A REMARK ON ALGEBRAIC GROUPS ATTACHED TO HODGE-TATE MODULES

By Shuji Yamagata

Let K be a local field of characteristic 0 with the algebraically closed residue field of characteristic $p>0$. We consider a semi-simple Hodge-Tate module V over K with $V_{\boldsymbol{C}}=\boldsymbol{C} \otimes_{\boldsymbol{a}_{p}} V=V_{\boldsymbol{C}}(0) \bigoplus V_{\boldsymbol{C}}(1), n_{0}=\operatorname{dim} V_{\boldsymbol{C}}(0) \geqq 1$ and $n_{1}=\operatorname{dim} V_{\boldsymbol{C}}(1) \geqq 1$. Let H_{V} be the algebraic group attached to $V, H_{V}{ }^{\circ}$ be the neutral component of H_{V} and g_{V} be their Lie algebra.

In [5] Serre has proved that $H_{V}=\boldsymbol{G} \boldsymbol{L}_{V}$ if n_{0} and n_{1} are relatively prime and if V is an absolutely simple \mathfrak{g}_{V}-module. He also remarked the possibility of determination of the structure of $H_{V}{ }^{\circ}$ for other cases. For example, in [6] he has proved that all the irreducible components of the root system of $H_{V}{ }^{\circ}$ are of type $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D and furthermore are of type A if V is irreducible of odd dimension.

In this paper we prove that all the irreducible components of the root system of $H_{V}{ }^{\circ}$ are of type A if $n_{0} \neq n_{1}$ and if V is an absolutely simple \mathfrak{g}_{V}-module.

§ 1. Irreducible components of the root system.

In this section we use the following notations (cf. [6], §3).
$\boldsymbol{Q}=$ the field of rational numbers.
$E=$ a field of characteristic 0 .
$\boldsymbol{G}_{m}=$ the one-dimensional multiplicative algebraic group over E.
$M=$ a connected reductive algebraic group defined over E.
$E^{\prime}=$ a finite Galois extension of E over which M splits.
$\Gamma=$ the Galois group of E^{\prime} / E.
$C=$ an algebraically closed field containing E^{\prime}.
$T=\mathrm{a}$ splitting maximal torus of $M_{/ E^{\prime}}$, where $M_{/ E^{\prime}}$ denotes the scalar extension to E^{\prime} of M.
$X=$ the character group of T.
$Y=$ the group of the one-parameter subgroups of T.
$X_{\boldsymbol{Q}}=\boldsymbol{Q} \otimes X$.
$Y_{\boldsymbol{Q}}=\boldsymbol{Q} \otimes Y$.
$\langle x, y\rangle\left(x \in X_{\boldsymbol{Q}}, y \in Y_{\boldsymbol{Q}}\right)=$ the canonical bilinear form on $X_{\boldsymbol{Q}} \times Y_{\boldsymbol{Q}}$.
$R=$ the root system of $M_{/ E^{\prime}}$ relative to T.

[^0]$\left(R_{2}\right)_{i \in I}=$ the irreducible components of R.
$R^{\vee}=$ the dual root system of R.
$R_{v}{ }^{\vee}=$ the dual root system of R_{v}.
$W=W(R)=$ the Weyl group of R.
$W\left(R_{r}\right)=$ the Weyl group of R_{r}.
$Y_{\boldsymbol{Q}}^{+}=\left\{y \in Y_{Q} \mid\langle\alpha, y\rangle \geqq 0\right.$ for all $\left.\alpha \in R\right\}$.
$Y^{+}=Y \cap Y_{\boldsymbol{\phi}}^{+}$.
$X_{2}=$ the subspace of X_{Q} generated by R_{2}.
$Y_{\imath}=$ the subspace of Y_{Q} generated by $R_{2}{ }^{\vee}$.
For $x \in X_{Q}$ and $y \in Y_{Q}$,
$x_{2}=$ the component of x in X_{2}.
$y_{2}=$ the component of y in Y_{2}.
$h_{M}=$ a one-parameter subgroup of $M_{\text {IC }}$ defined over C.
$V=$ a linear representation of M over E of finite dimension.
$\Omega(V)=$ the weights of V.
$\Omega^{+}(V)=$ the highest weights of the irreducible components of $V_{E^{\prime}}=E^{\prime} \otimes_{E} V$.
We assume the followings:
(i) V is a faithful representation of M over E;
(ii) any normal algebraic subgroup N of M, defined over E, such that $N_{I C}$ contains $\operatorname{Im}\left(h_{M}\right)$ is equal to M;
(*) (iii) the action of $\boldsymbol{G}_{\boldsymbol{m} / C}$ over $V_{C}=C \bigotimes_{E} V$ defined by $h_{\boldsymbol{M}}$ has exactly two weights a and b with $a<b$.
(We identify the character group of \boldsymbol{G}_{m} with the rational integers \boldsymbol{Z} in the natural way.)
We put $r=b-a$.
The following Lemmas 1, 2, 3 and 4, except for Lemma 2(i), follow as the correspondings of [6], § 3 where $a=0$ and $b=1$ (cf. [2], § 3 Proof of Lemma 3.3).

Lemma 1. There exists uniquely $h_{o} \in Y^{+}$such that $h_{\boldsymbol{M}}$ and h_{o}, considered as homomorphisms of $\boldsymbol{G}_{m / C}$ into $M_{l C}$, are conjugate each other by an inner automorphism of $M_{I C}$ and we have

$$
\{\langle\omega, h\rangle \mid \omega \in \Omega(V)\}=\{a, b\} \text { for all } h \in \Gamma W h_{\mathbf{0}} .
$$

Lemma 2. If $\alpha \in R, \alpha^{\vee} \in R^{\vee}, \omega \in \Omega(V)$ and $h \in \Gamma W h_{o}$, we have
(i) $\langle\alpha, h\rangle=0, r$ or $-r$, and so h / r is a weight of R^{\vee}.
(ii) $\left\langle\omega, \alpha^{\vee}\right\rangle=0,1$ or -1 .

Lemma 3. Let $\omega \in \Omega^{+}(V)$ and $h \in \Gamma h_{0}$. Then there is at most one element $i \in I$ such that $\omega_{i} \neq 0$ and $h_{i} \neq 0$.

Lemma 4. For all $i \in I$, there exist $\omega \in \Omega^{+}(V)$ and $h \in(1 / r) \Gamma h_{o}$ such that $\omega_{i} \neq 0$ and $h_{i} \neq 0$. All the couples $\left(\omega_{i}, h_{2}\right)$, thus obtained, are minimal couples of height 1 . (Note. A minimal couple means "un couple minuscule".)

Proof of Lemmas 1, 2, 3 and 4. Lemma 1 follows as [6], Lemma 2 and its remark; Lemma 2 (ii) follows as [6], Lemma 4 by part (i); Lemma 3 follows as [6], Lemma 6; Lemma 4 follows as [6], Proposition 7; for Lemma 2(i) we apply [6], "Variante" of Lemma 4.

Proposition. If M is semi-simple and $a+b \neq 0$, then all the irreducible components R_{2} of the root system R are of type A.

Proof. By Lemma 4, all the R_{\imath} are of type A, B, C or D (cf. [6], Corollary 1 of Proposition 7). We assume that for some $i \in I, R_{\imath}$ is of type B, C or D . From Lemma 4, there exist $\omega \in \Omega^{+}(V)$ and $h \in(1 / r) \Gamma h_{o}$ such that $\omega_{i} \neq 0$ and $h_{i} \neq 0$ and $\left(\omega_{i}, h_{i}\right)$ is a minimal couple of height 1 . By applying $\S 3$ below to the scalar extension of the root system R_{\imath} and the bilinear form $\left\langle x_{i}, y_{i}\right\rangle\left(x_{i} \in X_{\imath}, y_{i} \in Y_{i}\right)$ by which Y_{\imath} is identified with the dual of X_{\imath}, we have

$$
\left\{\left\langle w \omega_{i}, h_{\imath}\right\rangle \mid w \in W(R)\right\}=\left\{\left\langle w \omega_{i}, h_{\imath}\right\rangle \mid w \in W\left(R_{\imath}\right)\right\}=\{ \pm(1 / 2)\} .
$$

By Lemma $3, \omega_{j}=0$ or $h_{j}=0$ for all $\jmath \in I$ such that $\jmath \neq i$. In either case, $\left\langle w \omega_{\jmath}, h_{\jmath}\right\rangle=0$ for all $\jmath \in I$ such that $\jmath \neq i$. And so,

$$
\langle w \omega, h\rangle=\sum_{j \in I}\left\langle w \omega_{j}, h_{\rho}\right\rangle=\left\langle w \omega_{i}, h_{\imath}\right\rangle \quad \text { for all } \quad w \in W(R) .
$$

Thus we have

$$
\left\{\left\langle w \omega, h^{\prime}\right\rangle \mid w \in W(R)\right\}=\{ \pm(r / 2)\}, \quad \text { where } \quad h^{\prime}=r h \in \Gamma h_{0} .
$$

On the other hand, by lemma 1 , we have

$$
\left\{\left\langle w \omega, h^{\prime}\right\rangle \mid w \in W(R)\right\} \subset\{a, b\} .
$$

Hence we have $a=-(r / 2)$ and $b=r / 2$, and so $a+b=0$. This gives a contradiction.

§ 2. Hodge-Tate modules with weights 0 and 1.

In this section we use the following notations.
$\boldsymbol{Q}_{p}=$ the field of p-adic numbers.
$\boldsymbol{Z}_{p}=$ the ring of p-adic integers.
$\boldsymbol{Z}_{p}{ }^{\times}=$the group of units of \boldsymbol{Z}_{p}.
$K=$ a local field of characteristic 0 with the algebraically closed residue field of characteristic $p>0$. (K is an extension of \boldsymbol{Q}_{p}.)
$\bar{K}=$ an algebraic closure of K.
$\boldsymbol{C}=$ the completion of \bar{K}.
$G=$ the Galois group of \bar{K} / K.
$\chi=$ a character of G with infinite image in $\boldsymbol{Z}_{p}{ }^{*}$.
$\boldsymbol{G}_{m}=$ the one-dimensional multiplicative algebraic group over \boldsymbol{Q}_{p}.
(Compare with \boldsymbol{G}_{m} in § 1.)

A Galois module V over K is a \boldsymbol{Q}_{p}-space of finite dimension on which G operates continuously. Let ρ_{V} be the homomorphism of G into the vector space automorphisms Aut (V) of V which gives the action of G on V. We put $G_{V}=$ $\operatorname{Im}\left(\rho_{V}\right)$.

The action of G on V is extended to the \boldsymbol{C}-space $V_{\boldsymbol{c}}=\boldsymbol{C} \bigotimes_{\boldsymbol{Q}_{p}} V$ by the formula

$$
s\left(\sum c_{i} \otimes x_{i}\right)=\Sigma s\left(c_{\imath}\right) \otimes \rho_{V}(s)\left(x_{2}\right) \quad\left(s \in G, c_{i} \in \boldsymbol{C}, x_{i} \in V\right)
$$

Let g_{V} be the Lie algebra of G_{V} (cf. Lemma 6(i) below).
Let $\boldsymbol{G} \boldsymbol{L}_{V}$ be the algebraic group over \boldsymbol{Q}_{p} of the automorphisms of the vector space V. Let H_{V} be the smallest algebraic subgroup H of $\boldsymbol{G} \boldsymbol{L}_{V}$ defined over \boldsymbol{Q}_{p} such that $H\left(\boldsymbol{Q}_{p}\right)$ contains $G_{V} . H_{V}{ }^{\circ}$ denotes the neutral component of H_{V}.

In [4], Theorem 4, Sen defined the canonical operator $\varphi_{V, \chi}$, with respect to χ, of V_{c} with the above action of G. (Sen used the notation φ.)

For the canonical operator $\varphi_{V, \chi}$, , Sen proved
Lemma 5. ([4], Theorem 11) g_{V} is the smallest of the \boldsymbol{Q}_{p}-subspaces S of $\operatorname{End}_{Q_{p}}(V)$ such that $\varphi_{V, \chi} \in \boldsymbol{C} \otimes_{Q_{p}} S$.

In the rest of this section, we assume
${ }^{(* *)}$ the canonical operator $\varphi_{V, \chi}$ of V_{c} with respect to χ is semi-simple and its eigenvalues belong to \boldsymbol{Z}.

We put

$$
V_{\boldsymbol{c}, \chi}(i)=\left\{x \in V_{\boldsymbol{c}} \mid \varphi_{V, x}(x)=i x\right\} \quad \text { for all } \quad \imath \in \boldsymbol{Z} .
$$

By the assumption $\left({ }^{* *}\right)$, we have $V_{c}=\bigoplus_{i \in \mathcal{Z}} V_{c, \chi}(i)$. For any $c \in \boldsymbol{G}_{m}(\boldsymbol{C})$, we associate the automorphism $h_{V, \chi}(c)$ defined by the formula

$$
h_{V, \chi}(c)(x)=c^{2} x \quad \text { for all } i \in \boldsymbol{Z} \text { and all } x \in V_{c, \chi}(i) .
$$

Thus we obtain an algebraic group homomorphism $h_{V, z}$ over \boldsymbol{C} of $\boldsymbol{G}_{m / C}$ into $\boldsymbol{G} \boldsymbol{L}_{V / C}$.

Lemma 6. Let V be as above. Then.
(i) g_{V} is the Lie algebra of H_{V}.
(ii) $H_{V}{ }^{\circ}$ is the smallest algebraic subgroup of $\boldsymbol{G} \boldsymbol{L}_{V}$ defined over \boldsymbol{Q}_{p} which, after scalar extension to \boldsymbol{C}, contains $\operatorname{Im}\left(h_{V, z}\right)$.

Proof. (i) follows as [3], Theorem 2 (cf. [6], Theorem 1'). As [6], Theorem 2, (ii) follows from (i) and Lemma 5.

A Galois module V is a Hodge-Tate module if and only if V satisfies the above assumption (**) with respect to the cyclotomic character χ_{0}, and then $V_{C, \chi_{o}}(i)$ in the above sense coincides with $V_{\boldsymbol{C}}(i)$ in [6], 1.2 (cf. [4], Corollary of Theorem 6). If $V_{\boldsymbol{c}}(i) \neq 0$, we call \imath a weight of the Hodge-Tate module V.

Theorem. Let V be a Galois module satisfying the assumption (${ }^{* *)}$ above and furthermore $V_{C}=V_{c, x}\left(i_{1}\right) \oplus V_{c, x}\left(i_{2}\right)$ for some $i_{1}, i_{2} \in \boldsymbol{Z}$ with $i_{1}<i_{2}$. We assume that V is an absolutely simple g_{v}-module and that the dimensions n_{1} and n_{2} of $V_{C, x}\left(i_{1}\right)$ and $V_{c, x}\left(i_{2}\right)$ are different positive integers. Then all the irreducible components of the root system of $H_{V}{ }^{\circ}$ are of type A.

Proof. (1) By semi-simplicity of $V, H_{V}{ }^{\circ}$ is reductive. Let T (resp. S) be the neutral component of the center (resp. the commutator group) of $H_{V}{ }^{\circ}$. Then T and S are defined over $\boldsymbol{Q}_{p}, T \cap S$ is zero-dimensional and we have $H_{V}{ }^{\circ}=T \cdot S$. Also by Lemma 6(i) and absolute simplicity of V, T is reduced to $\{1\}$ or equal to the group of homotheties which is identified with $\boldsymbol{G}_{\boldsymbol{m}}$. In either case $S \cap \boldsymbol{G}_{m}$ is zero-dimensional and $S \cdot \boldsymbol{G}_{m}=H_{V}{ }^{\circ} \cdot \boldsymbol{G}_{m}$. Hence we have $\operatorname{dim} S=\operatorname{dim} H_{V}{ }^{0} \cdot \boldsymbol{G}_{m}-1$.
(2) We put

$$
n=n_{1}+n_{2}(=\operatorname{dim} V), \quad m=n_{1} i_{1}+n_{2} i_{2} .
$$

Here we have

$$
n i_{1}-m \neq n i_{2}-m, \quad\left(n i_{1}-m\right)+\left(n i_{2}-m\right) \neq 0
$$

and

$$
n_{1}\left(n i_{1}-m\right)+n_{2}\left(n i_{2}-m\right)=0
$$

We remark that it is sufficient to prove this theorem for a finite extension of K. After replacing K by a finite extension of K, if necessarily, we have a character χ^{\prime} with infinite image in $\boldsymbol{Z}_{p}{ }^{\times}$such that $\left(\chi^{\prime}\right)^{n}=\chi$ and $\operatorname{Ker} \chi^{\prime}=\operatorname{Ker} \chi$. For the canonical operators $\varphi_{V, \chi^{\prime}}$ and $\varphi_{V, \chi}$ of V_{C} with respect to χ^{\prime} and χ, we have

$$
n \varphi_{V, x}=\varphi_{V, x^{\prime}}, \quad V_{c, x^{\prime}}\left(n i_{1}\right)=V_{c, x}\left(i_{1}\right) \quad \text { and } \quad V_{c, x^{\prime}}\left(n i_{2}\right)=V_{c, x}\left(i_{2}\right)
$$

We put

$$
\rho^{\prime}(s)(x)=\left(\chi^{\prime}\right)^{-m}(s) \rho_{V}(s)(x) \text { for all } s \in G \text { and all } x \in V .
$$

We obtain a homomorphism ρ^{\prime} of G into $\operatorname{Aut}(V)$. We denote V^{\prime} the \boldsymbol{Q}_{p}-space V with the action given by ρ^{\prime}. Let $\varphi_{V^{\prime}, x^{\prime}}$ be the canonical operator of $V^{\prime}{ }_{c}$ with respect to χ^{\prime}. Then we have

$$
\varphi_{V^{\prime}, x^{\prime}}=\varphi_{V, x^{\prime}}-m \cdot i d ., \quad V_{c, x^{\prime}}^{\prime}\left(n i_{1}-m\right)=V_{c, r^{\prime}}\left(n i_{1}\right)
$$

and

$$
V^{\prime}{ }_{c, z^{\prime}}\left(n i_{2}-m\right)=V_{c, x^{\prime}}\left(n i_{2}\right) .
$$

(id. is the identity on the \boldsymbol{C}-space $V_{c}^{\prime}=V_{c}$.)
Especially $\varphi_{V^{\prime}, \chi^{\prime}}$ satisfies the assumption (**) above with respect to χ^{\prime}.
(3) From Lemma 6(ii) and (2), $H_{V}{ }^{\circ}$ is contained in the unimodular group $\boldsymbol{S} \boldsymbol{L}_{V^{\prime}}=\boldsymbol{S} \boldsymbol{L}_{V} . \quad$ By the definitions of $H_{V^{\prime}}$ and $H_{V}, H_{V^{\prime}} \cdot \boldsymbol{G}_{m}$ and $H_{V} \cdot \boldsymbol{G}_{m}$ are both the smallest algebraic subgroup L of $\boldsymbol{G} \boldsymbol{L}_{V^{\prime}}=\boldsymbol{G} \boldsymbol{L}_{V}$ defined over \boldsymbol{Q}_{p} such that $L\left(\boldsymbol{Q}_{p}\right)$ contains $\operatorname{Im}\left(\rho^{\prime}\right) \cdot \boldsymbol{G}_{m}\left(\boldsymbol{Q}_{p}\right)=\operatorname{Im}\left(\rho_{V}\right) \cdot \boldsymbol{G}_{m}\left(\boldsymbol{Q}_{p}\right)$. Hence $H_{V^{\prime}} \cdot \boldsymbol{G}_{m}=H_{V} \cdot \boldsymbol{G}_{m}$ and the neutral component $\left(H_{V^{\prime}} \cdot \boldsymbol{G}_{m}\right)^{0}=H_{V^{\prime}}{ }^{0} \cdot \boldsymbol{G}_{m}$ of $H_{V^{\prime}} \cdot \boldsymbol{G}_{m}$ coincides with the neutral component
$\left(H_{V} \cdot \boldsymbol{G}_{m}\right)^{0}=H_{V}{ }^{0} \cdot \boldsymbol{G}_{m}$ of $H_{V} \cdot \boldsymbol{G}_{m}$. Thus we have

$$
\begin{aligned}
S & =\left[H_{V}{ }^{0}, H_{V}{ }^{o}\right]=\left[H_{V} 0 \cdot \boldsymbol{G}_{m}, H_{V}{ }^{0} \cdot \boldsymbol{G}_{m}\right]=\left[H_{V^{\prime}} 0 \cdot \boldsymbol{G}_{m}, H_{V^{\prime}} \cdot \boldsymbol{G}_{m}\right] \\
& =\left[H_{V^{\prime}}, H_{V^{\prime}}{ }^{\circ}\right] \subset H_{V^{\prime}} .0 .
\end{aligned}
$$

Because $H_{V^{\prime}}{ }^{\circ} \cap \boldsymbol{G}_{m}$ is zero-dimensional, we have

$$
\operatorname{dim} H_{V^{0}}, 0=\operatorname{dim} H_{V^{\prime}}{ }^{0} \cdot \boldsymbol{G}_{m}-1=\operatorname{dim} H_{V}{ }^{0} \cdot \boldsymbol{G}_{m}-1=\operatorname{dim} S
$$

Since $H_{V}{ }^{\circ}$ is connected, we have $H_{V}{ }^{\circ}=S$ and so $H_{V}{ }^{\circ}$ is semi-simple.
(4) If we put $E=\boldsymbol{Q}_{p}, \quad C=\boldsymbol{C}, \quad M=H_{V^{\prime}}{ }^{\circ}, \quad V=V^{\prime}, \quad h_{M}=h_{V^{\prime}, x^{\prime}}, \quad a=n l_{1}-m$ and $b=n i_{2}-m$, the assumptions (*) of $\S 1$ are satisfied: (i) is evident, (ii) results from Lemma 6(ii), and (iii) is obtained in (2). Also the hypotheses of Proposition of $\S 1$ are satisfied: M is semi-simple by (3), and $a+b \neq 0$ by (2). Hence the irreducible components of the root system of $H_{V}{ }^{\circ}=S$ (by (3)) are of type A, so all the irreducible components of the root system of $H_{V}{ }^{\circ}$ are of type A.

Remark. In the above proof, absolute simplicity, not semi-simplicity, is needed only to prove $T=\{1\}$ or the group of homotheties (cf. [6], Remark of Proposition 8).

The following Corollary is a special case of the above Theorem.
Corollary. Let V be a Hodge-Tate module with werghts 0 and 1. Assume that V is an absolutely simple g_{V}-module and that the dimensions of $V_{C}(0)$ and $V_{c}(1)$ are different positive integers. Then all the irreducible components of the root system of $H_{V}{ }^{\circ}$ are of type A.

§ 3. Tables of minimal couples of height 1.

In this section we use the same notations as in [1], Ch. VI Planches.
For each R, in the finite dimensional real vector space V, of the following reduced irreducible root systems, we identify the dual space V^{*} of V with V by the positive definite symmetric bilinear form $(x \mid y)$ on V, which is invariant under the Weyl group $W(R)$ of R. By this identification, we have

$$
\langle x, y\rangle=(x \mid y) \text { for all } x \in V \text { and all } y \in V^{*},
$$

where $\langle x, y\rangle$ is the canonical bilinear form on $V \times V^{*}$, and

$$
\alpha^{\vee}=2 \alpha /(\alpha \mid \alpha) \quad \text { for all } \quad \alpha \in R .
$$

Let $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be the basis of R, numbered as in [1], Ch. VI Planches. Let $\left\{\omega_{1}, \cdots, \omega_{l}\right\}$ be the fundamental weights of R corresponding to $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ and $\left\{\omega_{1} \vee, \cdots, \omega_{l}{ }^{\vee}\right\}$ be the fundamental weights of the dual R^{\vee} of R corresponding to $\left\{\alpha_{1}{ }^{\vee}, \cdots, \alpha_{l}{ }^{\vee}\right\}$.

By [1], Ch. VI Planches and [6], Annex, we have:
minimal couples of height 1: ($\left.\omega_{1}, \omega_{i} \vee\right),\left(\omega_{l}, \omega_{i} \vee\right),\left(\omega_{i}, \omega_{1} \vee\right)$ and ($\left.\omega_{i}, \omega_{l}{ }^{\vee}\right)$ with $1 \leqq i \leqq l$.
$\omega_{i}{ }^{\vee}=\omega_{2}=\varepsilon_{1}+\cdots+\varepsilon_{i}-\frac{i}{l+1} \sum_{j=1}^{l+1} \varepsilon_{j}$.
$W(R) \omega_{i}=\left\{\left.\varepsilon_{\sigma(1)}+\cdots+\varepsilon_{\sigma(i)}-\frac{i}{l+1} \sum_{j=1}^{l+1} \varepsilon_{j} \right\rvert\, \sigma \in \Xi_{l+1}\right\}$,
where \widetilde{S}_{l+1} is the symmetric group of degree $l+1$.
$\left\langle W(R) \omega_{1}, \omega_{i}{ }^{\vee}\right\rangle=\left(W(R) \omega_{1} \mid \omega_{2}\right)=\left\{-\frac{i}{l+1}, \frac{l+1-i}{l+1}\right\}$.
$\left\langle W(R) \omega_{l}, \omega_{i} \vee\right\rangle=\left(W(R) \omega_{l} \mid \omega_{i}\right)=\left\{\frac{i}{l+1}, \frac{i-l-1}{l+1}\right\}$.
$\left\langle W(R) \omega_{i}, \omega_{1} \vee\right\rangle=\left(W(R) \omega_{i} \mid \omega_{1}\right)=\left\{-\frac{i}{l+1}, \frac{l+1-i}{l+1}\right\}$.
$\left\langle W(R) \omega_{i}, \omega_{l}{ }^{\vee}\right\rangle=\left(W(R) \omega_{i} \mid \omega_{l}\right)=\left\{\frac{i}{l+1}, \frac{i-l-1}{l+1}\right\}$.
Type $B_{l}(l \geqq 2)$
minimal couple of height 1: ($\left.\omega_{l}, \omega_{1}{ }^{\vee}\right)$.
$\omega_{l}=\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{l}\right) / 2$.
$\omega_{1}{ }^{\vee}=\omega_{1}=\varepsilon_{1}$.
$W(R) \omega_{l}=\left\{\left(\pm \varepsilon_{1} \pm \varepsilon_{2} \pm \cdots \pm \varepsilon_{l}\right) / 2\right\}$.
$\left\langle W(R) \omega_{l}, \omega_{1} \vee\right\rangle=\left(W(R) \omega_{l} \mid \omega_{1}\right)=\{ \pm(1 / 2)\}$.
Type $C_{l}(l \geqq 2)$
minimal couple of height $1:\left(\omega_{1}, \omega_{l} \vee\right)$.
$\omega_{1}=\varepsilon_{1}$.
$\omega_{l}{ }^{\vee}=\left(\omega_{l}\right) / 2=\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{l}\right) / 2$.
$W(R) \omega_{1}=\left\{ \pm \varepsilon_{1}, \pm \varepsilon_{2}, \cdots, \pm \varepsilon_{l}\right\}$.
$\left\langle W(R) \omega_{1}, \omega_{l}{ }^{\vee}\right\rangle=\left(W(R) \omega_{1} \mid\left(\omega_{l}\right) / 2\right)=\{ \pm(1 / 2)\}$.
Type $D_{l}(l \geqq 4)$
minimal couples of height 1
for $l=4$: $\left(\omega_{i}, \omega_{j}{ }^{\vee}\right)$ with $i, j \in\{1,3,4\}$ and $i \neq j$
for $l \geqq 5$: ($\left.\omega_{1}, \omega_{l-1}{ }^{\vee}\right),\left(\omega_{1}, \omega_{l}^{\vee}\right),\left(\omega_{l-1}, \omega_{1}^{\vee}\right)$ and $\left(\omega_{l}, \omega_{1}^{\vee}\right)$.
$\omega_{1}{ }^{\vee}=\omega_{1}=\varepsilon_{1}$.
$\omega_{l-1}{ }^{\vee}=\omega_{l-1}=\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{l-1}-\varepsilon_{l}\right) / 2$.
$\omega_{l}{ }^{\vee}=\omega_{l}=\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{l-1}+\varepsilon_{l}\right) / 2$.
$W(R) \omega_{1}=\left\{ \pm \varepsilon_{1}, \pm \varepsilon_{2}, \cdots, \pm \varepsilon_{l}\right\}$.
$W(R) \omega_{l-1}=\left\{\left(\xi_{1} \varepsilon_{1}+\xi_{2} \varepsilon_{2}+\cdots+\xi_{l} \varepsilon_{l}\right) / 2 \mid \xi_{\imath}= \pm 1, \prod_{\imath} \xi_{\imath}=-1\right\}$.
$W(R) \omega_{l}=\left\{\left(\xi_{1} \varepsilon_{1}+\xi_{2} \varepsilon_{2}+\cdots+\xi_{l} \varepsilon_{l}\right) / 2 \mid \xi_{2}= \pm 1, \prod_{2} \xi_{2}=1\right\}$.
$\left\langle W(R) \omega_{i}, \omega_{j}{ }^{\vee}\right\rangle=\left(W(R) \omega_{i} \mid \omega_{j}\right)=\{ \pm(1 / 2)\}$ for all (i, j) as above.

References

[1] N. Bourbaki, Éléments de Mathématique, Groupes et algèbres de Lie, chapitres IV, V et VI, Hermann, 1968.
[2] F. Hazama, Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 31 (1984), 487-520.
[3] S. Sen, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. 97 (1973), 160-170.
[4] S. SEN, Continuous cohomology and p-adic Galois representations, Inventiones math. 62 (1980), 89-116.
[5] J-P. Serre, Sur les groupes de Galois attachés aux groupes p-divisibles, Proc. Conf. Local Fields (T. A. Springer edit.), Springer-Verlag, Heidelberg, 1967, 118131.
[6] J-P. Serre, Groupes algébriques associés aux modules de Hodge-Tate, Astérisques 65, Soc. Math. de France (1979), 155-188.

Department of Mathematical Science
College of Science and Engineering
Tokyo Denki University
Hatoyama-machi, Hiki-gun
Saitama-ken, Japan

[^0]: Received November 30, 1984

