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A CERTAIN SPACE-TIME METRIC AND SMOOTH
GENERAL CONNECTIONS

By TOMINOSUKE OTSUKI

Introduction.

For a manifold M with a general connection I we say a connected subset
A is a black hole, if it has a neighborhood U such that if any one going on
along a geodesic enters U, then he will be finally swallowed in A. The present
author gave a way in [8] by which we can construct a general connection I”
for any Riemannian manifold (M, g) and any point p of M such that I" has p
as a black hole and has the same system of geodesics as the one of (M, g)
outside of a neighborhood.

In the theory of general relativity, the Eddington-Finkelstein metric g is
given by
(1) dr=—(1- %’"—)dt2+2dtdr+r2(d(92+sin20 de?),

where (r, 0, ¢) are the polar coordinates of the space R® with the coordinates
(%1, %2, x5) @S

r=+23x%, x=rsinfcosp, x,=rsinfsinp, x,=rcosf.

As is well known, the curve »=0 in the space-time is a black hole as is men-
tioned above, even though the metric (1) loses the meaning along this curve, (1)
is locally equivalent to the Schwarzschild metric

(2) et — T2 ey
4 v

L 4y r(d6°+sin®0 do?),

—2m

through the change of time ¢ in (2) to t—r—Ilog|r—2m|?™. (2) loses its meaning
where »=0 and r=2m but (1) is everywhere regular except r=0.

Now, we denote the affine connection made by the Christoffel symbols from
the space-time metric (1) by I',. Taking a tensor field P of type (1, 1), consider
the general connection I'=PI,. Then, any geodesic of I, is also a geodesic
with respect to I. Conversely any geodesic of I" is also a geodesic with respect
to I,, where P is an isomorphism on the tangent space of RX(R*—{0}). We
consider a problem: Taking P suitably, is it possible I'=PI, to extend smoothly
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over RXR*=R* with the canonical coordinates (x,, xi, %, x5)? Let I'=(P% I'}),
where P! and I}, are the components of I" with respect to the coordinates

t=u,, r=uy, O=u;, @=u,.

We have the Christoffel symbols { ! } made by (1) as follows:

Jk
m/usus 0 0 0
1 0 0 0 0
(‘{ jk} ) 0 0 —u, 0 ’
0 0 0 —u,sin’u,
mB/usuy —m/usu, 0 0
({ 2 })_ —m/UsUs 0 0 0
JRI) 0 0 2m—u, 0 ’
0 0 0 2m—1u,)sinZu,
0 0 0 0
({ 3 })“ 0 0 1/u, 0
7k 0 1/u, O 0 ’
0 0 0 —Sinu;CoS Us
and
0 0 0 0
({ 4 })H 0 0 0 1/u,
7RI/T1 0 0 0 cotu,
0 1/u, cotu, 0

h
Jk
condition that I" is extended smoothly to R%, P! must be of the forms as

where B=1—2m/r. Since we have by definition ;‘,,:213,:{ } and from the

(3) Pi=Flu,u,+2mFiu,, Pi=Fiu,u,, Pi=Fiu,, Pi=Flu,sinu,,

where, F! are continuous near r==0. Hence we have

m(Fi+F}) —mF} 0 0

| —mF} 0 F} Fisinu,

(4) TR= 0" By —(Fi+Fhw) Fluscosu,
0 Fisinu, Fiu,cosus *

where * is —(F1+F1)(u,)® sin®us— Flu,sinus cosu,. This expression tells us that
if we compute the components of I in the canonical coordinates (x,, %1, X2, Xs) Of
RXR? it is possible to make it continuous but impossible to make it smooth.
Since we have the expression of g in the coordinates (x,, x;, x5, X3) as

2m
r

)dtz—'rié xidtdxi—ki dxidxl——(i) s dxl)z
Y =1 1=1 1=1

dr2=~(1— -
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and the coefficients of the quadratic form »dz* are continuous but some of them
are not differentiable at the points where »=0. This fact may be the reason
which implies the above situation on the general connection.

§1. A certain space-time metric.

In this section, we shall give a space-time metric on RX(R*—{0}) with the
curve =0 as a black hole and make smooth general connections on R* having
the same system of geodesics with the one of this pseudo-Riemannian metric in
RX(R*—{0}).

First we consider a space-time metric g given by

2
)t drdr-+rd6rsint dg?
e

1.1) d02=—(
in the same coordinates (¢, 7, 6, ¢) in Introduction and setting do®=3 g,,du;du,,
1,0
where t=u;, r=u,, 0=u, and ¢=u,. Then we have the Christoffel symbols
7
{]. k} made by (1.1) as follows.
4m2/ Uy 0 0 0
0 0 0

0 _u2u2 0 ’
0 0 — WU, SiN%u,

( Am®B/us, —4m?/usu, 0 0

—4m?/ usu, —1/u, 0 0
0 0 — B(u,)® 0 ’
0 0 0 — B(u,)?sin®u,

/0 0 0 0

0 0 1/u. 0

0 1/u, O 0 ’

0 0 0 —CO0S UsSinus

0 0 0 0

({ 4 }): 0 0 0 1/u,
Tk 0 0 0 cotus |’
0 1/u, t 0

where B=1—4m?/r®>. Hence the equation of a geodesic with respect to this
space-time metric are
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j—;-\-‘l—":z( ;;) - %) —r sm%(%)

d*r M(dt 8m* dt dr i(d_)
e

dp? r dp 7t dp dp dp
dae .
(1.2) —Br (dp> Brssmm(——) =0,
2
Z—pﬁﬁ—}z’ 3; Zz cosﬁsmt?(——) =0,
do_ 2 dr dp do_dp
dp2+r ) dp+z otﬁdp 5 =0

where p is the canonical parameter of the geodesic as

(1.3) Z_;;:_(l o e j;)+ i ;—; i (& ZZ) +S‘n2‘9< dp )}

-1

1

according to the sign of X g,;(dui/dp)(duj/dp).
7

Next, consider a geodesic which pass through a given point g,=(t,, 7o, 8o, ¢0)
and (dg/dp)e=(Es, 90, Ao, tto). Then we may put
0o=—- and A,=0
2
without loss of generality, because the metric (1.1) is spherical symmetric with
respect to (x;, ¥ Xs). Noticing that the third of (1.2) is satisfied with =x/2,
we put §=r/2 in (1.2) and (1.3), we obtain the following equations :

d* dt do
d—pz+ (dp (dp) =0,
, dr | 4m*B . dtN\e 8m* dt dr 1 ,dr dp\:_
(1.2 T dp) 7t dp dp (dp) Br3<dp)—0’
d 2 dr do _,
dp* r dp dp
and
) dt\e 2 dt dr | deye
(1.3) B(dp)+ r dp dp r(dp)‘“

From the third of (1.2') we see that »*(dy/dp) is constant along the geodesic and
so we put this constant as
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d
(L.4) r?d—;‘j:r%yo:J.
Using this fact, the first and second of (1.2’) become
d2t _ me jz
dp* ( dp + ’
d»  4m®B / dt 8m? dt dr dr\: B ,,
dp* ”7“(717) P dp dp (‘ﬁ) — =

from which we obtain

by cancelling / and hence
d sdr dt 1 dr /dr dt
a3 Cay =B gy =15 Cay Py
Therefore we see that (1/7)(dr/dp-—Br(dt/dp)) is also constant along the geodesic
and we put this constant as

(1.5) i(ﬁ—Bri)zﬂ—(l— 4’”2)50:/1.

rs

Finally using (1.4) and (1.5) for (1.3’) we have
—(B% —% Z—;) 4+ (5;) ‘1'—7]“—6‘3
and so
(1)  — A+ (j;) —B({—Z—c) or (dg)ft)zzAz—B(%—c>.

From (1.6) we see the following fact. When ¢=—1 or 0, if »=2m (B=0),
which implies

dlogr
ld—plzw.

Let ¢, be the moment such that the geodesic passes through the hypersurface
r=2m at the point (¢,, 2m, n/2, ¢,) then we have from (1.5)

1 dr\

Ao gy

Therefore the geodesic enters the hypersurface »=2m with »,<0, then the de-
creasing ratio of logr is greater than |A]|.

THEOREM 1. The space-time metric (1.1) has the curve r=0 mm RXR® as a
black hole for the system of visible geodesics, i.e. c=—1 or 0 mn (1.3).
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§2. Smooth general connections with the same system of geodesics of (1.1).

In the canonical coordinates (x,, xi, x,, x;) of RXR® with x,=¢, (1.1) can be
represented as

@D dot=—(1- T Yars 5B rdtdret B dridx— (3 xdx.)
and setting the right hand side of (2.1) as %ogaﬁdx,,dxﬂ, we have

XX,
7

9 ’

4m?® x
(2.2) Goo=— ( ):"“B’ gOJ:gjOZT;’ 81 =8ji=0i—
from which (g“ﬂ):(galg)‘l are given as

(2.3) g»°=0, g'=g"=x,, g”:5i,-+(B—712—)xlx,.

Making use of (2.2) and (2.3), the Christoffel symbols {‘gr} of (1.1) in the

canonical coordinates (x,) are given by the formulas as follows

(D=5 s
({ h }>:££<4mz(r2——4m2) —4m*x, >

Br rt —4m?x, — X, x;— (P —Am*—=1)(r*6—x,x5)/

Now, take a tensor field P of type (1,1) with local components P§ and let
I' be the general connection PI,, where [, is the affine connection with the

components { ,gf}' Since for I'=(P§, ['§;) we have

(2.5) [j=3%P {ﬁr}

and so in order to be determined I so that it is smooth near »=0 and has the
same system of geodesics as the one of (2.1) in RX(R*—{0}), it is necessary
and sufficient to put

(2.6) t=Fgrt,  Pi=Fu
where F§ are smooth near »=0, and
2.7 [F§1+0 where 7r+0.

Then, [ is regular where r+0. Thus we obtain

4m? 0
28  dg=F (0 _(rzai]—xm))
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v, (Am*(r*—4m?) —4m’x, '
+§n:thh( —4m?x, —xlxj—(r2—4m2—1)(r25,~j~x1xj))

There are many freedoms of the choice of P for the purpose mentioned
above for (2.1). We request that

2.9) 33,,=0,

where “,” denotes the covariant differentiation with respect to I. If we put
for F the condition

oF§
(2.10) P =0,
then we have for the covariant components of I':
. O0P%
Agr ::Fﬁf’_‘ a‘x_f_
the equalities
Agozrﬁ%y

and hence .
5;‘9‘,0=§ l’p‘{,PﬁP—Zo P,,“A,%z% wPf— ; Pel#=0.
From (2.6) and (2.8), we have
(B)=r"(F§, r'Fy),  (Tg)=dm*(F§+(r*+4m?)V*, —Vex)),
where V“:=§)F,$‘xh. Hence, setting W,=> Flx;, and using (2.7), the condi-
tion 0§ ,=0 is equivalent to
r*—4m?)V°=0,
(2.11) ,
r* {F}+ —4m®V i} = {2 —4Am> F{—W,} x,
and the condition 6%,=0 is equivalent to
{—V"x]:r'“’F;’,
—Vx,={(r*—4m)F}—W;} x4

(2.12)

From the first of (2.11) and (2.12) we obtain

{F‘,’:O,
;ngh:,lxl, %‘ 1 Fl=2x,.

(2.13)

where A is an auxiliary function. Then using (2.13) for the second of (2.11) we
can put

(2.14) Fi=px,,
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where g is an auxiliary function, and hence we obtain
(2.15) 2rip=(r*—4m*)(F{—2Ar?).
Thus, we see that

LEMMA 2.1. Supposing that P does not depend on t, then 0%, ,=0 is equivalent
to (2.13), (2.14) and (2.15).

Now, considering (2.13), we take a special one such that

(2.16) F{=r*F and Fi=24},
then from (2.15) we obtain
.
A= r2—4m? +F
and so if we put
(2.17) p=*—4m»G,

then we objain from the above equality
(2.18) A=F—-2G.

Thus, we obtain a special P=(P}) implying 0§ ,=0 given by

ay__,.2 7’2F 0
(2.19) EO= o —tm)Gx, r2<F—ZG>5§)’

where F and G are smooth, F+0 and F—2G+0.
THEOREM 2. The general connection I'=PI', with P given by (2.19) is smooth

on RXR®, has the same system of geodesics as the one of the space-time metric
(2.1) where r+0, and satisfies the conditions:

53.0=0 and Fap =0,

where Bap=r’gas.

Proof. Except the last condition §.s,,=0, the rest ones are evident from
the above argument. In fact, we have

N (—(F*—4m?) X,
(g"ﬂ)_< X, rzﬁij—xlx])
and
Fupoi= S PPEOE0T 55 Mo PE— 3 5,0 P,
! 0.0 axo 0.0 e 0,0 e ’

into which substituting (2.19) and
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r:F 0 )
—4mH)(F—G)x, —F-2G)x.x;
we can easily obtain g.gs,,=0. Q.E.D.

(Ag)=(Tg=4m( ,,

Finally, we give the components I'§; of I'=PI’, in Theorem 2, which are

4m?

a\ . a 0
@20 TR=Fi(¢" 5, rxy)
mi(rt—4m?) —4m®x, )
—4dm®x, —x,x;—(r*—4m®*—1)(#%0;;— x, %)

+3 Funa(*

where
\=r*F, Fi=(@*—4m*Gx,, F{=0, Fi=(F—-2G)d:.

§3. The curvature form for a special general connection in Theorem;2.

In this section, we shall give the curvature form for the special general
connection in Theorem 2 given by

(3.1 F=1 and G=0.
Then we have
3.2 Pg=r'0}
and (2.20) becomes
4m?® 0
0\ __,2
(3.3) T3=r (0 —r" :'n+x;xn)’
.0/
dmE(r:—4m?®) —4mix,
TY— x.
(I"'M)——x,( —4dm?x, —x,xh-l-(r2—4m2—1)(x,xh——r25jh))'

The connection I'=PI"; in Theorem 2 is smooth on R X R®* and hence we can
obtain the curvature along »=0 by taking its limit from the outside of the curve.
Where r+0, I' is regular, i.e. det (P§)#0, therefore the curvature form £
can be computed from the one of Iy by the formula ([2], §7)

(3.4) Q3= PPy’ Q8P§+> P;'DPYN'DPE,

where ‘D denote the covariant differentiation with respect to I,. Hence (3.4)
becomes in this case as

(3.5) §=r12705.

Since we obtain the connection forms of I', from (2.4) as follows:

2 2
(3.6) 'wgzé;nz—dt, ‘wi=—dx;+x;dlogr, ‘wi= 4r—n:xi(Bdt—d logr),
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(B— %)d log 7},

—(B— —7’17)xidxj+xlxj{——

the curvature forms of I,

Q3 =d 05+ 3 0f N
o

are given by a little long computation as follows :

()0
0=

/‘ng

——x;dtNd logr+dx,Ndlogr,

4m

1= — dt/\d l—[— Bx dtNd logr— é—dx Ndlogr,

4m? +1

Q= (B——)dx ANdx;+—F—xdx,ANdlogr

2
12m ——X x,dt/\dlogr—}— x;dtNdx; —I—(B—-i)x,»dxl/\dlogr.

We see that the curvature forms vanish on the curve r=0.

(1]
£2]
£3l
(4]
(5]
(6]
(7]
[8]
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