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1. Introduction.

In this paper, we shall treat ε-entropy of compact operators on a Hubert
space and that of measurable stochastic processes. Especially, using the concept
of ε-entropy, we study a relation between Gaussian processes and integral kernel
operators. In section 2, we shall explain the definition of ε-entropy in compact
operators due to Prosser [9] and that in measurable stochastic processes due to
Kolmogorov [5]. In section 3, we shall treat a mean continuous Gaussian process
ξ={ξ(t):0StSl}. Using the covariance function K(s, t) induced by ξ, we can
construct the integral kernel operator T on L2[0, 1], which is a trace class
operator. Denote S(T, ε) and H(ξ, ε) the ε-entropies of T and ξ, respectively.
We characterize the ε-entropy H(ξ, ε) by the sequence:

{S(Tk

f εk): 6=1,2, . . . } .

In section 4, we shall consider the orders of growth of H(ξ, ε) and S(T, ε).
Then, applying the result of Section 3, we estimate an upper bound of the
order of growth of H(ξ, ε).

Unless stated otherwise, throughout this paper, the letters R, Z and N
denote the set of real numbers, the set of integers and the set of natural
numbers, respectively.

2. Preliminaries.

In this section, we shall introduce several notations and definitions through-
out this paper. Denote by M a Hubert space whose inner product is < , •>.
B(x, ε) means an open ball having the radius ε>0 and the center x&SC.
Especially, denote by HJ the closed unit sphere in JC.

By an ε-covering of a subset F in JC, we mean a family of open balls with
centers in M and radiuses ε, whose union covers F. By an ε-packing of F, we
mean a family of open balls with centers in F and radiuses ε, whose pair wise
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intersections are all empty. If F is relatively compact, there are finite ε-
coverings and ε-packings of F for every ε>0. Denote by N(F, ε) the minimum
number of balls in any ε-covering of F and by M(F, ε) the maximum number
of balls in any ε-packing of F. According to Prosser [9], we define the ε-
entropy S(F, ε) of F as the base-2 logarithm of N{F, ε) and define the ε-capacity
C(F, ε) of F as the base-2 logarithm of M(F, ε).

Let T be a compact positive operator on M. When we use the spectral
decomposition theorem, the spectral representation of T by using Schatten form
(Schatten [10]) is the following:

where {λt} is the monotone non-increasing sequence of positive numbers which
converges to 0, and {pj is the orthonormal system associated with T.

For any r>0, we introduce a notation n(r) for the number of terms in the
sequence {λJ which are greater than r:

n{r)=max{i: λt>r\.

For simplicity, we denote by S(T, ε) the ε-entropy of TU^{Tx :\\x\\^l}.
We call this the ε-entropy of T.

Let (X, d) be a complete separable metric space and DC be the Borel field
generated by the metric d. For the random variables ξ and η on (Ω, &, P)
with values in (X, DC), let Pς, Pv be Borel probability measures on (X, DC) induced
by ξ, 7), respectively, Pξ>v be the joint probability measure of ξ and η and
PζXPv be the product probability measure. The mutual information I(ξ, rj) be-
tween ζ and η is defined as follows (Pinsker [8]): If P$

and otherwise, /(£, gy)=oo.
Then the ε-entropy of ξ (Kolmogorov [5]) is defined as

H(ξ, e)=inf{/(£, η
where

Let M be the set of all measurable stochastic processes and
be a measurable stochastic process defined on (Ω, B, P) which satisfies the
following inequality:

Since we can regard ζ as the random variable from Ω to L2[0, 1] (Baba-Kaji-
Ihara [2]), the ε-entropy of {ξ(t):O^t^l} is defined as follows:
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mξ,ε)=inf{I(ξ,η):
where

3. ε-Entropy of Gaussian processess and of integral kernel operators.

Let S be a closed subspace of JC. We use the following notations:

B,(y, ε)=y+Bs(0, ε),

that is, 5s(0, ε) is an open ε-ball in 5 with the center 0 and B8(y, ε) is an open
ε-ball in S with the center y^S. Furthermore, let F be a relatively compact
subset in S and denote by N8(F, ε) the minimum number of balls in any
ε-covering of F in S. The ε-entropy S8(F, ε) of F in S is defined by

St(F, ε)=\ogNs(F, ε ) ,

then we can prove the following lemma:

LEMMA 1. S(F, ε)=Ss(F, ε).

Proof. It is enough to prove that N(F, ε)=Ns(F, ε). Let {B(xt, ε ) : i=l, •••,
N(F, ε)} be an ε-covering of F in JC, and { S ^ , ε ) : j=l, •••, iV,(F, ε)} be an
ε-covering of F i n S. As we have B8(yJf ε)dB(yJf ε) for any ; = 1 , •••, JVS(.F, ε),
the family {^(3;^, ε ) : 7 = 1 , •••, iVs(F, ε)} of open ε-balls in M is also an ε-cover-
ing of F in JC. From this we have N(F, ε)^Ns(F, ε).

Let P be the projection from JC to S. Then a family {Bs(Pxt, ε ) : / = 1 , •••,
N(F, ε)} of open ε-balls in S is also an ε-covering of F in S. In fact, when
we choose a fixed 2 in {1, •••, N(F, ε)}, we have

for any Z G 5 ( X , , ε)ΠS. This shows z^B8(Pxt, ε) for any / = 1 , •••, N(F, ε), and
we obtain

N(F,ε) Λ N(F,ε)

Π B(xt, ε)|ΠcSC Π β.(ίx», e).

Therefore we have N8(F, ε)^N(F, ε). Q. E. D.

Let F be a relatively compact set in JC, Tu T2 be compact operators on JC
and a, εlf ε2 be positive numbers, then we have following inequalities.

LEMMA 2. C(F, ε)^S(F, ε),

S(aTu aSl)^
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S(7\T2, e^^SiTu ε1)+S(T2} ε2),

S(T1+T2, e 1 +ε 2 )^S(T 1 , εJ+SiT,, ε2).

The proof of this lemma is immediate, so we omit it.

LEMMA 3. Let S be an n-dimensional Euclidean space and {φlt

orthonormal basis of S. Let T be the operator on S defined by

where λ
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• , φn] be an

Then for any ε>0, we have the following equality

lim S ( T ' — = Σ l o g Λ t .

k

Proof. For any k^N, we have

Now we define the following two sets:

A3

V £ =,

Since

λϊ •si}.

we obtain

From these formulas, we obtain

C{Vt, β)g )£S(V2} ε).

For the upper bound of S(V2, ε), we construct in V2 a cubical lattice with mesh
ε/n1/2 by choosing the coordinate axes φlf •••, ̂ >n. We can represent the lattice
in V2 as follows:

where the symbol [α] means the integral part of the real number a. According
to the choice of ε/n1/2, when we choose an arbitrary point X E F 2 , there is at
least one point in the intersection of this lattice and S(x, ε). N(V2, ε) is not
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greater than the number of such lattice points in V2. Therefore we have

For the lower bound of C(Vlf ε), we construct in Vλ a cubical lattice with mesh
2ε by choosing the coordinate axes φlf •••, φn. We can represent the lattice in
VΊ as follows:

λ\/n112

Γ λ\/n112 Ί )

According to the choice of 2ε, the distance of any two distinct points in this
lattice is not less than 2ε. M(Vlf ε) is not less than the number of such lattice
points in VΊ. Therefore we obtain

When we note that λ{^ ••• ^λn>l, we obtain

and
g * ,.

S(Tk ε) C(VΛ ε) 1 * r Γ λk/nυ2l ϊ *>

lim {I 'S) ^ l i m C ( 7 ε ) ^ l i m 4 - Σ log{2 |^—] + l}= Σ log Λ .

Q. E. D.

Let T be a compact positive operator on H whose spectral representation is

where {λt} is the monotone non-increasing sequence of positive number which
converges to 0 and {ψi\ is the orthonormal system. Then we have

THEOREM 4. For any ε>0, a>Q, we have the following equality:

v S({aT}k, ε) nωa)
hm = Σ log(aλt).
A -co k 1 = 1

Proof. First we prove the case of a=l. We define the operators Tlf T2

as follows:

T2= Σ
ι=n(l)

It is clear that T=T1+T2. For any k^N, T\{U) is a subset of Tk(U). There-
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fore we have
N(TΪ(U), ε)<N(Tk(U), ε ) .

From Tk = Ti+Ti we have

N(T*{U), e) = N({Tl+TΪKU), ε)

From Lemma 2, we have

N(Tk(U), e)=N{{n+Tk

2}{U), ε)£N(Ti(U), ε/2)-N(Tk

2(U), ε/2).

As | | T ί | | ^ | | T 2 | | * ^ l holds for any ke=N, we get Tk

2(U)CZT2(U). Therefore we
have

N(THU), ε/2)^N{T2{U), ε/2).

These results imply

S(TJ, ε)^S{T\ ε)^S(Tk

1} ε/2)+S(T2, ε/2).

Let S be a linear space spanned by {φlf •••, <pna)}, i.e., an n(l)-dimensional
subspace of JΓ. Since Tf(ί/) is the subset of S, we have by Lemma 1,

J, e)=S,(TΪ, e),

From this equality and Lemma 3, we obtain

S(Tk ε) ™m
lim-^V--^-=Σlog^.
A-oo β 1 = 1

Next we consider the case of «>0. By the same way as above, we
decompose the compact positive operator aT into the following operators, say
7\ and T2,

TO(l/α)

Γ,= Σ αΛ(p,
1 = 1

T 2 = Σ
ι=n(l/α)+l

Noting next two inequalities:

and applying the previous discussion to the operator aT, we have

r S({aT}k, ε) Γ S(Tί, ε) n(i/«>
lim—^—, =hm . — = Σ log(aλι).

Q. E. D.

Let {ξ(t):O^t^l} be a mean continuous real Gaussian process. We denote
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by K{-, •) the covariance function of ξ, i. e.,

K(s, t)=E{ξ(s)-Eξ(s)}{ξ(t)-Eξ(t)\,

where s, ί e [0 , 1] and the letter E denotes the expectation values of random
variables. We define the integral kernel operator T on L2[0, 1] by

where / e L 2 [ 0 , 1], O ^ ί ^ l . Because of the mean continuity of ξ, K{-, •) is
jointly continuous on [0, I ] 2 . Therefore, by Mercer's theorem (Ash [1], Ume-
gaki-Ohya [15]), K( , •) can be represented as follows:

K(s, t)=jb*i

where s, ί e [0 , 1] and {λt} is a monotone non-increasing sequence which con-
verges to 0 and {ψi} is an orthonormal system. The summation of the right
hand side is in the sense of the uniform convergence on [0, I ] 2 . We note that
the spectral representation of T can be denoted as

We define a function in order to explain Pinsker's theorem. Let ε be in
[0, {Σt°=Λ}1/2] and <# be a non-negative number determined by the following
equality:

We denote the function from ε to -5 by /, i. e., #=/(ε) . It is known that /(ε)
is a monotone increasing and continuous function defined on [0, {ΣΓ=iΛ}1/2]
(Baba-Kaji-Ihara [2]). The range of / is [0, ΛJ. We denote by g the inverse
function of / which is defined on [0, ^ ] . We can represent this function g
explicitly, i. e.,

ε=g('9) = \n('9)'9+ Σ λ\
I ι=n(0)+l J

Now we can explain Pinsker's theorem.

THEOREM 5 (Pinsker [7]).

H(ξ ε) — — Σ log max - 7 — , 1 .
I ι=i L /(ε) J

By using the above theorem, we have next theorem.

THEOREM 6. Let \ζ(t): O^t^l} be a mean continuous Gaussian process,
K{ , •) be the covariance function of ξ and T be the integral kernel operator
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induced by K( , •) on L2[0, 1]. Then, for any a>0, we have the following
equality

hm 7 =2i/(£, ε).

Proof. By Theorem 4, we have

«•/(«)») = U m W//(.)^ = »<ff> t o / λ y

Now, we have by Theorem 5,

0 0 Γ λ . Ί n(f(ε)) / ) , \

2JΪ(f, β)=Σlogmax-^r-, 1 = Σ logf-^r).
t=i L /(ε) J t=i \ /(ε) /

Q. E. D.

4. Orders of growth of ε-entropy in Gaussian processes.

In this section, we see the asymptotic behavior of H(ξ, ε) when ε is suffi-
ciently small. Let {ζ(t):O^t^l} be a mean continuous Gaussian process whose
covariance function is K(-, •)> and T be the integral kernel operator on L2[0, 1]
induced by K(-, •)• According to Prosser [9], we define the order of growth p
of S(T, ε) as follows:

— log 5(7, ε)
p=hm 7τττTlog(l/ε)

Then we have the following theorem.
THEOREM 7 (Levin [6], Prosser [9]).

' e-+o log 1/ε I k=i

where {λk} is the monotone non-incr easing sequence of proper values of T.

When we discuss the order of growth of H(ξ, ε), we get the following
result.

THEOREMS. 2g_
1 ~

Proof. From Lemma 2, we have

S(Tk, εk)^kS(T, ε ) ,

Taking a — I in Theorem 6, we get

From this we have S(T, ε)^2H(ζ, g(ε)).
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Then we obtain the following inequalities:

log2H(ξ, g(s))^ log S(T, ε) log e

} = log(l/ε) log g(ε)

log S(T, ε) log ε

l o g l M ( ε ) s + 2 λ \ »

< log5(T, ε) 2
- log(l/ε) ' 1—{log n(e)/log(l/e)} *

Since g(ε) converges to 0 as ε converges to 0, we have

by Theorem 7. Q. E. D.

Remark, When T is the integral kernel operator induced by a mean con-
tinuous Gaussian process {ξ(t):O^t^l}, T is a trace class operator on L2[0, 1].
Therefore we can get p^l. Especially if we treat the Brownian motion
{B(t):Q^t^l} (Umegaki-Ohya [15]), then p=l/2. Therefore we have the
following inequality:

-r- \ogH{B,ε)
lim —-—... . — tkΔ .
ε-+o log(l/ε)
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