hpeodx]
exists for all g L¥Q2) and teR, At Li-almost all t we have
(5.4) Dout, *)“L2(!2>§li£1n1ﬁ§°UD“Dzum(f, M2z -

For any T>0, Du(t, x) is the weak Ulinut of {Du™({, x)}n n the space
L¥(0, T)x Q).

Proof. For any ¢= L¥f2), we put
F(, ¢v):lhi£rr} h'l{SQu(t—]—h, x)(/i(x)dx—ggu(t, x)gb(x)dx}
if the right hand side exists. As a result of (5.1), we have
65 |a{{ et h, wpodi—{ ute, wpods} | =@M gl e

Let {&.(x)}7-: be a countable dense subset of L*). Then by virtue of (5.5),
we see that there exists a set R,CR such that L,(R\NR,)=0 and F(¢, &,) exists
at teR, and k=1, 2, ---, .

We claim that for any ¢<L*Q), F(, ¢) exists at all t<R,. In fact for
given ¢ L¥2) and ¢>0, there exists &, such that

16—l L2y <e/(AM)ME

Applying (5.5) to ¢—§&,, we have

5.6) h"{ggu(t—l—h, x)ék(x)dx—ggu(t, x)Ek(x)dx}—e

gh‘l{sgu(t—{—h, x>¢<x>dx—59u<t, (xd}
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<ho{{ utth, gdx—{ ute, Vg R} e,
If teR,, then

F(t, §)—e=timinf h={] utt-+, 0g(a)dx—| utt, Dpeodx}

§lit;1_§°up h‘l«{SQu(t-l—h, x)gb(x)dx—sgu(t, x)(p(x)dx}

=F(, §u)te.

Since ¢ is arbitrary, F(¢, ¢) exists.
From the estimate (5.5), we have

[FE, ) =@M Pllzeco) -

F(t, ¢) is a continuous linear functional of ¢= L% ). Therefore there exists
D,u(t, ¥)e L%() such that

[ Deutt, podx=F, 9).
By definition we have
5.7) Sgu(t, x)¢(x)dx—Sguo(x)gb(x)dx:S:dsSQDsu(s, OP(x)dx .

Let v(x)=D,u(t, x). Then

o)z =1im—l—SthrS D.u(z, x)v(x)dx
LR 0 20 Je-n JT T

—lim- 21h {S w(t+h, x)v(x)dx—ggu(t—h, u(xdx}

—Ll_l:l;l 113{1;10 21h {S u™(t+h, x)v(x)dx—sgu’"(t—h, x)v(x)dx}

t+
=lim 71n1£r°1°ﬁg S Doz, x)v(x)dx de

t+
<tim """ (tim supll Dz, #2000 Iz )

=lvllcec Iig}ﬁiul)”Dtu(ty ez
at L, almost all . Therefore
[IvIIL2(9)§linﬂ'Ll_§°up]]Dtu’"(z‘, RIFZYE)

at L;-almost all t.
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The energy inequality (4.8) implies that for any T >0, {D,u™({, x)} is
bounded in L*(0, T)x2). Let {D,u™ (¢, x)} be any weakly convergent sub-
sequence of {D,u™(, x)} and let w(t, x) be its limit. Then

SQu""(t, x)¢(x)dx—S9Pm, uo(x)gb(x)dx=S:dsSQDsu""(s, D) .
Taking the limit of this as m’—co, we have
t
Sgu(t, 0gedr— | uxgde={ ds| wis, Dgpeodz .

If follows from this and (5.7) that D,u(t, x)=w(, x) at almost every (¢, x).
This proves Proposition 5.4.

§6. Varifold solution and BV function.

In this section we discuss the relationship of the varifold solution V(¢; x, y, S)
of §4 and the BV-function u(f, x) given in §5. We prove that the varifold
V(t; x, y, S) can be identified with the graph of the function u(?, x) if u(f, x)
satisfies the energy conservation law. For the sake of brevity we denote {m”}

by {m}.

DEFINITION 6.1. As in Allard [1], we define the weight measure |V (#)| of
the varifold V(¢; x, y, S) by the equality

(6.1 o6 PAVOI=], | ¢, Vs x, 3, 9)

for any ¢(x, y) in Co(2XR). Similarly, for ;=1,2, -+, n+1, we define the
measure |V(f)L_y;|| by the equality

(6.2 [ 0t0 NAVOLsI=(, g, yS)aVEs 5, 3, 5).

As in §5 we denote by E(f) and E,(¢) the subgraphs of u(f, x) and u™(t, x),
respectively. And we denote by X, and X the characteristic functions of E(t)
and E,(¢), respectively. Then

PROPOSITION 6.2. (i) For each ¢ L*(R) and for any ¢(x, y)EC(2XR),
we have

63) [ gwal, o, ndver=tm| soa|, o o

(ii) There exists a subset R, of R with the following propertzes: L(R Rj)
=0 and for any t€R; and ¢=Cy(2 X R), we have
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(6.4) ligrnl*ioxolfSQm(/J(x, )| DX

éSQXRSb(x’ y)d”V(t)H_Eli[gﬁiupggxéb(x’ y)IDXl”]
(iii) For any open subset BCRXR and any compact set KCB, we have
69 lim sup| DX7*| (B) = [V (®)||(B)=lim inf| DX}" |(K)

for teR,.
(iv) Assume that B is a bounded open subset of QX R. Assume further thal
for some t€ R,

(6.6) iigil DI |(B) exists
and

6.7) IV®1©@B)=0.
Then

(6.8) IVOIB)=lim| D2y |(B) .

Proof. (i) Using Proposition 4.3, we have

(6.9) [ goal, oe navol

:iiglogkqﬁ(t)dtg d(x, pAV™E; x, 3, )

QxR

=tim| pat], ¢x, 91D,

QxR

This proves (i).
Proof of (ii). Let {£.(x, y)}%: be a countable dense subset of C.(QXR).
We have from Proposition 4.2 that

Jeut, )1 Dxp z—max|gatx, )1 M.

The right hand side is independent of m. Take ¢= L} (R) so that ¢(t)=0. Then
Fatou’s lemma gives

(6.10) [ goa(imine | eux, »iee)

<timinf| g0t &ux, »IDEP]
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<lim infg ¢(t)dt5 &u(x, Y)V™(1; x, ¥, S)
m-co R QxR

={ soa|, e, navaon.
Similarly we can prove
61 | goa], s ndvels| sodiimse|, e, o).

As a consequence of (6.10) and (6.11), there exists a subset R,CR with the
following properties: L,(R\R;)=0 and we have

(6.12) timint| etr, NIDEIZ], eitx, IV

=timsup|, exx, »)1D27,

for each teR; and for all k=1, 2, ---, . Since {&;}, is dense in Cy(2XR), (6.4)
holds for any ¢=Cy(2 X R) and teR..

(iii) Let ¢&Co(B) be a function such that 0=¢(x, y)<1I and ¢(x, y)=1 on
K. Let t€R,., Then we have from (6.4) that

(6.13) lim inf| DX (K)<lim infS 9, )| D],

2x

=, o vl

=VOIB).
Similarly, we show that

(6.19) [ 00 aIv@Itimsun g, 31Dtz
§1imﬁsup|DXl" [(B).

(6.13) and (6.14) proves (iii).
(iv) Let By, B,, -+ be a sequence of open subsets of QxR satisfying
> ,B,=B. Then we have from (iii) and (6.6) that

(6.15) IVOI(Bx)=lim inf| D27 | (E)zlirﬂrllﬂsmup IDXT1(B)=VOI(B),
for k=1,2,--,. As a consequence of the assumption (6.7), we see that

lim e[ VONBR=IV®)(B). It follows from this and (6.15) that lim,,_..| DX*|(B)
=|V®|(B). (iv) is proved.

PROPOSITION 6.3. If teR;, then

(6.16) [ DX [ (B)=VOI(B)
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for any open subset BCQXR. If for some BCRXR

(6.17) EEIDX?‘I(B):IDLI(B) ,
then
(6.18) 1VOI(B)=1|DX|(B).

Proof. Assume that ¢(x, y)€Co(B; R**') and |¢(x, y)|<1. Then from
Proposition 6.2, we have

(6.19) !S;ﬁ(x, D1, | =lim inf \ SBw, ) DX
=tim int| g0, 911027 ]

= 1o, »idive

=VlB) .

Taking supremum with respect to ¢, we have (6.16).
If (6.17) holds, then

lDX:l(B)§IIV(t)l](B)§lif;liuplDXZ"I(B):|Dlz|(3)-
(6.18) holds in this case.
PROPOSITION 6.4. There exists a subset R,CR such that L,(R~R,)=0 and
(6.20) [0 IDwt={, @, DAVOL vyl
for t€R, and ¢=Co(2XR). In particular, for any tER, and ¢=Cy(8), we have

(6.21) ~[ pmax={ goaveLva.

Proof. Let {&4(x, y)}¢, be a countable dense subset of Co(2XR). Then
Proposition 5.1 asserts that for any &, and teR

Er 9Dl

(6.22) lim{, eux, »Daer=,

Let ¢= LY (R). Then multiplying (6.22) by ¢(¢) and integrating with respect to
t, we have



A SOLUTION TO THE NONLINEAR EQUATION 103

(6.23) [ p0a, ex, »Da
:}Li_rggkq&(t)dtsgwék(x, 9D 0

=lim( g0, i, Yunni( SV 5, 3, 9).

Applying Proposition 4.3 to the right hand side of (6.23), we have

[ o], e npit,

= g0d,  eitx SV %, 9, 5).
Therefore there exists a subset R,CR such that L,(R\R,)=0 and

[ 8400 IDi=] &4, Ywnr AV %, 3, 9)

QxR

for k=1, 2, ---, and t€R,. Since {&;}, is dense in C,(2 X R), this proves (6.20)
for any ¢=C(2XR).
If g=Co(2), then

|90 Dacti=tim| g(o)Dytr=—{ gt
This together with (6.20) proves (6.21).

PROPOSITION 6.5. Let (¢, t,) be an open interval and B be an open subset of
QXR. Assume that

(6.24) SBXM(G)dV(t;x, 9, S)=0  for all 1=ty 1).
Then there exists a subset NC(t,, t,) such that L,(N)=0 and
625 [, g0 9Dx=, g, dIVOLYL, =120,
for any t< (b, t)NN and ¢p=Cy(B).
Proof. Let {&,}: be a countable dense subset of Co(B). Let
L)={ £4x, DAIVO Ly

Then (6.24) implies that
Ijk(t)zleig)l I5:(1),
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where
I5={ 645, YoASIEann(SNAVE; %, 3, S)
and {.(r)=1 for |r|=¢ and {.(r)=¢"|7| for e=|7]|=0. Since v,(S)(Vn+(S)) is
a continuous function of S, we can apply Proposition 4.3 to I5.(¢). Hence for

any ¢& L(t,, t,) we have

(6.26) g:‘¢<z)1,.,z<ndt=g$ iigjjlqsa)dtgmsux, IS SHAV ™ 2, ¥, S)

- 13 . .
=tim{ 'g0at| £, Y (S)AV 1 5, 3, S)Him lim T,

where

62D Jim=| 90 &x, 9 Lbmes SN 1AV %, 3, S).
0 X
Using Proposition 5.1, we have

6.28) mgng(t)dtgmgk(x, PS)AV™(E; %, 9, S)
=tim{"gat| &ux, DE

:S:iqi(t)dtSBSk(X, )DL

On the other hand,

629 lim|Jpml Slim M g0l 1805 )1 1-C0mn(SDIAV ™ 5, 3, S)

észlsﬁ(t)ldtgsxalék(x, NHI=Ln N AV E; 7, 9, ).

Therefore using (6.26), (6.27) and (6.28), we have

| o0nu0a={ s0a] gx, D12,

=timsup|*1g@1dt], 1605, DHI-LonaNAVE 5, 5, 9)

=0

because of (6.24). Since ¢(?) is arbitrary, there exists a subset N, of R of L,
measure 0 such that

[ 6 VoL = £i6s, 9D, k=12, -,
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for any t=(t, t)\N,. Since {&,}, is dense in C,(B), we have (6.25) for any
¢eCy(B) and for t=(ty, t)N\UiNe.

We can state relationship of spt V(¢; x, y, S) and the graph of u(f, x). Let
7:Q2XRXG—2XR be the projection. We call the set

irr(V(#))==(spt V()N X RXirr(G))

the set of irregularity of V(f). In this terminology we can see from propositions
above the following

THEOREM 2. m(spt V(@))\irr(V(t))Cspt|DX,| CoO*E(z).
Proof of this Theorem is clear from Proposition 6.4 and 6.5.

The next proposition gives the direct relationship of the varifold V(¢; x, v, S)
and the graph of u(?, x). We denote by B(x, p) the open ball of radius >0
centered at x in Q.

PROPOSITION 6.6. Let V(¢; x, v, S) be the varifold solutron of §4 and u(t, x)
be as above. Then at L,..-almost all (t, x)ERXQ,

(6.30) u(t, x)zlin;l u,(t, x),
where

—S yd|VE®) L vpl
B(z, p)xR
L.(B(x, p))

(6.31) u,(t, x)=

Proof. Let p be the Radon measure on {2 defined by the equality
y(B):SBu(t, x)dx .
Then we have, at L,-almost all x,

(6.32) ut, x)=lim p(B(x, 0))/ Lu(B(x, p)).
On the other hand, for any ¢(x)<Cy(£2), we have from Proposition 6.4 that

S_Qu(t, x)gb(x)dngliir}oggu"‘(t, P(x)dx
=—tim(_ () Dt
= . DDl

=—{ . YDAV O Ly
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This means that

6.33) B, ) ==|  ydIVOLyanl,

B(z, )

Combining (6.32) and (6.33), we have (6.30) and (6.31).

As a consequence of Proposition 6.6 we may think that u(f, x) represents
the position of the membrane described by the varifold V(¢; x, y, S). Therefore

1 2.,
6.34) ?SQIDtu(t, x)|%dx
represents the energy of motion. Similarly we can consider

(6.35) av(e; x, y, S)— 12|

SQxRxG

as the potential energy.

THEOREM 3. (Energy wnequality). Let u(t, x) be as in Proposition 5.1. Then
D.u(t, x) L¥Q) for L,-almost every t and we have

1

(6.36) S D, x|, avasz, v, =M,

where M 1s as in Proposition 4.9. If u, W2 QNWEHQ), then we have
1

(6.37) 7Sglzm(t, x)lzdx—kggxmadV(t; X v, S)

= %SQI uy(x)| de—{-SQ(]_—'— | Dug(x) %) 2dx .

Proof. Using (4.8), we have

(6.38)

—

1
T |l Dty D*dx+VOI(RXR)
é—;—SQIDtu"‘(t, x)Ide—I—limqsup]DX?I(QxR)

=M.

If ue(x) is of class W™ 22()NWE2(2), then Sobolev’s imbeding theorem
asserts that DP,u,(x) converges to Duy(x) uniformly. This yields that

(6.39) gglsg(l-l- | DPpuo(x)] 2)”“’dXZSQ(H- | Duo(x)[ %) *dx .

Applying this to (4.7), we can prove (6.37).
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Next we prove

LEMMA 6.7. Let B be an open subset of 2XR. Assume that for Li-almost
all t(ty, t,)

(6.40) | DX, [(B)=lim| DX |(B) .
Assume further that
6.41) SB AV, 3, $)=0 for almost all t<(t, 1,).

Then at almost all t<(t,, t,), the varifold V(t; x, v, S) 18 canomcally identified
with the function u(t, x) in B. Let w be an open subset of 2. Assume that
(6.40) and (6.41) hold for B=wXR. Then u(t, x) is a BV-solutton of (1.1)
(to, 1) X .

Proof. We have only to prove the first part of the Proposition. We put
B(x, y; p)={(w, 2)€E2XR: |w—x|*+|z—y|*<p?}.
For any continuous function a(S) of S, we consider
(6.42) Vf’y(a)ZlimSB(x , p)a(S)dV(t; x, 2, S/NVOIB(x, y; 0)

p=0

for almost all ¢ This exists at [|[V({)|-almost every (x, v). (cf. 3.3 of Allard
11y

The mapping C(G)2a—V§ Y(a)= R defines a positive Radon measure Vi ¥(S)
on G, that is,
(6.43) Ve ra=] asavins).
It is clear from the definition that
(6.44) [ avius)=1

and that for any ¢=C(2XR)

(6.45) Ly n o806 DSV 5, 3, S)

:Sméb(’“’ y)(SGa(S)dVZ”’y(5)>d||V(f)H-

We cannot apply (6.45) to a(S)=v,(S), 7=1, 2, ---, n, because v,(S) is not
continuous on G. We claim that if spt¢ is contained in B, then equality

646 | o, yw©aves; x, 3, 9= gtx, n{] s SavevS}tavel
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holds, where 5;(S)=v,(S) for SeG\irr(G) and §,(S)=0 for S€irr(G).
We prove the claim. Let ¢ be an arbitrary positive number and (. () be
the function used in the proof of Proposition 6.5. Then

(6.47) [, .00 DSV 5 7, 3, 9)
=, 005 5OV x, 3, 9)

tim g0, SNV E; x, 3, S).

Since v;(S)C(vr+1(S)) is a continuous function of S, we can apply (6.45) to the
right hand side of (6.47). Thus we have

{000 DSV x, 3, 9)
=tim{ ¢x, 9| 2(SCESNAVEUS)AIV O

=[ o, 0(§ pusavevs)avaor.

We have proved the claim (6.46).

Next we wish to prove that
(6.48) wits 3, )= BSAVENS), =12, netl,

for almost all ¢ and ||V (#){-almost every (x, y)e B. In fact combining Proposition
6.5 and (6.46), we have

(6.49) [ 00, 3mes 2 ) 1001={ gx, D,
={ 0t NAIVEL|
=[5 ISV 5, 3, 9)

=\ ¢(x, M\ 5,(S)dVE SV D).
SB {SG }

As a consequence of (6.49), for any (x, y)&B and for sufficiently small p>0,
we have
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(6.50) [y, it 2, 91D

(| v vs)diver.

SB(r,y;p)

For each (x, y)e B and almost all ¢, we can choose a sequence of positive
numbers {p,}%,, such that

(6.51) 1ki£n =0
and
(6.52) IVOIOB(x, v; p)=0, k=1,2, -,.

By virtue of Proposition 6.3 and (6.52), we have

[DX,|(0B(x, y; p)=0, k=12, ,.
This and assumption (6.40) imply that

I DX |(B(x, 33 pe))=lim | DX [(B(x, y; p4))

(cf. Giusti [6]). Using Proposition 6.2 (iv), we see that
(6.53) [DXN(B(x, y; 0e)=IVOI(B(x, y; o&), k=12, -, .
This together with (6.50) yields that

@50 [, tix 3)IDLI/IDLIBG, v on)
TVl

(| 240)ave«©)avOINVOIBE, 35 0.

SB(x, Y,y

Let £ tend to oo and take the limit of (6.54). Then (6.51) and Besicovitch’s
theorem (cf. [3] or [5]) give (6.48).
Applying the next Lemma 6.8 to (6.48), we conclude that

(6.55) Pi(S)=v,(t; x, ¥)
at V§ Y-almost all S&G. If S#S’ then Uy(S)#%,(S’). Thus (6.55) implies that
spt V§ Y=one point=Tan, ,0*E(t).

And for each a=C(G), we have
(6.56) Saa(S)de' ¥(S)=a(Tan,, ,d*E().

It follows from (6.56), (6.45), (6.53) and Besicovitch’s theorem that for any
¢EC(BXG), we have
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6.57) nga‘b(x’ v, S)AV(E; %, 3, S)
=[, g0 3, Tan. P EOIVE

:SBxGSb(x’ v, Tang, ,0*E(t)| DX,].

Therefore V(¢; x, y, S) is canonically identified with the graph of u(#, x). Lemma
6.7 has been proved upto the following Lemma 6.8.

LEMMA 6.8. Let P be a probability measure on a space X. Let v(x) be an
R™valued function which is integrable with respect to P. Let

v——-S w(x)dP(x).
X

Assume that |v(x)|=1 and |v|=1. Then v=v(x) at P-almost every x.
Proof is clear.

THEOREM 4. Assume that u,e L*2) and u, W ™2%Q). Assume further
that the function u(t, x) of Proposition 5.1 satisfies the energy conservation law
for te(ty, ty), i.e.,

(6.59) Sl orax | o

= | w141 Duo 9.

Let @ be any open subset of Q2 such that

(6.59) avit; x, v, S)=0

waRx;rr(G)

for atmost all te(ty, t;). Then at Li-almost all t&(ty, t,), the varifold solution
Vi(t; x, v, S) is canonically identified with the graph of the function u(t, x) at
I nrr-almost every (x, y)EwXR and u(t, x) is the solution of (1.1) in (t,, t;) X w.

Proof. Let
M= 1Pt P+ [ (14 DP9
Then the proof of (6.37) asserts that

(6.60) lim Mm=%ggl ;%) 2dx+59<1+ | Dug(x)|%)"'2dx .

m—oo

We have from (4.7)
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1
(6.61) Mmzfgngtu”‘(t, x)lzdx—i—snglDXZ"I.
The assumption (6.58) means that
1 2

(6.62) 51 Dautt, 1dx+], DL

(1 i _

=tim{Z( 1D, 0)%dx+{, 10w}

Since
(6.63) SqlD,u(t, x)[za'xélimﬂsupSQIDtum(t, ) |%dx
(6.64) [,/ 0 stimsup(, 1027,

the equality (6.62) asserts that equalities hold in both (6.63) and (6.64), namely,
we have

(6.65) SQIDtu(t, x)]zdxziizggngtum(t, ©))%dx
and
(6.66) Sm | DY, | =1imgm| prRl.

Therefore, the set £ X R itself satisfies the condition (6.40) of Lemma 6.7. As
the consequence of Lemma 6.7, we can prove Theorem 4.

§7. Generalized Hamilton’s principle.

So far we have treated the special varifold solution V(¢; x, v, S) constructed
in §4. In the present section we treat any varifold solution W(; x, y, S) of
(1.1) satisfying additional conditions which will be given below. And we prove
that a generalized Hamilton’s principle holds for such a good varifold solution.

We define measures [|[W(@)Ly,l, 7=1, 2, ---, n+1, on £ X R by the following
formula: For any Borel set AC2XR

@.1) WOl ={ (S x, 3, 9)

in just the same way as in §6. In analogy with Proposition 6.6, we put, for
x4 and teR,

(7.2) w(t, x):ling w,(t, x),
o

where
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B(z, B(z,

@3 wlt, 0={, WOl ] WOyl

We call w(, x) the position of the membrane. It follows from Besicovitch’s
theorem that w(f, x) exists almost every x with respect to the measure

” W(t) I—V'/H—l ” .
We call

1
S 1 Dewte, )17
the energy of motion if it is finite. Similarly, we may call
; — = 7 —
Lopecd €3 %, 3, S=121=(_diwi—12]

the potential energy.
We assume that the following conditions hold for the varifold solution

Wi(t; x, v, S):

(A1) The position function w(t, x) is a function of bounded variation in Q
for a fixed t€R and spt|W ()L v, |Co*F (), where F(f) is the subgraph of the
function w(, x).

(A2) D.w(t, x)e L¥) for each t and

(7.4 S:dtSQ%I Do, x)l%xﬁ—S?dtﬂgmedW(t; ¥, y, S)<oo.
(A3) For each ¢(x)=Cy(2)
(7.5) [ @AW OUvnnl={ g2

The last equality expresses a generalization of the law of conservation of
mass. As we have proved in §6, the varifold solution V(¢; x, y, S) constructed

in §4 has all these properties.
If W(t; x, v, S) satisfies all of these conditions, then we consider the action

(7.6) A(W)=S:dt§g%[0zw(t, x)lzdx—gjdt{g A 5, 3, 9—121),

QxRx
and we shall show that W is a critical point of this action functional, i.e.,
(7.7 0AW)=0.

To state this fact more precisely we introduce admissible functions ¢(¢, x)
eC*Rx Q) such that

@0, x)=D,p(0, x)=0, H(T, x)=D (T, x)=0
and ¢(t, x)lae=0. Then for each =R we can define a diffeomorphism

(7.8) (@) QXR>(x, y)—(x, y+odt, x)sQXR.
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This induces a map 7(g)s of varifolds, which is defined by the equality
(7.9 (@)W, ¢
={, 0aB, 3H09, 1), D@ A DY@ x, 3, S).

(cf. Allard [1], §3.2), where Dy(o) is the differential of the map %(s) and
A"Dy(a) is its n-exterior product. The precise formulation of the generalized

Hamilton’s principle is

THEOREM 5. Assume that W(t; x, y, S) is a varifold solution of the equations
(1.1) and (1.2) and that it satisfies the assumptions (Al), (A2) and (A3). Then

d
(7.10) - A(@)eW)]2=0.

Proof. We first calculate the position w?(t, x) corresponding to the varifold
(@)W (t; x, v, S), that is,

(7.11) w(t, x)zlirrol wit, x),
oo

where
YWni(S)d(n(a)eW(E; 2, y, S))

SB(z,p)xRxG

(7.12) wi(t, x)=
Vast(S)d(n(a)sW(t; z, v, S))

B(zx, p)XRxG

We have for any x<2 and p>0,

(7.13) Wr(S)d(p(e)sW(t; 2z, v, S))

SB(x,,o)xRxG

(y+0ad(t, 2))vai(Dy(a)S)IA\"Dy(a)|dW(t;lz, v, S).

SB(J:, P)XRXG

Using assumptions (Al) and (A3), we see that this is equal to

(7.19) S (w(t, 2)+od(t, 2)vna(Dy(a)S)IN"Dy(a)|dW(¢; 2, p, S).

B(x, p)XRXG

Similarly, we have

(7.15) Vari(S)d(n(a)W(t; 2, 3, S))

gB(x,p)XRxG

Vart(D7(a)S) I A\"Dy(a) |dW (¢ 2z, v, S).

SB(J;, PYXRXG

It follows from (7.11), (7.12), (7.13), (7.14) and Besicovitch’s theorem that
(7.16) wo@t, x)=w(t, x)+od(t, x),
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at almost every x=£ with respect to the measure g such that for any Borel
subset BC 2

wB=( 5 DY@IADY@IAW(E x, 3, S).

We claim that (7.16) holds at L,-almost all x in £. To prove this we shall
show that an n-dimensional vector subspace S&G satisfies v,.,(D7(0)S)=0 if
and only if v,+,(S)=0. Assume that v,+,(S)#0. Then we can choose a basis
Uy, Vg, 0, Un Of S SO that vi=ei+Bilnis, V2=t Belns, v, Vn=€nt Brlary,
where e,, i=1, 2, ---, n, is the unit vector parallel to the x;-axis and e,., is

the unit vector parallel to the y-axis. Since Dr](o)vizei+<ﬁi+a%¢(t, x))e,m,

we have
ViAV/\ - Avn=e1/\ez --* N\ent+g/\enss

with some g /A"'R" This implies that v,.,(D7(s)S)*0. Similarly we can
prove that v,.(D9()S)=0 if v,.,(S)=0.
Since | A"D7(o)| never vanishes, we see that

0=pt(B):ngRvanﬂ(D?](U)S)l/\"Dn(d)ldW(?f: %, 3, S)
if and only if

Ln<B>=S I SAWE; x, 3, S)=0.

BxRx

This proves that (7.16) holds for L,-almost every x in £. Thus we have
T
(7.17) A(ry(a),,W)z%SodtSQIth(t, X)+aDud(t, x)|%dx
T
—atl, . dm@we; 5, 5, $)+101.
We now calculate the variation ——é—A(n(a)#W)lwo. First we have

do

T
(7.18) —d—Sodth%Ith”(t, ) |2dx

=0

d (r 1
Z?&‘SOdtSQ‘Z—Ith(t, x)+0¢<tr x)1%dx | =0

T
={arl,  wt, 0D, Dvai ST 7, 5, )

T
=(atf, D, Dya @AWt x, 3, 9).

Next we describe the variation of the second term of the right hand side of
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Let 7(x, y)=D.n(0)(x, ¥)]s=0=(0, 0, -+, ¢(t, x)) be the vector field which

is the tangent at ¢=0 to the l-parameter family of diffeomorphisms 7(s). We
know that (cf. Allard [1], §3.3)

d
(7.19) g LO@INE 2, 3, ) o
={, o E D SISV 7, 3, S).
Consequently
d
(7.20) = (A o-o

T
=", Do, 0yvnn(SaW s x, 9, 9)

+{0at], e B0 DS SV 3, 3, S).

k=1

Since W(t; x, v, S) is a varifold solution of (1.1), (1.3) and ¢(0, x)=D,¢(0, x)=0,
the right hand side vanishes by virtute of (3.3). We have

d
= Aly(@)aW)] 1=0=0.

Theorem 6 is proved.
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