A REMARK ON ALGEBRAIC GROUPS ATTACHED TO HODGE-TATE MODULES

By Shuji Yamagata

Let K be a local field of characteristic 0 with the algebraically closed residue field of characteristic p>0. We consider a semi-simple Hodge-Tate module V over K with $V_c = C \bigotimes_{q_p} V = V_c(0) \oplus V_c(1)$, $n_0 = \dim V_c(0) \ge 1$ and $n_1 = \dim V_c(1) \ge 1$. Let H_V be the algebraic group attached to V, H_V^o be the neutral component of H_V and g_V be their Lie algebra.

In [5] Serre has proved that $H_{\nu}=GL_{\nu}$ if n_0 and n_1 are relatively prime and if V is an absolutely simple \mathfrak{g}_{ν} -module. He also remarked the possibility of determination of the structure of H_{ν}^{0} for other cases. For example, in [6] he has proved that all the irreducible components of the root system of H_{ν}^{0} are of type A, B, C or D and furthermore are of type A if V is irreducible of odd dimension.

In this paper we prove that all the irreducible components of the root system of H_V^o are of type A if $n_0 \neq n_1$ and if V is an absolutely simple g_V -module.

§1. Irreducible components of the root system.

In this section we use the following notations (cf. [6], § 3).

Q = the field of rational numbers.

E=a field of characteristic 0.

 G_m =the one-dimensional multiplicative algebraic group over E.

M=a connected reductive algebraic group defined over E.

E'=a finite Galois extension of E over which M splits.

 Γ =the Galois group of E'/E.

C=an algebraically closed field containing E'.

T=a splitting maximal torus of $M_{/E'}$, where $M_{/E'}$ denotes the scalar extension to E' of M.

X = the character group of T.

Y= the group of the one-parameter subgroups of T.

 $X_{\boldsymbol{q}} = \boldsymbol{Q} \otimes X.$

$$Y_{\boldsymbol{\rho}} = \boldsymbol{Q} \otimes Y.$$

 $\langle x, y \rangle (x \in X_q, y \in Y_q) =$ the canonical bilinear form on $X_q \times Y_q$. R = the root system of $M_{IE'}$ relative to T.

Received November 30, 1984

 $(R_i)_{i \in I}$ = the irreducible components of R.

 R^{\vee} =the dual root system of R.

 $R_i \lor =$ the dual root system of R_i .

W=W(R)=the Weyl group of R.

 $W(R_i)$ =the Weyl group of R_i .

 $Y_{\boldsymbol{\varrho}}^{+} = \{ y \in Y_{\boldsymbol{\varrho}} | \langle \alpha, y \rangle \geq 0 \text{ for all } \alpha \in R \}.$

 $Y^+ = Y \cap Y^+_{\boldsymbol{Q}}.$

 X_i =the subspace of X_q generated by R_i .

- Y_i =the subspace of Y_q generated by R_i^{\vee} .
- For $x \in X_Q$ and $y \in Y_Q$,

 x_i =the component of x in X_i .

 y_i =the component of y in Y_i .

 $h_M = a$ one-parameter subgroup of M_{IC} defined over C.

V=a linear representation of M over E of finite dimension.

 $\Omega(V)$ =the weights of V.

 $\mathcal{Q}^+(V)$ = the highest weights of the irreducible components of $V_{E'} = E' \otimes_E V$. We assume the followings:

- (i) V is a faithful representation of M over E;
 - (ii) any normal algebraic subgroup N of M, defined over E, such that N_{IC} contains $\text{Im}(h_M)$ is equal to M;
- (*) (iii) the action of $G_{m/C}$ over $V_C = C \bigotimes_E V$ defined by h_M has exactly two weights a and b with a < b.

(We identify the character group of G_m with the rational integers Z in the natural way.)

We put r=b-a.

The following Lemmas 1, 2, 3 and 4, except for Lemma 2(i), follow as the correspondings of [6], § 3 where a=0 and b=1 (cf. [2], § 3 Proof of Lemma 3.3).

LEMMA 1. There exists uniquely $h_o \in Y^+$ such that h_M and h_o , considered as homomorphisms of $G_{m/C}$ into M_{IC} , are conjugate each other by an inner automorphism of M_{IC} and we have

 $\{\langle \boldsymbol{\omega}, h \rangle | \boldsymbol{\omega} \in \mathcal{Q}(V)\} = \{a, b\} \text{ for all } h \in \Gamma W h_{\boldsymbol{o}}.$

LEMMA 2. If $\alpha \in R$, $\alpha^{\vee} \in R^{\vee}$, $\omega \in \Omega(V)$ and $h \in \Gamma Wh_o$, we have (i) $\langle \alpha, h \rangle = 0$, r or -r, and so h/r is a weight of R^{\vee} . (ii) $\langle \omega, \alpha^{\vee} \rangle = 0$, 1 or -1.

LEMMA 3. Let $\omega \in \Omega^+(V)$ and $h \in \Gamma h_0$. Then there is at most one element $i \in I$ such that $\omega_i \neq 0$ and $h_i \neq 0$.

LEMMA 4. For all $i \in I$, there exist $\omega \in \Omega^+(V)$ and $h \in (1/r)\Gamma h_0$ such that $\omega_i \neq 0$ and $h_i \neq 0$. All the couples (ω_i, h_i) , thus obtained, are minimal couples of height 1. (Note. A minimal couple means "un couple minuscule".)

SHUJI YAMAGATA

Proof of Lemmas 1, 2, 3 and 4. Lemma 1 follows as [6], Lemma 2 and its remark; Lemma 2(ii) follows as [6], Lemma 4 by part (i); Lemma 3 follows as [6], Lemma 6; Lemma 4 follows as [6], Proposition 7; for Lemma 2(i) we apply [6], "Variante" of Lemma 4.

PROPOSITION. If M is semi-simple and $a+b\neq 0$, then all the irreducible components R_i of the root system R are of type A.

Proof. By Lemma 4, all the R_i are of type A, B, C or D (cf. [6], Corollary 1 of Proposition 7). We assume that for some $i \in I$, R_i is of type B, C or D. From Lemma 4, there exist $\omega \in \Omega^+(V)$ and $h \in (1/r)\Gamma h_o$ such that $\omega_i \neq 0$ and $h_i \neq 0$ and (ω_i, h_i) is a minimal couple of height 1. By applying § 3 below to the scalar extension of the root system R_i and the bilinear form $\langle x_i, y_i \rangle$ $(x_i \in X_i, y_i \in Y_i)$ by which Y_i is identified with the dual of X_i , we have

$$\{\langle w\omega_i, h_i \rangle | w \in W(R)\} = \{\langle w\omega_i, h_i \rangle | w \in W(R_i)\} = \{\pm (1/2)\}.$$

By Lemma 3, $\omega_j=0$ or $h_j=0$ for all $j \in I$ such that $j \neq i$. In either case, $\langle w\omega_j, h_j \rangle = 0$ for all $j \in I$ such that $j \neq i$. And so,

$$\langle w\omega, h \rangle = \sum_{j \in I} \langle w\omega_j, h_j \rangle = \langle w\omega_i, h_i \rangle$$
 for all $w \in W(R)$.

Thus we have

 $\{\langle w\omega, h' \rangle | w \in W(R)\} = \{\pm (r/2)\}, \quad \text{where} \quad h' = rh \in \Gamma h_o.$

On the other hand, by lemma 1, we have

$$\{\langle w\omega, h' \rangle \mid w \in W(R)\} \subset \{a, b\}$$

Hence we have a = -(r/2) and b = r/2, and so a+b=0. This gives a contradiction.

$\S 2$. Hodge-Tate modules with weights 0 and 1.

In this section we use the following notations.

 Q_p =the field of *p*-adic numbers.

 Z_p =the ring of *p*-adic integers.

 Z_p^{\times} = the group of units of Z_p .

- K=a local field of characteristic 0 with the algebraically closed residue field of characteristic p>0. (K is an extension of Q_{p} .)
- \overline{K} =an algebraic closure of K.
- C = the completion of \overline{K} .

G = the Galois group of \overline{K}/K .

 $\chi = a$ character of G with infinite image in Z_p^{\times} .

 G_m =the one-dimensional multiplicative algebraic group over Q_p . (Compare with G_m in § 1.) A Galois module V over K is a Q_p -space of finite dimension on which G operates continuously. Let ρ_V be the homomorphism of G into the vector space automorphisms Aut(V) of V which gives the action of G on V. We put $G_V = \text{Im}(\rho_V)$.

The action of G on V is extended to the C-space $V_c = C \otimes_{q_n} V$ by the formula

$$s(\sum c_i \otimes x_i) = \sum s(c_i) \otimes \rho_V(s)(x_i) \qquad (s \in G, \ c_i \in C, \ x_i \in V).$$

Let \mathfrak{g}_V be the Lie algebra of G_V (cf. Lemma 6(i) below).

Let GL_{v} be the algebraic group over Q_{p} of the automorphisms of the vector space V. Let H_{v} be the smallest algebraic subgroup H of GL_{v} defined over Q_{p} such that $H(Q_{p})$ contains G_{v} . H_{v}^{o} denotes the neutral component of H_{v} .

In [4], Theorem 4, Sen defined the *canonical operator* $\varphi_{V,\chi}$, with respect to χ , of V_c with the above action of G. (Sen used the notation φ .)

For the canonical operator $\varphi_{V,\chi}$, Sen proved

LEMMA 5. ([4], Theorem 11) \mathfrak{g}_{V} is the smallest of the Q_{p} -subspaces S of $\operatorname{End}_{Q_{p}}(V)$ such that $\varphi_{V,Z} \in C \otimes_{Q_{p}} S$.

In the rest of this section, we assume

(**) the canonical operator $\varphi_{V,\chi}$ of V_c with respect to χ is semi-simple and its eigenvalues belong to Z.

We put

$$V_{c,\mathbf{x}}(i) = \{x \in V_c | \varphi_{\mathbf{v},\mathbf{x}}(x) = ix\}$$
 for all $i \in \mathbf{Z}$.

By the assumption (**), we have $V_C = \bigoplus_{i \in \mathbb{Z}} V_{C,\mathbb{Z}}(i)$. For any $c \in G_m(C)$, we associate the automorphism $h_{V,\mathbb{Z}}(c)$ defined by the formula

$$h_{V,\chi}(c)(x) = c^{i}x$$
 for all $i \in \mathbb{Z}$ and all $x \in V_{C,\chi}(i)$.

Thus we obtain an algebraic group homomorphism $h_{\nu,\chi}$ over C of $G_{m/C}$ into $GL_{\nu/C}$.

LEMMA 6. Let V be as above. Then \cdot

(i) \mathfrak{g}_{v} is the Lie algebra of H_{v} .

(ii) H_V° is the smallest algebraic subgroup of GL_V defined over Q_p which, after scalar extension to C, contains $\text{Im}(h_{V,Z})$.

Proof. (i) follows as [3], Theorem 2 (cf. [6], Theorem 1'). As [6], Theorem 2, (ii) follows from (i) and Lemma 5.

A Galois module V is a Hodge-Tate module if and only if V satisfies the above assumption (**) with respect to the cyclotomic character χ_o , and then $V_{c,\chi_o}(i)$ in the above sense coincides with $V_c(i)$ in [6], 1.2 (cf. [4], Corollary of Theorem 6). If $V_c(i) \neq 0$, we call *i* a weight of the Hodge-Tate module V.

SHUJI YAMAGATA

THEOREM. Let V be a Galois module satisfying the assumption (**) above and furthermore $V_{c}=V_{c,\chi}(i_{1})\oplus V_{c,\chi}(i_{2})$ for some $i_{1}, i_{2}\in \mathbb{Z}$ with $i_{1}< i_{2}$. We assume that V is an absolutely simple \mathfrak{g}_{V} -module and that the dimensions n_{1} and n_{2} of $V_{c,\chi}(i_{1})$ and $V_{c,\chi}(i_{2})$ are different positive integers. Then all the irreducible components of the root system of H_{V}° are of type A.

Proof. (1) By semi-simplicity of V, H_V^o is reductive. Let T(resp. S) be the neutral component of the center (resp. the commutator group) of H_V^o . Then T and S are defined over Q_p , $T \cap S$ is zero-dimensional and we have $H_V^o = T \cdot S$. Also by Lemma 6(i) and absolute simplicity of V, T is reduced to {1} or equal to the group of homotheties which is identified with G_m . In either case $S \cap G_m$ is zero-dimensional and $S \cdot G_m = H_V^o \cdot G_m$. Hence we have dim $S = \dim H_V^o \cdot G_m - 1$.

(2) We put

 $n=n_1+n_2(=\dim V), \quad m=n_1i_1+n_2i_2.$

Here we have

$$ni_1 - m \neq ni_2 - m$$
, $(ni_1 - m) + (ni_2 - m) \neq 0$

and

$$n_1(ni_1-m)+n_2(ni_2-m)=0.$$

We remark that it is sufficient to prove this theorem for a finite extension of K. After replacing K by a finite extension of K, if necessarily, we have a character χ' with infinite image in \mathbb{Z}_{p}^{\times} such that $(\chi')^{n} = \chi$ and Ker $\chi' = \text{Ker } \chi$. For the canonical operators $\varphi_{V,\chi'}$ and $\varphi_{V,\chi}$ of V_{c} with respect to χ' and χ , we have

$$n\varphi_{V,\chi} = \varphi_{V,\chi'}$$
, $V_{C,\chi'}(ni_1) = V_{C,\chi}(i_1)$ and $V_{C,\chi'}(ni_2) = V_{C,\chi}(i_2)$.

We put

$$\rho'(s)(x) = (\chi')^{-m}(s)\rho_{\nu}(s)(x)$$
 for all $s \in G$ and all $x \in V$.

We obtain a homomorphism ρ' of G into Aut(V). We denote V' the Q_p -space V with the action given by ρ' . Let $\varphi_{V',\chi'}$ be the canonical operator of V'_c with respect to χ' . Then we have

$$\varphi_{V',\chi'} = \varphi_{V,\chi'} - m \cdot id., \qquad V'_{c,\chi'}(ni_1 - m) = V_{c,\chi'}(ni_1)$$

and

$$V'_{c,\chi'}(ni_2-m) = V_{c,\chi'}(ni_2)$$

(*id.* is the identity on the C-space $V'_c = V_c$.)

Especially $\varphi_{V',\chi'}$ satisfies the assumption (**) above with respect to χ' .

(3) From Lemma 6(ii) and (2), $H_{V'}{}^{\circ}$ is contained in the unimodular group $SL_{V'}=SL_{V}$. By the definitions of $H_{V'}$ and H_{V} , $H_{V'} \cdot G_m$ and $H_V \cdot G_m$ are both the smallest algebraic subgroup L of $GL_{V'}=GL_V$ defined over Q_p such that $L(Q_p)$ contains $\operatorname{Im}(\rho') \cdot G_m(Q_p)=\operatorname{Im}(\rho_V) \cdot G_m(Q_p)$. Hence $H_{V'} \cdot G_m=H_V \cdot G_m$ and the neutral component $(H_{V'} \cdot G_m)^{\circ}=H_{V'}^{\circ} \cdot G_m$ of $H_{V'} \cdot G_m$ coincides with the neutral component

 $(H_V \cdot G_m)^o = H_V^o \cdot G_m$ of $H_V \cdot G_m$. Thus we have

$$S = [H_{V'}^{o}, H_{V'}^{o}] = [H_{V'}^{o} \cdot G_{m}, H_{V'}^{o} \cdot G_{m}] = [H_{V'}^{o} \cdot G_{m}, H_{V'}^{o} \cdot G_{m}]$$
$$= [H_{V'}^{o}, H_{V'}^{o}] \subset H_{V'}^{o}.$$

Because $H_{V'}^{o} \cap G_m$ is zero-dimensional, we have

$$\dim H_{V'} \circ = \dim H_{V'} \circ \cdot G_m - 1 = \dim H_V \circ \cdot G_m - 1 = \dim S.$$

Since $H_{V'}^{\circ}$ is connected, we have $H_{V'}^{\circ} = S$ and so $H_{V'}^{\circ}$ is semi-simple.

(4) If we put $E=Q_p$, C=C, $M=H_{V'}^{\circ}$, V=V', $h_M=h_{V',X'}$, $a=ni_1-m$ and $b=ni_2-m$, the assumptions (*) of §1 are satisfied: (i) is evident, (ii) results from Lemma 6(ii), and (iii) is obtained in (2). Also the hypotheses of Proposition of §1 are satisfied: M is semi-simple by (3), and $a+b\neq 0$ by (2). Hence the irreducible components of the root system of $H_{V'}^{\circ}=S$ (by (3)) are of type A, so all the irreducible components of the root system of $H_{V'}^{\circ}$ are of type A.

Remark. In the above proof, absolute simplicity, not semi-simplicity, is needed only to prove $T = \{1\}$ or the group of homotheties (cf. [6], Remark of Proposition 8).

The following Corollary is a special case of the above Theorem.

COROLLARY. Let V be a Hodge-Tate module with weights 0 and 1. Assume that V is an absolutely simple \mathfrak{g}_{v} -module and that the dimensions of $V_{c}(0)$ and $V_{c}(1)$ are different positive integers. Then all the irreducible components of the root system of H_{v}^{o} are of type A.

§3. Tables of minimal couples of height 1.

In this section we use the same notations as in [1], Ch. VI Planches.

For each R, in the finite dimensional real vector space V, of the following reduced irreducible root systems, we identify the dual space V^* of V with V by the positive definite symmetric bilinear form (x|y) on V, which is invariant under the Weyl group W(R) of R. By this identification, we have

 $\langle x, y \rangle = (x | y)$ for all $x \in V$ and all $y \in V^*$,

where $\langle x, y \rangle$ is the canonical bilinear form on $V \times V^*$, and

$$\alpha^{\vee}=2\alpha/(\alpha \mid \alpha)$$
 for all $\alpha \in R$.

Let $\{\alpha_1, \dots, \alpha_l\}$ be the basis of R, numbered as in [1], Ch. VI Planches. Let $\{\omega_1, \dots, \omega_l\}$ be the fundamental weights of R corresponding to $\{\alpha_1, \dots, \alpha_l\}$ and $\{\omega_1^{\vee}, \dots, \omega_l^{\vee}\}$ be the fundamental weights of the dual R^{\vee} of R corresponding to $\{\alpha_1^{\vee}, \dots, \alpha_l^{\vee}\}$.

By [1], Ch. VI Planches and [6], Annex, we have:

Type $A_l(l \ge 1)$

minimal couples of height 1: $(\omega_1, \omega_i^{\vee})$, $(\omega_l, \omega_i^{\vee})$, $(\omega_i, \omega_1^{\vee})$ and $(\omega_i, \omega_l^{\vee})$ with $1 \leq i \leq l$.

$$\begin{split} &\omega_{i}^{\vee} = \omega_{i} = \varepsilon_{1} + \dots + \varepsilon_{i} - \frac{i}{l+1} \sum_{j=1}^{l+1} \varepsilon_{j}, \\ &W(R)\omega_{i} = \left\{ \varepsilon_{\sigma(1)} + \dots + \varepsilon_{\sigma(i)} - \frac{i}{l+1} \sum_{j=1}^{l+1} \varepsilon_{j} \middle| \sigma \in \mathfrak{S}_{l+1} \right\}, \\ &\text{where } \mathfrak{S}_{l+1} \text{ is the symmetric group of degree } l+1. \\ &\langle W(R)\omega_{1}, \omega_{i}^{\vee} \rangle = (W(R)\omega_{1} | \omega_{i}) = \left\{ -\frac{i}{l+1}, \frac{l+1-i}{l+1} \right\}. \\ &\langle W(R)\omega_{l}, \omega_{i}^{\vee} \rangle = (W(R)\omega_{l} | \omega_{l}) = \left\{ \frac{i}{l+1}, \frac{i-l-1}{l+1} \right\}. \\ &\langle W(R)\omega_{i}, \omega_{1}^{\vee} \rangle = (W(R)\omega_{i} | \omega_{l}) = \left\{ -\frac{i}{l+1}, \frac{l+1-i}{l+1} \right\}. \\ &\langle W(R)\omega_{i}, \omega_{1}^{\vee} \rangle = (W(R)\omega_{i} | \omega_{l}) = \left\{ \frac{i}{l+1}, \frac{i-l-1}{l+1} \right\}. \end{split}$$

Type $B_l(l \ge 2)$

minimal couple of height 1: $(\omega_l, \omega_1^{\vee})$.

$$\begin{split} \boldsymbol{\omega}_{l} &= (\varepsilon_{1} + \varepsilon_{2} + \cdots + \varepsilon_{l})/2 \,. \\ \boldsymbol{\omega}_{1}^{\vee} &= \boldsymbol{\omega}_{1} = \varepsilon_{1} \,. \\ W(R)\boldsymbol{\omega}_{l} &= \{(\pm \varepsilon_{1} \pm \varepsilon_{2} \pm \cdots \pm \varepsilon_{l})/2\} \,. \\ &\langle W(R)\boldsymbol{\omega}_{l}, \, \boldsymbol{\omega}_{1}^{\vee} \rangle = (W(R)\boldsymbol{\omega}_{l} \mid \boldsymbol{\omega}_{1}) = \{\pm (1/2)\} \,. \end{split}$$

Type $C_l(l \ge 2)$

minimal couple of height 1: $(\omega_1, \omega_l^{\vee})$.

$$\begin{split} &\omega_1 = \varepsilon_1 \,. \\ &\omega_l^{\vee} = (\omega_l)/2 = (\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_l)/2 \,. \\ &W(R)\omega_1 = \{\pm \varepsilon_1, \pm \varepsilon_2, \cdots, \pm \varepsilon_l\} \,. \\ &\langle W(R)\omega_1, \omega_l^{\vee} \rangle = (W(R)\omega_1 | \langle \omega_l \rangle / 2) = \{\pm (1/2)\} \,. \end{split}$$

Type $D_l(l \ge 4)$

minimal couples of height 1

for
$$l=4$$
: $(\omega_i, \omega_j^{\vee})$ with $i, j \in \{1, 3, 4\}$ and $i \neq j$
for $l \geq 5$: $(\omega_1, \omega_{l-1}^{\vee}), (\omega_1, \omega_l^{\vee}), (\omega_{l-1}, \omega_1^{\vee})$ and $(\omega_l, \omega_1^{\vee}).$
 $\omega_1^{\vee} = \omega_1 = \varepsilon_1.$

344

$$\omega_{l-1} = \omega_{l-1} = (\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{l-1} - \varepsilon_l)/2.$$

$$\omega_l = \omega_l = (\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{l-1} + \varepsilon_l)/2.$$

$$W(R) = \{\pm \varepsilon_1, \pm \varepsilon_2, \dots, \pm \varepsilon_l\}.$$

$$W(R) = \{(\xi_1 \varepsilon_1 + \xi_2 \varepsilon_2 + \dots + \xi_l \varepsilon_l)/2 \mid \xi_i = \pm 1, \prod_i \xi_i = -1\}.$$

$$W(R) = \{(\xi_1 \varepsilon_1 + \xi_2 \varepsilon_2 + \dots + \xi_l \varepsilon_l)/2 \mid \xi_i = \pm 1, \prod_i \xi_i = 1\}.$$

$$\langle W(R) = \{(\xi_1 \varepsilon_1 + \xi_2 \varepsilon_2 + \dots + \xi_l \varepsilon_l)/2 \mid \xi_i = \pm 1, \prod_i \xi_i = 1\}.$$

$$\langle W(R) = \{(\xi_1 \varepsilon_1 + \xi_2 \varepsilon_2 + \dots + \xi_l \varepsilon_l)/2 \mid \xi_i = \pm 1, \prod_i \xi_i = 1\}.$$

References

- [1] N. BOURBAKI, Éléments de Mathématique, Groupes et algèbres de Lie, chapitres IV, V et VI, Hermann, 1968.
- [2] F. HAZAMA, Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 31 (1984), 487-520.
- [3] S. SEN, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. 97 (1973), 160-170.
- [4] S. SEN, Continuous cohomology and p-adic Galois representations, Inventiones math.
 62 (1980), 89-116.
- [5] J-P. SERRE, Sur les groupes de Galois attachés aux groupes p-divisibles, Proc. Conf. Local Fields (T. A. Springer edit.), Springer-Verlag, Heidelberg, 1967, 118-131.
- [6] J-P. SERRE, Groupes algébriques associés aux modules de Hodge-Tate, Astérisques
 65, Soc. Math. de France (1979), 155-188.

Department of Mathematical Science College of Science and Engineering Tokyo Denki University Hatoyama-machi, Hiki-gun Saitama-ken, Japan 345