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Abstract

The present paper deals with the study of explosion and growth order of
solutions of a general class of Itd-type stochastic integrodifferential equations
which contain as a special case the study of It6 type stochastic differential
equations. Sufficient conditions for infinite explosion time and asymptotic
behavior of solutions are investigated.
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1. Introduction

In this paper we consider a general class of It type stochastic integrodif-
ferential equations of the form

(1.1) dxy=F(t, x(0), S Fit, s, x(s)ds, S fult, s, x(5))dE(s))dr

+H<t x(8), S W, s, x(s))ds, Si hot, s, x(s))d&(s))d{‘(t}

where &(t) is a Brownian motion process on a probability space (2, {, P) and
fit, s, x), hi(t, s, x),7=1, 2 are Borel measurable functions defined on R*2XR
into R and F, H are Borel measurable functions defined on R*XR®into R where
R+=[0, c0) and R=(—o0, o). In a recent paper [10] the present authors have
studied the problems of existence and uniqueness of solutions of a more general
class of Itd type stochastic Volterra integral equations having continuous sample
paths with probability one, which contains as a special case the study of equa-
tion (1.1). The equation (1.1) is a further generalization of the stochastic in-
tegrodifferential equations recently studied by Berger and Mizel [2] and Pachpatte
[13] and it contains as a special case the well known Itd type stochastic diffe-
rential equation studied by many authors in the literature (see [1, 3-9, 14]).
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In many fields of science and engineering there are large number of pro-
blems which are intrinsically nonlinear and complex in nature involving deter-
ministic and stochastic excitations. For instance we refer to a second order
stochastic differential equation

(1.2) J+a®BOf(»)=g, v, E

where £(¢) is a Brownian motion process which is the outcome of the effect of
“white noise” random forces on the system

(L.3) J+a®p@) f()=0.

Equation (1.3) is extensively referred in the literature and represents a charac-
teristic of many systems of control engineering. The system (1.2) can be repre-
sented as a pair of the following equations

dyt)=u(t)dt
du(t)=—a@®)p@) f(y@)di+ g, y@), ut)ds@).

(1.49)

The system (1.4) with initial conditions y(0)=u(0)=c¢ is equivalent to the sto-
chastic integrodifferential equation

(L.5) dut)=—a®B(®) f<c+S: u(s)ds )dt

+et, c—]—S:u(s)dS, u(®))de).

The systems of this type commonly come across in almost all phases of physics,
control theory and other areas of applied mathematics.

Recently, Narita [11, 12] has studied the explosion phenomenon and asymp-
totic behavior of solutions of special form of equation (1.1) when f;=h;=0,
i=1, 2, where F and H are vector functions. In view of the general form of
equation (1.5) occurring in physical applications, the study of asymptotic behavior
and explosion theory for the general class of stochastic integrodifferential equa-
tions of the type (1.1) is more interesting and challenging. In fact our results
in the present paper are motivated by the recent work of Narita [11] and the
general form of Itd type stochastic equations recently studied by Berger and
Mizel [2] and Murge and Pachpatte [10].

The purpose of the present study is to investigate sufficient conditions for
infinite explosion time and asymptotic behavior of the solutions of stochastic
integrodifferential equation (1.1). The method used in our analysis is an exten-
sion of the method recently used by Narita [117 for It6 type stochastic differential
equations. In Section 2, we shall deal with the preliminary lemmas needed in
our subsequent discussion and prove a theorem on infinite explosion time. In
Section 3, we first obtain a moment estimate for random solution process of
equation (1.1) and using this estimate we establish a theorem on the order of
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growth of solutions of equation (1.1). Finally in Section 4 we give two examples
to illustrate the hypotheses used in our main results. Throughout we shall write
stochastic processes and functions by suppressing the argument w, w< 2, without
further mention.

2. Infinite explosion time.

In this section we shall establish our main theorem concerning infinite ex-
plosion time. For convenience we first list the following assumption.

(A) The functions f;(, s, x), h:(t, s, x), i=1, 2, F(t, x, y,u) and H(, x, y, u)
are continuous and for any T>0, R>0, {<T, |x,I<R, |y;|1<R, |u;|=R, j=1,2
there exists a constant Crp>0 such that

Ifet, s, x)—filt, s, x) P+ 1R, s, x0)—hi(2, s, x5)]°
=Crr(lx1— 1219,
[F(t, x1, y1, u)—F(t, x5, yo, )|
+IHE, x5, 31, u))—H@E, x2, ys, us)|®
SCrr(lxa— 22"+ 91— 221+ w1 —1,]?).

For any natural number #n, let g,(x) denote the function defined on R such
that g.(x)=1, for |x|=n, g,&x)zZ—%, for n<|x|=2n and g,(x)=0 for
2n<|x|. Define

[, s, X)=ga(0f.(t, s, %),
hS™(t, s, x)=gn(x)h,(t, s, x), =1, 2,

F™, x, v, u)=g.(x)F(t, x, v, u)
and
H™(, x, y, W=gu(x)H{, x, y, u).

It is easy to observe that the following conditions hold:
2.1 Ifim @, s, x)—f, s, x)P+HRE, s, x)—hPA, s, x5)[°
=Mi(lxi—x,1%,  i=1,2,
(2.2) [F™(, x4, y1, u1)—F™(t, X2, y2, us)|?
+IH™@, x1, y1, u) —H™(, 225 32, us)|*
SMi(lxi—x: P4+ 1 31— 22+ s —u,1?),
2.3) Lfim(t, s, )P+ 1R, s, x)P=Mi(1+]x17, =1, 2,
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2.4 [FP x, y, W+ H™(, x, y, ) PSS M+ x>+ 1y 2+ ul?),

for t=mn, x,, y,, u,€R, j=1, 2 and x, y, u=R where M, >0 is a constant depend-
ing only on n. If follows from Theorem 3 in Murge and Pachpatte [10] that
there exists pathwise unique solution x‘™(¢) defined upto t<n of the stochastic
integrodifferential equation

(2.5) dx"”(t):F“"(t, x‘")(t),S £, s, x™(s))ds, Sf‘"’(t s, xM(s)) ds(s))m

+HO(t, 500, || a5, x60ds, || aee, s, x0(5)ds(s) e
to to

We shall denote the solution of (2.5) with the initial condition x‘(f)=x,,
XER (2,=0) by x™(t, t,, xo). Let us define z,(, x,) and e,(t, x,) by

Talte, Xo)=Inf{?, |x ™, ty, x0)| =n}

(and 7,(t,, x,)=c0 if there is no such time) and e,(t,, xo)=min{n, t,(, xo)}
respectively. Thus {e,(t, x,), n=1} is a monotonic increasing sequence of stopp-
ing times for which

sup [x ™, to, xXo)—x ™, to, x0)| =0
tostsen (Lo, 20)

holds with probability one, if m>n. For n=1, t<e,(t, x,), we define a random
process x(t, to, xo) by x(t, to, xo)=x™(¢, ty, x,) which is called the solution of
equation (1.1) with initial condition x(¢#))=x,. Let us define a random time
e(t,, xo) by elt, xo)ziim e.(to, Xo,) which is called the explosion time of x(t, 5, x,).

We need the following lemmas in our subsequent discussion. Lemma 1 is
the modified version of the corollary on Theorem 1 given in Murge and Pachpatte
[10] and Lemma 2 is a slight variant of Lemma 1.

LEMMA 1. Let the conditions (2.1)-(2.4) hold and E[|x,|*]<oo. Then, for
te[tm n])
E[lx™®]*]1=@E[|x,]*]+1)exp [C(M,, n, t)t]—1

holds, where C(M,, n, t,) is a constant depending on n and t,.

LEMMA 2. Suppose the conditions (2.1)-(2.4) hold and E[|x,|2]<co. Then,
for te[t, nl,

(2.6 E( sup |x ()19 =CuMa, n, )BELI%0]*1+D)

holds, where Cy(M,, n, t,) is a constant depending on n and t,.
Proof. From (2.5) we get,

(27) x(n)(D:xo_[_S F(n)(s .L(n) S\ gf(n)(s T, x(n)(f))
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Ss [, T, x<"’(r))d§(r))ds

to

+Si H‘"’(s, x™(s), Si h{®(s, T, x™(1))dr,
0 0

S:,h (s, 7, 2P (@)dE) )dECs).

By using (a+b+c¢)*<3(a*+b*+c%, Schwarz inequality, Theorem 3.6 in [4, p. 70],
conditions (2.1)-(2.4) and stochastic integral isometry, for any t<n, we have,

E(sup |x™(@)|?)
tosvst

(t“to)2
2

<3E | xo|H[3M 3+ 0 {1+ M3 +Mie-t} X

Sj (1-E|x™(s)|0ds.
0
Now, the application of Lemma 1 yields
(2.8) E(sup |x™®)|?)
tosvst

(n—to)(n—1ty+2) }X

=[1+3M3m+ {14 M3 2

{enC’(Mn,n,to)___etoC()ln,n,tg)

C(M,, n, t,)
=Cy(Ma, n, t)BE]x,]*+1),

HeEixl+1

and the proof is complete.
We are now in a position to establish the following theorem which yields
sufficient conditions for infinite explosion time.

THEOREM 1. Let fi(t, s, x), h(t, s, x), i=1, 2, F(t, x, v, u) and H@®, x, y, u)
satisfy the assumption (A) and let

2.9) lfit, s, )P +1hi(t, s, D*sail(s)Bullx]®), =1, 2, s=t;
(2.10) |F(, x, y, WI*+HGE, x, 3, w)]*
=(asOBs(x D)+ 1y 17+ ul?)

for all teR* and x, y, uR where a,: R*—R*, i=1, 2,3 are continuous and
B.: R*—R*, i=1, 2, 3 are monotonic increasing concave functions such that

@.11) S“_f_v_ oo,
*1+ 121‘&@)
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Then P(e(t,, xo)=00)=1 for all t€R* and x,ER.

Proof. Let us consider the solution x‘™(¢, ¢, x,) of the equation (2.5) with
initial condition x™ (¢,)=x,, xR, for n>max{|x,|, t,}. Suppose the time
Ta(to, Xo) denotes the first exist time for the solution x‘™(z, ¢, x,) on the set
{x, |x|<n}. Define e,(, xo,)=min{n, t,(to, xo)}. For convenience we write
x P, by, Xo), Talte, Xo) and e,(ty, x,) as x™(t), r, and e, respectively, by sup-
pressing ¢, and x,. Define

Z"”(t)=E(tsup , I x(n)(v) I 2)
NEYEY

for t€[t,, n]. By Lemma 2, Z™(¢) is bounded.
By the definitions of f{™, A{™, =1, 2, F™ and H™ and conditions (2.9),

(2.10) we observe, for all t R* and xR, that

(2.12) LFiP@, s, )P+ 1M, s, D)= fi, s, 0P+ 1hi, s, 01
=ai()B1x1?), i=1,2;
(2.13) [F™@, x, 3, W)|*+H™Q, x, y, w)|®

SIF@ x, 3, wP+1HE, x, 3, w?
=(as®Bs(lx 1D+ 1y 12+ ul?).

From (2.7), by using (a+b+¢)*<3(a®+b%+c?), Schwarz inequality, Theorem 3.6
in [4, p. 70], (2.12), (2.13) and stochastic integral isometry, we get,

E(sup [x™@)]%
tosvst

S
t

§31x012+3<t+4>[§j (s—to)S D) E (| 2 (0) | deds
t (s
+S zog  2AOEB | x ™ (@) *)deds

t
+| aoEB Iz ©19ds)-
to
Since 8., i=1, 2, 3 are monotone increasing, we observe that
Billx™)[*=B:( sup |x™(0)]%)
tosf<v
holds for v<n. Thus, we have,

ZM (=3 x,]®

+3¢+0a)| || =, EBi(sup |x ™ (@)]de ds
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t (s
(n) 2
+StogtoE‘BZ(zossuz§s [x™(2)|")drds

+S:oEﬁa(;fs‘i§z Ix‘"’(S)P)dS]

for all t=[t,, nl, s<t, where

a(t)=max{ max a,(v), max a,(v), max a;v)}
tosvst tosvst tosvst

Noting the fact that §,, 7=1, 2, 3 are concave, by using Jenson’s inequality, we
get,

ZP O35, 3 +Hat )0, | 3382 ()]s
(t—to

for all t€[t, ']('<n) where C(t)=rnax{ 5

, (t—1to), 1}. It is obvious that
3 3
Elﬂi(z‘"’(t))é Z;1/9@~(Z””(t))-|-1.
Define

m®)=3] %2l "+ 3+ a0, | £ g2
We have,

m(te)=3| xo%,
and

Z™ @ <mit)
dmO=3¢+0a)C)| 1+ 33 gime) |de.
Thus
dm(t)

. 3@’ +4)a)C@')dt.
1-1-12:)1,81(7”(1?))
On integrating from ¢, to ¢,

St I sryarc it
to H_le Bi(m(s))

Substituting v=m(s) and using the inequality Z™{)<m(t), we get

(n)
2.14) SZ ©_dv

R =C, t)
3lxgl 1+ ;ﬁz(v)

for all t€[¢t, t']J#’<n), where C(t, t,)=3(¢+4)a(t)C(t)(t—t,). Suppose there exist
some ¢, and x, such that P(e(t,, x,)<T)=d, 6 >0 for some 7'<co. Let 7’ denote

~
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an arbitrary time such that 7/>T and be fixed. In the following we consider
x™(t, to, xo) for n, so large that n>max{|x,|, T’}. For any time t such that
T<t<T’, we observe that

{Tn<t}:{en<t}::1{en<T}2{e(t0: x0)<T}
and
Z™WH=ZELsup [x™@)|% sup [x™@)|[*>n—1]
tosvst tgsvst

>(n—12P(sup |x®@)|>n—1)
tosvst

Z(n—1P(sup |x™ ()| >n)
tosvst

Z(n—1DP(r,<t)=(n—1)P(e,<1?)
=(n—1)0

for all te[T, T’]. Thus from (2.14) we get,

S(n—nﬁ dv

. <C(T’, to).
31xgl2
1+ 3 Biv)

(2.15)

It can be observed that as n tends to infinity the right side of (2.15) becomes
finite while left side tends to infinity under (2.11). Therefore, it leads to a con-
tradiction. Hence for any t=0, x,=R and T we have P(e(t,, x,)=T)=1. This
completes the proof of the theorem.

3. Asymptotic behavior.

First we shall establish a lemma on a moment estimate for x(z, ¢,, x,).

LEMMA 3. Let H(t, x, v, u) be such that
3.1 H, x, y, wy=(c@®)a(x)+y+u)

where c(t) 1S a nonzero continuous function defined for t=R* and a(x) is a real
valued continuous function defined on R such that

3.2) la(x)| =K, K>O0 is a constant for all xR,
t 1/2

3.3) B(t):”tolc(s)l ds]

and

3.4) rEin B(t)=o00,

Suppose fi(t, s, x), hi(t, s, x),i=1,2, Ft, x, y, w) and H(@, x, y, w)=(c@t)a(x)+
y+u) satisfy the assumption (A). Further suppose that fi(t, s, x), hi, s, x), i=
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1, 2 satisfy the condition (2.9) and F(t, x, y, u) satisfies
3.5) [F(t, x, 3, w)|P=(as@)Bs(1 x 1))+ 1y >+ 1ul?)
for all teR* and x, vy, u R where a,, 1=1, 2, 3 are nonnegative and continuous
Ffunctions such that Ai(t)=5:0ai(s)ds<oo and

where D;(t)=(t—t,+3)*A:(t), and B:(v), i=1, 2, 3 are monotone increasing concave
functions of u which are twice continuously differentiable in v>0, such that

exist,

(3.7) lim »B;(v*)=0.
Then, there exist some constants N, and N, such that

(3.8 sup E(|x(5, b, 1| 9Z Ny NoB()
0=S$

holds for all te R* and x,=R.

Proof. For convenience we write x(¢) and e, for x(t)=x(t, t,, x,) and e,=
en(ts, xo) TESPECtively by suppressing 7, and x,. We shall denote the smallest of
w and v by wAwv. Since x(t) satisfies (1.1), by using (a+b+c)*=<3(a%+b%*+c?),
Schwarz inequality, stochastic integral isometry, conditions (2.9), (3.1), (3.2) and
(3.5), we observe for any ¢=t,, that

(3.9)  Elx(tNes)|?

(t—t,)*
2

=3[ 150 3K B0+ B+ 1)~ @B (1 x(s Aew)|ds

+@+—t0)1—t0) || a5 BB x(s Aew)[)ds
+1—t), au(EB(] x(s Aew)] ds |

Since 8., i=1, 2, 3 are concave, by Jenson’s inequality we observe,

(3.10) Eﬁi(lx(S/\en)P)éﬁi(gg&Elx(s/\en>12), (Lh=s=0).
Define
(3.11) zn(t)ztsgseLElx(s/\en)Iz.

Now, from (3.9)-(3.11) it follows that
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(3.12) 2sOZ3[ 120+ 3K B+ 3+t {Bu(2n(®)| ar(s)ds
+Ba(en0)], as(s)ds+Bulzalt), asds}]

=3[ 15| *+3K* B0+ 3 D)Bu(zn()]-

We define p, 5()=2,()/3+ B%¢)+d, where >0 is arbitrary number. It follows
from (3.4) that there exists some #,>0 such that 3B%¢)>1 for all t>t,. From
(3.6) and (3.7), for any ¢t>t,, we observe,

D,(2t)
B(@)

as t—oo, where 7=1, 2, 3. Therefore, we find some #,>¢, such that

1-3D,@®)BiBB ) >0

0=DDBIBB NS () BOBUSE®) —> 0

for all t>t, and /=1, 2, 3. Further we assume that ¢ be arbitrary and >max
{2y, t,}. We note that 3p,, s(2)>2z,(¢) and 3p, s@)>3B%¢). Thus from the hypo-
thesis that §,, i=1, 2, 3 are monotone increasing, the inequality (3.12) yields

203 123K B0+ 5 D0BB3ns0)]-
Hence, we have,
(13 a3+ |xlHGK DB+ 3 DO o0).

By the assumptions of concavity and differentiability on 8;(v), i=1, 2, 3, for any
v,>v,>0, we have B;(v.)=B:(v)+(w.—v,)Bi(v;). Define r(t)=3B%t). Then, we
have,

BiBPr,s)=Bu®)+(r(t)—1)Bi(r o)+ Bpa,s@)—r1)Bilr(t)),
where r4(t)=1+60(r(#)—1), (0<0<1). By using this inequality in (3.13), we get,
Das®)=0+ x>+ GBK*+1)B*(t)
+ Z-Z: D[R+ () —1)Bi(r o)+ B, s(t) —r(®)) Bilr()].

Thus on letting d tend to zero, we observe,

[ea®/3+ B0 1-3 £ Diopicrt) |

S x|+ @K+ 1B+ ;El DOLB«(D+r()—1)Birs@)—r)Bilr(t))]

and
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(3.14) (222 1m0 /B —— 1O
1-3 3 DABIr®)
where
. Ixol 2
Ho=—geb-+eK+0+ 5 20 0,
and

,813(1) B(V(t)“—l)z 1z 1/2n7 _ 1/237
B0 +[ T Orad) J (roO)*Bi(ro(t)—Br)*pi(r@),

i=1, 2, 3. Note that B,(v) are concave and twice continuously differentiable in
v>0. Then for v>¢, we have, B;(v)=<Bi(e)+(w—e¢)Bi(e). Thus from (3.2), con-

ditions (2.9), (2.10) and (3.1) and using (a+b+c)*<3(a®+b*+c?), Schwarz ine-
quality, stochastic integral isometry, we have,

Jd{H=

|#(t, 2, §, it s, xtonds, || futt s, x(0a(s)|
+H (e 2, §, mi, s, xs0ds, § hatt, s, 20 E)|
<1201+ [. 110, 5, xo0ds| "+ [} 7ut, 5, x0ats)||
+[etatn+{, hutt, s, xoNds+ [ hatt, s, x()dges)|”

éSiOrl(S)(H [x(s)] 2>ds+S:0rz(s)(1+ [x(8)[9)ds+75B)(A+1x(0)[%)

where
7:(s)=4(—1,)B(e)as(s),
72(8)=4B(s)as(s),
7:()=3K*c*(t)+ B(e)as(t),
and

ﬁ(s):max{ﬁl(e)’ ﬁ;(e)}y 2:1, 2’ 3.
Therefore, by Theorem 1, we get

(3.15) Ple(t,, x,)=00)=1.
Let n tend to infinity in (3.14). Then from (3.15) and Fatou’s lemma, we get,
I
—_— 2 2 2 <
(3.16) [3 sup, BLx(9)|*+B 0]/ Bo=

1-3 33 DiBi(r®)

for all t>max{¢, t;}. From (3.4), (3.6) and (3.7) we observe that
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Oé( %i((tt)) )[]i(t)lé(—%%—)lji(t)] —>0,

as t—oo and
D(2t)
B(t)

0=3D:0Bir )= (5 )3BOBLrD) — 0,

as t—oo, 1=1, 2, 3. Thus,
I(t)

1-3 3 D(1Bi(r®)

3.17) —> 3K*+1,

as t—oo, Hence, letting ¢ tend to infinity in (3.16) and using (3.17), we have,

lim sup

1 r1 - 2
i B(1) [3:?;“32;’?"‘(5)! +B (t)]§3K 1.

It follows that

lim supﬁl&—)—[tsup Elx(s)l2]§9K2.

t-c0 0Ssst

This implies that
Sup Elx()*=Ni+ N, B*(t)
0s8=s

for some constants N;>0 and N,>0. This completes the proof of the lemma.
We shall now prove our main result on the existence of the order of growth
of solutions of equation (1.1).

THEOREM 2. Let the conditions of Lemma 3 hold. Suppose that
(i) a(x)=1,

and
(ii) for any large N,

o0

by(N)= T BB N2**))/B(N2*),

k=0
i=1, 2, 3, exist and
(3.18) }\;m b;(N)=0.
Then, we have
x(t’ tO; xo)

B(t)

converges to the standard Gaussian Measure in law.

Proof. For simplicity we write x(¢, t,, x,) as x(f) by suppressing #, and x,.
By (3.15), x(t) satisfies
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(3.19) ()= x0+S ¢(s)dE(S)+ D (1)
where

@(t)=§t F(s, x(s), Sfls 7, x(@)d, S fils, =, x(@)dE(@))ds

t

t s
+S g ha(s, 7, x(2))dedé(s)

tod to

+{ s, 7, xndz@des)
ovio
for all t=t,. The assertion of the theorem easily follows if we prove that

()
By Y

Now set e,=en(t,, x,) and observe the process |x(vAe,)|® as well as the proof
of Lemma 3. From (3.14), for large ¢, we note that

3.21) SL}Lp[{zn(t)/3+32(t)}/32(t)]

(3.20) in probability.

1)
1— 321) OBLrE)

<

It is easily seen on taking superior limit as ¢ tends to infinity in (3.21) and noting
(3.17) that supz,())<N{+N;B%*t) where Ni and N, are some constants greater
than zero. There is no loss of generality if we consider N;=N; and N{=N\,
where N; and N, are constants involved in Lemma 3. We observe that

(3.22) sup [tsup&E[ x(wAe) 1= N+ N, B¥(?)
n 0SVE

for all ¢=¢,. From the conditions (2.9), (3.5) and the fact that B,(v), :=1, 2, 3
are concave and monotone increasing, by the application of Jenson’s inequality
and (3.22), we have,

([P (s, %), |, fits, 7, x@)ds, | fuls, v, (e de)d
+17 s, v xendedso+ ] s, 7 xends@dg)’
=3B([, "F(s, x5), { £is, . 2oz, ) fis, o) x(@)ds(o)ds)
+3B([.] s, o, xe)dedzo)

—|—3E(Smeng hy(s, 7, x(7)d&(r)d )2
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(il_to)2
2

<3(t—to+ D~ By sup ElxsAew|)| as)ds

£3(t—ty+ 1)(t—t0) Ba( SUp Elx(S/\en)l“‘)Sl ax(s)ds
tossst to

+3(t—15) By sup Elx(sAenW)S‘ a(s)ds

tossst to
<3 33 COBN:+ NuB*(0)
where

C=—tt
Cz(t):(t_to+1)(t_to)A2(t),

C(t)y=(@t— 1) As(?).

Al(t) ’

Now letting n tend to infinity, noting (3.15) and by the application of Fatou’s
lemma, we get,

E[@O)I=3 2 COBN:+ NoB* (D).

Since B.(v), i=1, 2,3 are monotone increasing and twice continuously differentiable
in v>0, we find some constants Q,>max{N,+N,+1, B:(N,-+N,+1)/B:(1)} such
that

BiNi+No») < B((Ny+Np+1)0) Q. 8:(v)

if v=1. Further, from (3.4) and (3.6) we find some #'>0 such that B%{)=1 and

%((?)t) <C, i=1, 2, 3 for all t>t’ where C>0 is a constant. Therefore, we have,

(3.23) E[(@{)1=3 X CAOQB(B )

for all :=¢"=max{t, t’}. For arbitrary ¢>0 and T,>T,>1%", by using martingale
inequality and (3.23), we get,

B>

<1
= &2B¥Ty)
3 3

= gy 2 CTIQBBHT).

su
<T1§ thz

END(T2)’]

Thus, for an arbitrary N, N>t” and using the fact that %((?)t) <(C, i=1,23

we observe,
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P(s

= kz=:oP(N2k§,5N2k+1 B(t) 1>

< 3 +1 2 +1
= 3 | s 5 G20 BBHN2 )|
<3 3 omam

for all ¢t>¢”. Define,

2@ 1
B(t)

and note that it is monotonic decreasing as N increases. Thus, lim W, exists
N -0

W y=sup

N<t

and (3.18) implies that
g\irm PW y>¢)=0.

It is easy to observe that (3.20) holds. This proves the theorem.

4. Examples.

In this section we give two examples which illustrate the assumptions used
in our Theorems 1-2 and Lemma 3. Our examples are the modifications of the
examples given by Narita in [11].

Example 1. Suppose that the functions f,, h,, ¢=1, 2), F, H involved in
equation (1.1) satisfy the hypothesis (A) and the following conditions

SUpl{lfi(t) S, x)’2+lht(l‘y S, x)lz}écl(s)) fZSEO,
A

and
If:@, s, D)2+ 1h(t, s, x)|PZCols)1+ | x %), (0=1),

for t=s=0 and |x|=1 where C, and C, are nonnegative, continuous functions
defined on [0, oo), and

]Stllgl{lF(t, x, ¥, WP H{E, x, p, W] =C0), for 1=0,

and
|F(t, x, y, w|*+|H{, x, v, w)|PSC,0) 1+ x |24+ y]2|ul?),

for t=0 and |x|=1 where C; and C, are nonnegative, continuous functions
defined on [0, c0). By taking a;(1)=C,@®)+Cy(t), 1=1, 2, a;(t)=C;#)+C.()=1,
Biw)=1+v® for 0<0<1, B;(v)=2 for §<0, i=1, 2, 3 it is easy to verify that the
conditions (2.9)-(2.11) of Theorem 1 are satisfied.
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As observed in McKean [9, p. 66], the one dimensional stochastic differential

equation
dX()=b(X@))dt+dW ()

with b(x)=|x|" near large |x|, the explosion time is almost surely infinite or
finite according as y=1 or not.

Example 2. Let c@t)=(t—1,)"% a(x)=1and f;{, s, x), h(t, s, x), F(t, x, ¥, u)
and H(t, x, y, u)=(¢—t,)"?+y+u) satisfy the assumption (A) and suppose for
=1, 2,

sup {1fit, s, P+ 1hit, s, O} =K,  for all 12520,
x|

and
[fat, s, x) 124+ 1hi(t, s, )P K1+ x]7)

for all t=s=0 and |x|=1 with some constant K>0 and y<1, and

sup {|F(t, x, y, w|*+1H(, x, y, w|*}=K,  for all (=0,

txlis1

and
[P, x, y, w*+HE x, v, WP SKA+ x4y [°+ul?),

for all =0 and |x|=1 with constant K>0 and y<1. In Example 1 we have
observed that the explosion time of the solution x(¢, f,, x,) of (1.1) with f,, A,,
i=1, 2, F and H as above is infinite with probability one. Taking a,(t)=K, K=
1,i=1, 2, 3,

B)=14v",  (0=r<D),
4.1

B:i(v)=2, (r<0,

i=1, 2, 3, it is easy to verify that the functions f,(t, s, x), h;(t, s, x), (=1, 2),
F(t, x, v, u) satisfy the conditions (2.9) and (3.5) and assumptions (3.4), (3.6)-
(3.7) of the Lemma 3. Thus Lemma 3 implies

sup E(|x(v, ta, x0)| )= Ny~ Ny(t —12)°
tosvst 8

for all t[0, o) and x,=R where N, and N, are certain positive constants.
Also we observe that

. 1 ¢ . vz
151590—'%(&01513—7:“ ds) =1,
r (t+1) -
We choose N large enough such that 1\/>max{2t, —2—} Then it is easy

to observe that

1S BINZH )= o (N2H ) S s (N2E, 1,20,

242
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and

B(N2¥)= 2(N2” (N2F-1yt for %£=0.

2v/ )= 2\/ 2
Further we notice that if B;(v)=14v""%(0=r<1) then B,(v)=2v"* for v=1. Now
from the definition of b,(N) in Theorem 2 and definition of B;(v) given in (4.1),
for 7=1, 2, 3 we observe that

2 k+1 . 2 k1 /2
by § BBUNE) _ 5 ZLBNZONT

= B(N2Y) T B(N2%)

5 2[1/2+/ 2 (N2FH)T7
k=0 1/24/2 (N2%-)

IA

1 \r-1 i
—93(r+1) - 7 -4(1-7) -4U1-1k
2 () A 22
and if B,(v)=2, then

2
b(N)= Eo 1/24/ 2 (N2F—t)t

Thus the conditions (3.18) hold. Now an application of Theorem 2 yields

<49 N- 42(2k fo ) '

x(t: tO) xO) B

1/2/2 (1)

Acknowledgement. The authors express their sincer thanks to the referee
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—>0 in probability.
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