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ON THE ELASTIC CLOSED PLANE CURVES

BY HIROSHI YANAMOTO

§ 1. Introduction.

With respect to the total curvature of a closed curve C of class C2 in a 3-
dimensional Euclidean space Es, we have the classical Fenchel inequality ([3]
in 1929)

(1.1) [ k(s)ds^2π,
jc

where s denotes the arc length parameter of C and k(s) the curvature of C.
If a closed curve C is knotted in E3, then the Fary inequality

(1.2) [ k{s)ds^π
jc

holds good (cf. Fary [2] and J. Milnor [5]).
If a closed curve C is regarded as an elastic rod, then the bending energy

E(C) of the deflected curve C from k=0 is given by (cf. [4], [8])

(1.3) J5(Q=-9 k*(s)ds.
Δ JC

For any real number t, we get

O f̂ (k(s)-t)*ds = [ k\s)ds-2t\ k(s)ds+A ds.
JC JC JC JC

Then, from (1.1) we obtain

(1.4)

where L is the length of the closed curve C. The equality holds good if and
only if C is a circle of radius L/2π in the plane.

Concerning the inequality (1.4), I. Bives ([1], p. 283) showed the following:
Let M be a circle of radius r, isometricaίly immersed into EN. If k denotes

the curvature function, then

(1.5) ί k\s)ds^2π/r
JN
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with equality iff M is embedded as a circle.
The pourpose of this note is to study the variational problem of the func-

tional

under the condition I ds = Inconstant. The equilibrium states of the elastic

curves are the stationary points of the bending energy E{C) with inconstant.
If the second variation of E evaluated at some equilibrium state is positive
definite, then the equilibrium state is called stable.

Thus we have the following questions (Bernoulli's problem).
(Qx) Find the closed curves on the plane E2 for which the functional E is sta-

tionary under the constant length.
(Q2) Investigate the elastic stability for these stationary curves.
We study the following classical Euler's theorem

THEOREM A. // E(C)= — \ k\s)ds is critical for a closed plane curve
u J C

with

Inconstant, then the curve C is either the plane circle Cn (cf. Fig. 1) with the
radius L/2πn or the curve Dm (cf. Fig. 2) which is congruent ot

(1.6)
VR

2Vl-p2sm2φ
2 y Ύ L—p2sin2φ

where φ varies from —π/2 to 3ττ/2 and R, p2 are given by

*x

Fig. 1
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Fig. 2

(1.7)

(1.8)

_ 4m Γ»

sin,φ dφ.

p2 and sin 1p are in the intervals

0.82<£2<0.83 and 1.13Rad<sin-1ί<1.15Rad

For Cn and Dm, the critical values are as follows:

E(Cn)=2π2n2/L, E(D m)=16 m\2p2-\)K\p2)/L
and

E(C1)=2π2/L<E(D1)=16(2p2-l)K2(p2)/L<E(C2)=Sπ2/L.

§2. Critical closed plane curves.

Let C:[0, L]^s->(x(s), y(s))<ΞE2 be a C2 plane curve with arc length pa-
rameter s. Then the tangent vector (dx/ds, dy/ds) to the curve is of unit
length and satisfies the Frenet equation

(2.D 4S=-

If θ(s) is the angle between the tangent (dx/ds, dy/ds) and the positive x-axis,
the curvature function k(s) is given by

(2.2)
ds '

Assuming that (x(0), 3>(0))=0 (the origin in J52), (x(s), y(s)) is written by

(2.3) x(s)=['cosθ(s)ds, y(s)=[ sia θ(s)ds.
Jo Jo

Necessary and sufficient conditions for this curve C to be closed are
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(a) k(s) is periodic with period devidmg L,
(b) Θ(L)—0(0) is 2πn (n=the rotation index of C),
(c) *(L)=;y(L)=0.

Now we consider the variational problem with respect to £(C)=-r-\ k'2(s)ds
Δ JC

witn Inconstant. For an arbitrary variation Cε of C such that

(2.4) Cε: 0.(s)=0(s)+9.(s) (?.(0)=7.(L)=0),

we get

Putting 77ε(s)=ε)y(s)+ε2/ι(s)H-[ε3], we see that

f

f si
j cε

jo

If C is critical, then we have

dE(Ct)

dε

[L dθ dη
o Jo 1

for any η{s) satisfying

Jo Jo

From this there exist two constants λ and μ such that

d2θ
—λ sin θ + μ cos θ = —7—r .

as

That is,

(2.5) -Λsin(0-α)=-^~-

holds good, where we have put

and
α :Rcosa=λ ,

In the case of # = 0 , we have
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k(s) = ^ . = ~-n ( n = l , 2 , 3 , •••).

This means geometrically that the closed plane curve C is a circle Cn of radius
L/{2πn). The rotation index of Cn is n ( n = l , 2, 3, •••).

In the case of J?>0, multiplying (2.5) by dθ/ds, we have

(2.6)

where d is a constant of integration.
In the case of —R<d<R, putting p=[(d-JrR)/2R']1/2, we obtain

(2.7)

and hence

(2.7)'

where /> and 0 satisfy the following:

We put

(2.8) (0<sin~1jί)<7r/2).

Then, taking account of the conditions (a) and (b), (2.7)' may be written in the
form

(2.9) = If'
2\/R Jd-2sin-l2

dθ

where s and θ run on

a+2sin~1p

Fig. 3
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(2.10)

The integration of (2.9) can be simplified by using

(2.11)

(2.11/ - ^ ^ = s i i r 1 ( / > s i n 0 ) .

It is seen from (2.ll)r that when Θ varies from α—2sin"1/) to α+2sin~ 1£ the
quantity φ varies from —τr/2 to ττ/2.

On the other hand, from (2.7) and (2.11), we obtain

from which

(2.13) -^- = VTϊVl-p2sm2φ (sin

Hereby, we have

(2 14) -

where s and φ run on O^s^L/ra and —π/2^φ^3π/2. Putting

(2 15 )

we obtain

(2.16)

K(p2) is known as the complete elliptic integral of the first kind. Next we must
check whether the condition (c) is satisfied or not for the curve given by

r0=α+2sin ^ ( ί sin φ), -π/2^

(2 17) - _ L - F l
I s VΛ J*/« V l - ί 2 s i n 2 ^ ^*

By (2.17), we have

\ cosθ(s)ds=m\ cosθ(s)ds
Jo Jo

and one for sin θ(s). In view of
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cos {a+2 sin ~\p sin φ)\

= (cosα)(l—2p2s'm2φ)—2ps'm asm φVl—p2sin2φ ,

etc., we get

I cos θ(s)ds —
Jo

mcosa 1—2p2sm2φ
dφ,

ΓL a/ \ J rasina: C*π'2 l—2p2sm2φ , ,
I sm θ(s)ds = 7^—~\ ~7i ^2 '=TT(^Φ'

Jo Vit? J-^/2 V I - / ) 2 s i n 2 ^

Therefore, the condition (c) is equivalent to

Sπ/2 Γπ/2 1
vl—ί 2sii ° ' f '

oPutting

(2.18)

we have

(2.19)

Vl—jί) 2 s in 2 ^

E(ί 2)=Γ / 2Vl-ί 2sin 2^^,
Jo

dφ.

2E(p2)=K(p2),
2R '

E(p2) is known as the complete elliptic integral of the second kind. Using the

Iwanami Math, dictionary ([7], second edition, p. 974, Fig. 12), we get

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4
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We see that there is the constant p2 in the interval

0.82<£2<0.83.

Hence we have

129°29/19//<2sin-1/)<131046/49//.

We see that (x(s), y(s)) is given by

s i n a c o s ^

231

from which we get the following table.

φ
θ

k(s)

X(S)

y(s)

0

-π/2

a—2 sin"1]!

0

0

0

••••! L / ( 4 m ) -

>: j « 1
+ί 2VR'p \-\

1 |
I 2p sin a/'s/R

1 -2ίcos«/V^~;

•i L/(2m) •••

π/2

a+2sin"1/?

-! o -

0

0 !

3L/(4m)

-2^/Έρ —

2j{) cos α/ V ^

L/m !

3π/2

α—2 sin"1/)
j

0

0

0

The closed plane curve C may be drawn as follows (cf. Fig. 5).

Remark 1. In particular, for a—π/2, we get

-~=rcosφ,

Remark 2. For Dm, we get

2 J- dφ

16m2

For instance we have
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'— 2psina 2p cos a

Fig. 5

7 2ft sin ar —2p cos a \

Let us now turn to the case d=R or d>R. In the case of d=R, by (2.7)
and θ(0)~a we get

k(s)=dθ/ds=2VR cos

from which
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Thus we obtain

π , 0 —a

It requires the infinite arc length to obtain θ—π+a. Therefore, the case of d—R
does not occur.

In the case of d>R, putting

(2.20)

we get

(2.21)

g=V2R/(d+R)

Suppose now that θ(0)=a. Then we have the following (cf. Fig. 6):

_1 f' dθ /C*

^ + ^ « / l Q2zm2(θ~a y J " ^

Hence we obtain

(2.23) ^

a a+ a+π a+ a+2π
π/2 3τr/2

Fig. 6

dφ

π/2

o VΓ- Λ
Let us now check whether the condition (c) is satisfied or not. By means of

ί
j c\ Λ r»f\o (rv I r

cos θ(s)ds= / 9 , . , p , /Λ '
o V2(α+/t) Jo VI—q sir

fL a, w 2 Γ̂  s i n ( « + 2 r / , .V2(α+i?)
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the condition (c) is equivalent to

(9 9Λ\ f* COS2Φ r!Λ 0 [

Jo V I — q sin φ y

sin 2φ

o Vl—q2sin2φ

The first equation reduces to

ϊ—q2sm2φ
dφ,

that is,

However, we can verify that 2E{q2)<{2-q2)K{q2). In fact, (2-q2)K(q2)-2E(q2)

for <fφθ, and we get the following figure (cf. Fig. 7).

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1

2E{q2)

0.1 0.2 0.3 0.4 0.5 0.6Ό.7 0.8 0.9 1 M

Fig. 7

Hence the curve C given by (2.22) does not satisfy the condition (c), that is, the
curve is not closed.

Summarizing the results obtained above, we get the theorem A in the in-
troduction.
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