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ASYMPTOTIC BEHAVIOR OF CERTAIN SMALL

SUBHARMONIC FUNCTIONS IN {Re z>0}

BY HIDEHARU UEDA

1. Notation.

Let C be the complex plane. If u{z) is subharmonic in a region ΩdC, we
put

M(r, u)=supu{z).
\z\=r
z<ΞΩ

Let dΩ be the boundary of Ω. If ζed42 and u(z) is subharmonic in Ω, we define

M(ζ)=lim suρu(z).

2. Statement of Theorem.

In our previous paper [4], the following result is proved.

THEOREM A. Let u{z) be subharmonic in {Rez>0}. // u{z) satisfies the
conditions

(2.1) w(0)<co

and

(2.2) u{iy)^M+{\y\, u) — π2σ {—<^<y<-^coy yΦO; σ: a positive constant),

then either u(z)^—π2σ in {Rez>0} or

M(r, w)—4(j(logr)2

(2.3) hm
log r

It seems to be interesting to investigate the asymptotic behavior of the
subharmonic functions in {Rez>0} satisfying the conditions (2.1), (2.2) and (2.3)
with a finite number a. In this note we prove

THEOREM. Suppose that u{z) is subharmonic in {Rez>0} and satisfies (2.1),
(2.2) and (2.3) {where a is finite) with a suitable positive number σ. Suppose fur-
ther that for any r > 0 there exists zr such that

Received March 5, 1985

33



34 HIDEHARU UEDA

(2.4) \zr\=r, u+(zr)=M+(r,u),

where δ is independent of r. Then

n n vm u(re)4σ(\ogry
(z.5) lim — a,

log r
uniformly for θ^(—π/2,π/2), where the exceptional set E can be covered by disks
{Bi\ such that if rτ is the radius of B% and Rz zs the distance from the center
of B% to the origin, then

(2.6)

3. Introduction of several functions.

In what follows we assume that M(e,u)^0. But this may be achieved
without loss of generality to our result by replacing u by u—M(e,u), if neces-
sary. As we have shown in [4, Lemma 2], the assumptions (2.1) and (2.2)
imply that M+(r,u) is nondecreasmg for r>0. From this and (2.3) with a finite
number a we deduce that

(3.1)

Now, set

(3.2)

(3.3)

and

(3.4)

Then by (3.3)

(3.5)

This together

(3.6) \Φ>

Φ(γ\
Ψ{X) —

^(px

Ψ(x)=M+(ex

Nj(x)=*

and (3.4)

N,(x)i

1

π co

Γ00

= L\

with (3.1) yields

t N j ( x ) \ = \ \ Φ (x —

u)-iσ(x+y _ r o o / __ , __̂
• KΞ Li \ oo, -j-coj

1

K,{y)dy (x>0)

(;=1,2).

Kj(y)dy (x<0)

-co,+co) (; = 1,2).

yWy)dy

sup \Φ(x)\'\+CΛ\Nj(y)\dy=Cj<^ 0=1,2).
-oo<χ<+oo J -oo
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4. Two lemmas on convolution inequalities.

First, concerning W*Kx{x) we have the following estimate.

LEMMA 1. Ψ*Kλ(x)>Ψ(x) for all large x.

Proof. Set

(4.1) v(z)=M+ * w2{M+{\t\, u)-π2σ}dt (z=x+ιy),
7ϋ J-co x -ή-{y i)

where we interpret M+(\ΐ\, u) for t=0 as 0. From Lemma 2 in [4] and (2.3)
we see that M+(\t\,u)—π2σ is continuous for — oo<α< + co and that {M+(\t\,ιι)
—π2σ}/(l+t2) is integrable for —co<ί< + oo. Thus v(z) is the harmonic func-
tion in {Rez>0} taking boundary values v(ty)=M+(\y |, u)—π2σ (—oo<3/<+oo).
From (4.1) v{z) clearly satisfies

(4.2) M(r, -v)^π2σ.

Let W(z) be the harmonic function in H—{Rez>0}n{ \z\<e} whose boundary

values are W(e1+iθ)=0 (-π<θ<+π), W(iy)=-π2σ (-e<y<-\-e). Then u(z)
—W(z) is subharmonic in H and satisfies

(ζ<=dH, ζφΌ, ζΦ±ie). Hence the Phragmen-Lindelof maximum principle gives
u{z)SW{z) (z^H), so in particular,

(4.3) u (0)=lim sup u iz) ̂  lim sup W(z)=- π 2σ=v(0).
2-»0
z(ΞH

Now, we put p(z) — v(z)—u(z). Clearly —p{z) is subharmonic in {Rez>0}.
From (2.2) and (4.3) -p(iy)^0 (-oo<y<+co). Also, from (2.3) and (4.2)
lim inf M{r, —p)/r=0. Thus the Phragmen-Lindelof theorem (cf. [3, p 111]) gives

(4.4) u(z)^v(z) (Rez>0).

As in the proof of (1.9) in [4, p 150], we note from Lemma 2 in [4] that

(4.5) M(r,v)=v(r) (r>0).

In view of (4.1), (4.4) and (4.5)

(4.6) M(r, u)^v(r)=^\~ηϊ7^{M+(t, u)-~π2σ}dt.

Moreover a residue calculation yields

(4.7)

and combining (4.6) and (4.7), we obtain
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(4.8) M{ry w)-4

Hence by (2.3) for all large r

(4.9) M+(r, a)-4σ(log+r) 2< j - | {r/t)+{t/r) {M+(t, u)-4σ(\og+t)2}dt/t.

By the change of variables r=ex, t—ev, we deduce from (3.2), (3.3), (4.8) and

(4.9) that for all large x

(4.10) W(x)=M+(ex, u)-4σ(

Our second lemma is

LEMMA 2. <2Clf \vΦ*K2(t)dt <2C2, where Cλ and

C2 are constants which appear in (3.6).

Proof. We compute f*' Φ*KM)dt (; = 1, 2). Set F(x) = [* Φ(t)dt. Then, us-
Jx Jo

ing the Fubini's theorem, we have

(4.11)

= \+ Kj(u){(F(y-u)-F(y))-(F(x-u) F(x))}du
J -oo

+ [Vφ(t)dt [""Kj(u)du.
JX J-oo

From (3.3) we see at once that

(4.12) [^KMdt^l, \+OOK2(t)dt=0.
J -oo J-oo

The first term of the right hand side of (4.11)—which we denote by Ij(x, y)—
requires further attention. Using the Fubini's theorem again, we deduce from
(3.4) that

(4.13) Ij(x, y)=^KJ(u)(^y(y-t)dt)du-^K^^^

= Φ*NJ(x)-Φ*NJ(y).
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Combining (4.11)-(4.13), we obtain

[V {Φ*K1(t)-Φ(t)}dt=Φ*N1(x)-Φ*N1(y),
Jx

\V Φ*K2(t)dt=-Φ*N2(x)-Φ*N2(y),
Jx

and so (3.6) yields
I Γυ

<2Clt
I I .7?

(4.14)

5. Preliminary study on the behavior of p(z) at infinity.

The following lemma is the key to the proof of the Theorem.

LEMMA 3. Let p(z) be the function defined in the proof of Lemma 1, and let
, π/2) be the number which appears in (2.4). Then, if w(r)= inf p(reίθ),

\θ\£δ

(5.1)
J f o

where t0 is a positive constant such that M(t0, w)>0.

Proof. Set h(x)=W*K1(x)-W(x). From (2.4), (4.5) and (4.10) it follows that

w(t)^p(zt)=v(zt)-u(zt)^v(t)-M+(t, u)<Ψ*K1(y)-Ψ(y)=h(y) (e v=0

for ί^ί0 (:y=£3Ό=logfo>l). Thus, in order to show (5.1) it is enough to show
that

(5.2)

In view of (3.2) and (3.3)

h(y)=\^(y-t)Φ(y-t)K1(t)dt-yΦ(y)
J-oo

=y{Φ*K1(y)-Φ(y)}-Φ*Kt(y).

Hence for x>yΛ

(5.3) \X ^-dy = \X {Φ*K1{y)-Φ{.y)}dy-[
Jvo y Jvo j2/o y

By the mean value theorem there is a number z^[y0, x~] such that

(5.4) [' *!*ύyLdy=±\'φ.Kt(y)dy.
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Combining (4.14), (5.3) and (5.4), we obtain

f* Ky)
(*>j>o).

j no y

This together with (4.10) implies (5.2). This completes the proof of Lemma 2.
Next, we give the following two estimates.

LEMMA 4.

(5.5) Γ - 2 1

 T >—i 7i ΓΓ for Λ > 1 .

)P r 2 logr plogp ρ(\ogp)2 r

S + oo ^ jζ 2 / ^ \

«. (r 2 +ί 2 )iogr > ¥Ί^7 - 7ΐo^7 t a n "Λτ) f o r J = ί o

where t0 (>e) is the constant which appears in Lemma 3.

Proof. A change of variable in the integral yields

S + o

/9
r2 log r

Integrating by parts twice, we have

> dr _ I
r2 log r

1

since p>l. This shows (5.5).
Next, we integrate by parts to get

r(logr)

For r>t, tan"1(r/0>ττ/4, and since t^t0,

(5.8) ι * 1/ ' Λ ' ^ " ι ^ Γ

r(logr) 2 Vί/ 4 J£ r(logr) 2 41ogΓ

Combining (5.7) and (5.8), we deduce (5.6).
Now, from (4.4) the subharmonic function u{z)—v(z) is nonpositive in

{Rez>0}. Using two representation theorems, one of F. Riesz and one of
Herglotz (cf. Heins [3, Theorem 4.2]), we obtain

(5.9) p{z)=v{z)-u{z)=\+~ *U) dr(t)+\ g(z,ζ)dμ(Q (z=x+iy),
J-oo X -\-{y — ϊ) JReζ>o

where γ(t) is an increasing function, μ is the Riesz measure of —p(z) in
{Rez>0} and g(z, ζ) is the Green's function for {Re^>0} with pole at ζ, namely
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g(z, ζ)=log

The following notation will be preserved throughout the rest of this note:
z=χ+iy=reiθ (x>0), ζ=ξ+iη = peχψ (f^O). Then it is easy to check that

(5.10)

and

8xξ
(p<r/2)

Here we claim the following

LEMMA 5.

(5.12) (

(5.13) ( dγ{t)+\
JiίKίo J

p log

μ| log

Proof. From (5.1) and (5.9) we have

(5.14)

and

(5.15)

P — T l i n f ί g{z,Qdμ{ζ)\dr<oo.

"—Γ—ί i n f Pίo r l o g r l i ^ i g δ j -
dγ(t)\ dr<co.Γ ί i n f P 2, f ,N8r l o g r li^igδj-oo x 2 + ( 3 ; — 0 2

After (5.5) and (5.10) are taken into account, (5.14) implies

co > f+O°—J: j( 1 d/ι(ζ)} dr
Jίo r l o g r yjip<r/2)nιξ>o) r Γ J

5 rr+oo βf̂  i r ίΓ+0° ^ r

{/><«o/2}Π{ί>o} t j ίo r 2 l o g r J " Jί^sto/2jπ^>o} Ij2p r M o g r

> Const. {( ξdμ(Q + \ — r dμ(ζ)\,
Ulp<t0/2}Γ\[ξ>0} J[p>t0/2}Γ\{ξ>0) p lOg p )

which gives (5.12). For \θ\^δ «π/2), x/(x2+(y-t)2)^((cosδ)/2)(r/(r2+t2))
holds, and as t->oo (tan"1(ί0/0)logί^0. Hence from (5.6) and (5.15) we deduce
that
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I (C+co r

0 r logr U-oo r2+t2

ί+°° 1 ff+

°° Jί0 rlogr Ij-

J-ooljίc

>Const L , < i o

d r ( i ) + C o n s t - L^
which gives (5.13).

6. Study on the behavior of p(z) at infinity.

Let

(l+plog+p)g(z)ζ)ζ-1

x ( l + l φ l l θ g + | φ | )

and set ZJ= for \z\=r>e, where

; logr</o<2r},

Further, define for | z \ > e

H*)=\- K(z,ζ)dv(ζ)

Then it is easily verified that

(6.1) P(z)=Pi(z)+p2(z)+pi(z)

and we deduce from Lemma 5 that

(\z\>e),

(6.2)

We first show

LEMMA 6.

(6.3)
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uniformly for 0e(—τr/2, π/2).

Proof. Assume first that r = | * | >e, ζ^Dλ(z) and f>0. Since p^l
r/2 in this case, we have from (5.11) g(z, Q^8xξ/r2, and so K(z, ζ ) ^
logrlog Iogr)x/r 2 ^8(l+logrlog logr)/r. Assume next that r=\z\>e, ζ^D^z)
and ξ=0. Since \η\^log r, K{z, ζ) <x(1+log r log log r)/(r-log r ) 2 < 4 ( l +
log r log log r)/r. Hence

y r log log r)

and thus from (6.2) we deduce that

f ^ J o g l o g L _ 0

Similarly we have for />3(z)

LEMMA 7.

(6.4) lim/>s(*)/(logr)=0
r->oo

uniformly for θ<^(—π/2, π/2).

Proof. Assume first that r>e, ζ^BB(z) and £>0. From (5.11) it follows
that g(z, ζ)^8xξ/p\ and so K{z, ζ)^%x{l+p\og p)/p*<l2x{\og p)/P<l2x{\ogr)/
r^l21ogr. Assume next that r>e, ζ^D3(z) and £=0. Since \η\^2r, K{z, ζ)

?| log | ^ | ) / | ^ | 2 < 6 1 o g r . Hence we deduce from (6.2) that

0 < - f ^ < 1 2 dv(Q—+O (as r->oo).
— logr ~ }D3(Z)

It remains to consider p2(z). Following Hayman [2], if ε>0 and Z G {Re^
are given, we say that the z is ε-normal (with respect to v) provided that

(6.5) (_ ψ dv(Q<εh/r

for

LEMMA 8. // z^{Rez>0, r—\z\>e\ is ε-normal (with respect to v), then

(6.6) p2(z)<Const, j ε+f dv(ζ)\ logr.

Proof. Let

(6.7) fln={ζ€=5a(*); 2»-1x^\z-ζ\<2»x} (n=0, ± 1 , ±2, .-.).

Since z is ε-normal, v(2r)=0, and thus

(6.8) p2(z)= Σ f K(z,Qdv(ζ)= Σ (7»U).
n=-cojΩn 7l=-oo
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Suppose first that n ^ - 1 and ζ^Ωn. From (6.7) we have \x—ξ | ̂  \z-ζ\<x/2
and \z+ζ\^\z—ζ\ + \ζ+ζ\<x/2+2ξ<7x/2 in turn. Using these estimates, we
have g(z, ζ)<log(7/2n) and ξ>x/2. Hence K{z, ζ)<{l+p\og p)(2/x)\og(7/2n)<

(6r/x)(log 2r) log (7/2n). Also by (6.5), ί ^(ζ)<ε2 n x/r. Thus

(6.9) ?n(*)<6e(log2r)2Mog(7/2n) ( w ^ - 1 ) .

Suppose next that n^O and ζ^Ωn. If ?>0, using (5.11) and (6.7), we have
K(z,ζ)^a+plogp)2x/\z-ζ\2^6r(log2r)/(2*n-2x). If ξ=0, K(z,Q^x(l+2rlog2r)
/(22n-2x2)^3r(\og2r)/(22n-2x). Then, if 2nx^r/2. we deduce from (6.5) that

(6.10) qn(z)^6r(log 2r)/(22n~2x) (e2nx/r)=24e(log 2r)/2n.

On the other hand, if 2nx>r/2, then

(6.11) gM^6rlog2r-^ZΓΓ\ ^(ζ)<||(log2r)f dv(ζ).

Combining (6.8)-(6.11), we obtain (6.6).
Now, from (6.2) and a result of Azarin [1] it follows that the set Δ(ε) of

points not ε-normal (with respect to v) may be covered by a system F(ε) of
disks {Bk} whose radii {rk} and distances {Rk} from their centers to the origin

oo

satisfy Σ (r*/i?*)<°°. Choose an increasing unbounded sequence {tn\ of posi-

tive numbers such that f dv(ζ)<l/n for \z\ ̂ r>tn and Σ (rk/Rk)<l/2n for

a system F(l/n) of disks {Bk}. If F(l/n, tn) is the set of disks whose radii
oo

appear in this sum, we put FQ—\J F(l/n, tn). Clearly the system Fo of disks
71 = 1

satisfies (2.6). From (6.6) we deduce that

(6.12) p2(z)^Const.(logr/n) (\z\ >in, z^{Rez>0}\F0).

Thus (4.4), (5.9), (6.1), (6.3), (6.4) and (6.12) yield

(6.13) limp(z)/(logr)=0
7-->oo

uniformly for #e(—π/2, π/2), where the exceptional set E can be covered by Fo

7. Completion of the proof of the Theorem.

Given ε>0, define Uε(z)=v(z)-4σ{(\ogr)2-θ2}-(aJ

rε)logr-K1, where Kx

is a large positive constant. Clearly Uε(z) is harmonic in {Re^>0}. In view
of (2.3) and (4.1) Uε(iy)^0 (-co<3;< + oo). Also liminf M(r, Uε)/r=0. Hence
from the Phragmen-Lindelof theorem, we have

(7.1) Uε(z)^0 (Re^>0).
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Similarly, if ε>0 is given and if we define Vε(z) — — z;(z)+max{40 (log?-)2—

iσθ2, 0}+(α—ε)log+r—Kz with a large positive number K2, then

(7.2) Vε(z)£0 (Re<r>0).

Combining (7.1) and (7.2), we have

(7.3) ιϊ
r->oo logr

uniformly for 0e(—;r/2, π/2). Thus (2.5) follows from (5.9), (6.13) and (7.3).

This completes the proof of the Theorem.

REFERENCES

[ 1 ] AZARIN, V., Generalization of a theorem of Hayman on subharmonic functions in
an w-dimentional cone, Amer. Math. Soc. Transl. (2) 80 (1969) 119-138.

[ 2 ] HAYMAN, W.K., Questions of regularity connected with the Phragmen-Lindelof
principle, J. Math. Pures Appl. (9) 35 (1956) 115-126.

[ 3 ] HEINS, M., Selected topics in the classical theory of functions of a complex
variable, Holt, Rinehart and Winston, New York (1962).

[ 4 ] UEDA, H., On the growth of subharmonic functions in {Rez>0}, Kodai Math. J.
(2) 6 (1983) 147-156.

DEPARTMENT OF MATHEMATICS

DAIDO INSTITUTE OF TECHNOLOGY

DAIDO-CHO, MINAMI-KU, NAGOYA, JAPAN




