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POINTWISE CONVERGENCE OF THE PRODUCT INTEGRAL
FOR A CERTAIN INTEGRAL TRANSFORMATION
ASSOCIATED WITH A RIEMANNIAN METRIC

By YOsHIAKI MAEDA

§0. Introduction.

In [13] Inoue-Maeda present a rigorous meaning to the convergence of the
path integral in a non-compact curved space. Though comparing with Feynman’s
original idea, they considered the case where iA™! is replaced by —A (1>0).
Namely, they considered a certain integral transformation associated with a
given Lagrangian function of the form; L(x, %)=g,,(x)%,%,+V(x), where G=
(g.5(x)) defines a Riemannian metric and V(x) is a smooth function with the
compact support, and showed the convergence of its product integral in the
topology of the uniform operator norm.

The purpose of this paper is to continue the above work as follows; First,
we extend the above integral transformations to those which acts on sections of
a general vector bundle (Cf. (0.1)). Also, we construct fundamental solutions
for parabolic systems geometrically. Here, we shall deal with the case V=0,
only for simplicity. The second aim is to show the convergence of the product
integral of the integral transformation in a refined topology (pointwise conver-
gence of the kernel function).

We suspect that these observation for the convergence of the product integral
may have interesting applications, and here we can derive the asymptotic behavior
of the fundamental solution for a parabolic system defined on the non-compact
manifold in terms of geometrical invariants.

Let (M, g) be a smooth, complete m-dimensional Riemannian manifold and
let E be a vector bundle over M with a linear connection D. Suppose that E
is furnished with an inner product <, ), at each fibre E,, xM, preserved by
D. Using the connection D, we can consider the parallel translation along the
minimal geodesic 7, from y to x, which maps an element of E, to that of E,.
We denote it by P(x, y) (Cf. §2).

Denote by C,(E) the set of all continuous sections of £ with compact support
and by C=(E) that of all smooth sections of E. Put CP(E)=Cy(E)NC=(E).

For £€=C7(E), we define the L%*norm as
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elasin = <60 €t

where dp,(x) denotes the canonical measure defined by the Riemannian metric
g. We denote by L*E) the Hilbert space of sections & of E such that

€l L2cm) < H-o0.
Now, consider the following integral transformation in L*(E) with parameters

0=s<t, and 2>0 (Cf. [7], [12], [13] and [16]),

0.1) H;¢t, s)E(x)=(27r2‘1)‘m’2SMp<t, s; x, y)exp(—AS@, s; x, y))]
XP(x, )E@)dpg(y),

for £=CF(E): Here S@t, s; x, y)=d*x, y)/(2(t—s)), where d(x, y) is the distance
function and p(t, s; x, y) is defined by

(0.2) ot, s; x, y)=1|det[—0:0,S@, s; x, ¥)1/pe(x)pte(y) |72,

where p.(x)=[det(g,;(x))]*'* ((0.2) is assumed to be well-defined here. In fact,
it is guaranteed under the assumption (A.0) which is stated later.) (Cf. [7] and
[161).

The kernel function of H(Z;t, s) will be denoted by H(4;t, s; x, y) which
may be considered as a section on EXE*; the vector bundle over M XM whose
fibre at (x, y)e M XM is given by the tensor product E,XE}.

We consider the product integral for the above operator (0.1). Namely, let
oy be the N-equal subdivision of the interval [0, ¢] for given ¢>0 and any
positive integer N,

oy 0=t,<t, < <ty_<ty=t, l,-::(]/N)t.
We set

0.3) HA; ox|)=HA;t, ty-)HQA; ty-y, ty-2) - HA5 1, 0),

and denote by H(4; oy|t; x, v) the kernel function of (0.3).
In order to state our results, we introduce the following assumptions :
(A.0) (M, g) is a connected, simply connected, complete Riemannian mani-

fold and has non-positive sectional curvature.
(A.1) There exists a positive constant k; such that for any multi-index

a=(a,;, -, ay), 0<|a|<3 and x€M,
0.4) VR M (x)| :=Z oy,

where | |, is the norm at x defined by g and V and R,;:" are the Riemannian
connection and the curvature tensor defined by g respectively.
(A.2) There exists a positive constant %k, such that the curvature 2-form 2

of D satisfies

0.5) | DQ(x)] .= by for 0=<|a|<3, and xe€M,
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where | |, is the norm at x defined by <, >..

Remark. Combining the Riemannian metric g,;(x) and the inner product
{,>s we can define the norms for the sections of the tensor product bundles of
the tangent bundle T M, the cotangent bundle T*M, E and E*. Also, here we
extend naturally the action of D and V to tensor fields with values in E (or E*).
Including these, we denote these by the same letters | |, D and V unless there
occurs no confusion.

We can state the main theorem of this paper.

MAIN THEOREM. Let (M, g) be a m-dimensional Riemanman manifold and
let E be a vector bundle over M satisfying (A.0)-(A.2). Fix T>0 arbitraily.
Then, the limit

(0.6) HQ;t; x, y>=lvim HA;axlt; %, 9)

converges uniformly on MXM in the norm defined by EXE* (Cf. §2) for any
0<t<T. Moreover, HQA;1t; x, v) gives a fundamental solution of the following
parabolic equation :

.7 { [@/00)—2" A JHQR; 15 x, y)=0,
%irgH(]; t; x, v)=0,(x)RId,

where

0.8) K ,=1/2)A2—(1/12)Scal (x),  AP=—D*D,

D* 4s the adjoint operator of D with respect to the inner product on L*(E) and
Scal (x) is the scalar curvature.

On the other hand, in the course of the proof of the main theorem, we can
get the asymptotic behavior of H(A;t, s; x, y) as t—0+4, which is a partial
extension of the results in Molchanov [15] who treated the case where E=MXR.

COROLLARY. Under the same assumptions as in the main theorem, the funda-
mental solution H(A;t, s; x, y) of (0.7) satisfies, for any 0<e<1/2,

0.9 [HQ@;t; x, 3)—Cad~t)"™p(x, y)lexp(—A(d*(x, y)/2)IP(x, 3)| @ v
=yt lexp(—Ae**d*(x, ¥)/20],

Jfor any x, yeM, with some positive constant y’, where e**=1—2¢, p(x, y)=
|det (dExpzY),|1V® and Exp, 18 the exponential mapping defined by g (Cf. §2).

Remark. By a technical reason e** appears in the above inequality, but it
seems necessary for general cases.

Acknowledgement. The author wishes to express his hearty thanks to
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§1. Outline of the proof of Main theorem and related remarks.

In this section, we state the plan to prove the main theorem in the intro-
duction. First, in §3, we show the following basic properties of H(4;?, s)
defined by (0.1).

ProposITION 1.1.  Assume (A.0)-(A.2). On fixing T >0 arbitrarily, the fol-
lowing properties hold for 0=s<t<T:

(@) The integral transformation H(A;t, s) defines a bounded linear operator
wm L¥E).

(b) 1}1131 |H(A; ¢t $)6—EllLe=0,

Let ®(L*E)) be the set of all bounded linear operators on L% E) and we
introduce the topology by the operator norm in it. Now, we study the con-
vergence of the product integral of H(4;¢, 0) in B(L*E)). So, we prove the
following in §4-5, which is one of the key results:

THEOREM 1.2. Under the same assumptions as in Proposition 1.1, the follow-

g properties hold :
(@) There exists a positive constant Co=Cy(2; T) such that

1.1) VHQA; t+1, s)e—HQA; t+1, t)VHQR; ¢, $)Ell 2
SC [t — sy 2=t 4-(t' —5)**] 1€ e ey

for any E€ LYE) and 0Ss<t’'<t<t+t'<T.

(b) There exists a limit HQA; H)=limy.H(A; ¢, ty-1) - HQA; t,, 0), t;=(/N)t,
7=1, -, N—1, in B(L*E)) for any t>0. Therefore, {H(A;1)}:s0 with H(Z;0)
=the identity operator, forms a C° semi-group in L*E).

(¢) The infinitesimal generator A9 of H(A;t) is given by

(1.2) AN H E)(x)=[(0/0)H (2 ; 1)E(x)| 0]
=2"[(1/2)A5—(1/12)Scal ;(x)1&(x) .

Theorem 1.2 shows that the product integration of (0.6) determines a funda-
mental solution of the heat type equation (0.8) in the distribution sense. To
show the regularity, we construct a kernel function by another method (so-called
Levi’s method) which is rather standard in the theory of partial differential
equation (Cf. Friedman [9]). Using this estimate, we prove the main theorem
stated in §0. Namely, we show in §7 the following :



POINTWISE CONVERGENCE 197

THEOREM 1.3. Under the same assumptions as in Proposition 1.1, we can
construct a fundamental solution H(A;t) with the following estimate: For any
0<e<1/4, there exists a positive constant y=y(A; T, ¢) which dose not depend on
oy such that

(1.3) |[HQA;t; x, y)—HQA; onlt; x, My
ért—(m-w/2N-1/2[exp(_zs(4)d2(x’ y)/Zl‘))]

where e®=1—4e¢ and H(A;t; x, y) 1S the kernel function of H(A;1t).

Remark 1. We cannot prove the convergence of H(A; aylt; x, y) without
constructing the fundamental solution by Levi’'s method. This may be still an
interesting problem.

For the sake of our computations, we shall introduce the local coordinate
expression. Given feM, let U be a local coordinate neighborhood of % with
the coordinate (x?, .-, x™) such that E|, is trivialized as E|y=U X F, where F
is the standard fibre of E. Taking a frame field {e,(x)} of Ely (i.e. e.(x)
depends smoothly on x<U and {e,(x)} forms a basis on F for any x&U).

Denote by Ij#(x) the component of D;=D/5.. Then, for each £€C>(E),
its covariant derivative D, can be expressed by

(1.4) (D) (x)=8,6°(x)+ T # (0 ().
Also, for any ¢eQ4E), a E-valued 1-form, expressed by ¢(x)=¢;(x)dx* with
i(x)=¢;%(x)eq(x), we have

(L) (D)0 =0, (x)—{  }o)gu )+ T (x5

where { J}?i}(x) is the Christoffel symbol of g. Moreover, the local coordinate

expression of the covariant derivatives for any tensor field with values in E is
obtained similarly. Using these notations, A? can be expressed as

(AP6)%(x)=g"(x)[050; -+ 15 (x)][020,4 I ,e(x)]&%(x) ,

for any £C>(E).
Finally, we give some remarks about Main Theorem.

Remark 2. (i) Trivial bundle, E=MxR (or MXxC). A section of the
trivial bundle can be identified with a function on M and C(E)=C(M). Taking
the trivial connection, i.e. P(x, y)=id., we get a integral transformation acting
for functions on M, which is considered in [12]. So, in this case the limit

a4 fim o HQ e w2 o HOS 1, 052 9)dpay-) - dpg(@)

exists as a function on MX M for fixed ¢, 0<¢<T, under the assumptions (A.0)-
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(A.1). We may denote its limit by

[, rexp-250M9st)  (Cf. Feynman [8))
t,0,x,y

where C;,o; 2, , 1S the path space from y at =0 to x at t=¢, S(y) is the classical
action along the path C; o, , and 9Dg(y) is the ‘notorious’ Feynman measure on
Ct, 0; x,y°

(ii) The bundle of p-forms, E=APT*M. In this bundle, we can induce the
inner product <,>, and the connection D cannonically by g. Namely, for &(x)
=§i1...,p(x)dx“/\---/\dx‘ﬂ, n(x)znll...tp(x)dx“/\~--/\dx1PEC(E), we define the
inner product and the covariant derivative by

(1.6) (), (xDa=g*1(x) -+ g/ 2(x)€1 1 ) (X)7 5y, (X)
and
(1.7) <Dj5>il,..1p(x>:a,str..,p(x)—{].’f.l}msm---1p<x)~ —{ jfp}(x)&y.lp_lk(x).

Then, we get the operator 4 ,=—(1/2)A.—(1/12)Scal,(x): Here A, is the rough
Laplacian defined by g (Cf. [14]), and it is given by

(1.8) (B18) iy V=B iy 2 R (Dforygon0)
'+' 2 Rz ,-1,3'”2(x)£7,1~-j~-~k~-1p(x) ’
>3

where R,,(x) and R,;;"(x) are the component of the Ricci tensor and the curva-
ture tensor of g respectively, and Ay denotes the Hodge-de Rham operator.

(ili) As a generalization of (ii), one may construct the fundamental solution
of the parabolic equation whose infinitesimal generator is the following :

(a) The Lichnerowicz Laplacian acting on tensor fields.

(b) The spinorial Laplacian of Lichnerowicz when M admits a spinorial
structure.

§2. Classical action and parallel translation.

Throughout this paper, notations and definitions concerning the differential
geometry will be refered to [3] and [13].

We recall a geodesic, i.e. a curve y(r) which satisfies the following differ-
ential equation,

2.1)

°r(o) _ 4@ | [ dy’(e) dr*@) _
ot dr? +{Jk}( 2 dr dr
where d/0r denotes the covariant derivative along the curve 7(z). Given x€M,

we define a mapping Exp, from the tangent space T,M into M by Exp,zX=
7(7), where y(z) satisfies (2.1) with the initial conditions y(0)=x, 7(0)=XeT .M.
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By the assumption (A.0), Exp. gives a diffeomorphism from 7 .M onto M.

For each XeT .M, identifying T x(T ;M) with T .M, we may induce naturally
the scalar product in Tx(T ,M). We denote by (dExp,)x the differential mapping
of Exp, at X. Define also the function 6(x, y) on MXM by 6(x, y)=
[detg(dExp.)x| (Cf. [3]). Then, the function p(t, s; x, y) defined by (0.2) can
be written as

2.2) o, s; x, y)=0E—s)"""?p(x, y),

where p(x, y)=80(x, y)'2

To give the estimate of p(x, y), recall a Jacobi field /(z) along the geodesic
r(z). By (A.0)-(A.1) and the Rauch comparison theorem we get the following
(Cf. [4]): Let J(zr) be a Jacobi field along geodesic y(z)=FExp,tw, |o|=1 with
initial conditions J(0)=0, J(0)#0. Then, there exists a positive constant k,
independent of x such that for any yeM,

2.3) r1J O] 1J() |, = (sinh kyr/ k)| JO)| 2
where r=d(x, y). In particular, we have
(2.4) lo(x, y)I=1.

Denote by SM and S M the unit sphere bundle over M and the fibre of
SM at x< M respectively. Using the Jacobi equation and (A.1), we have

LEMMA 2.1. Assume that (A.0)-(A.1) hold. Gwen any x, yEM, there exists
a positive constant k, such that

2.5) [ /@), = (ks exp(kar) ] JO)] .
Moreover, we have

(2.6) lor(x, y)|Skiexplkyr), r=d(x, y),
where p,(x, y)=(d/dr)p(x, Exp.rw), Expro=y, 0&€S.M.

Now, we give an estimate of the higher order derivatives of the functions
o(x, ¥), which will be proved in Appendix.

PROPOSITION 2.2. Assume that (M, g) satisfies (A.0)-(A.1). Then, there exists
a positive constant ks such that for any x, yeM,

.7 [Veo(x, )| Sksexplksr), r=d(x, ), 0=]a]=3.

Next, we recall the parallel transformation of a section of the vector bundle
E by the connection D. Given a curve y(z) on M such that r(s)=y, r(t)=x,
s<t, and &»y)eE,, define é(r)€E,, by
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0 - - N
(2.8) E_‘s(f)zDﬂnf(T):O , E0)=£&(y) .

We write () by PYD, 7)&(y). Since (2.8) is a first order differential equation,
the solution of (2.8) exists uniquely for any given curve y(z). In particular, if
7.(r) be a classical path which satisfies (2.1) with 7.(0)=y, 7.()=x, then we have

PiD, 1)6()=Py(D, 7E3),

where 7.(%)=r.(s+7(—s)), for any x&M and any yeM. Moreover, we write
(D, 7.) by P(x, y) for simplicity.
Since each vector spaces E, and E} are equipped with the inner products,
we can induce the inner product on E,XE%, which will be denoted by <, >, .
That is, given &(x, y)=8(x)XEX*(y), n(x, y)=n(x)Xn*(y), we put

(2.9) &(x, 3), 9(x, IV @, p=7XEx), N(x)>z-<E*(¥), n*(¥)y.
Also, we denote the norm on E,XE% by
(2.10) [6(x, )|, p=ZXE(x, ¥), &(x, Y Ew -

We extend V and D to a tensor fields with the values in E, and denote
also them by the same letter.
The following is obvious from the definition (2.8) (Cf. [2]):

LEMMA 2.3. For any x, yeM, we get
(i) P(x, v) is a smooth (local) section on EXRE*.
(ii) P(x, x)=Id., the identity operator on E,.
(iii) <Nd*x, y), D.P(x, Y)>,=0.
LEMMA 2.4. Assume (A.0)-(A.2). Given £€C=(E), we get
(2.11) 1PCx, MEWN=IEN,,

for any x, yeM.

Proof. Consider (2.8). Then, we get

2.12) %@m, )70 =2(Ds (@), E@Dye
=0.

Using (2.12) and (A.2), we get (2.11).
The following properties are useful throughout our computations :

LEMMA 2.5. P(x, y) satisfies the following.
(2.13) DoP(x, Yz=y=0, ARZP(x, y)iz=,=0.
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(2.14) DyP(x, y)iy=2=0, AJP(x, y)iy=-=0.

Proof. Let {eq.(y)}2-;, be an orthonormal basis at E,, where dim E,=p.
Extend {e,} to a local frame field so that they are parallel. Take a normal

gooringte (', ==+, y™) at y and denote by I} the coefficients of D. By putting
E(r)=£%1)ey(7:(7)), (2.8) can be written as

dé(z) . dr'(c) gy
(2.15) Ir + 18 (ro(2)) PP £%(z)=0.

So, using the Taylor expansion, we can write &(z) by
(2.16) £9r)=E%0)+ (¥ (0)z+(1/2)(E4)"(0)z2+0(%),

where (£%)"(0)=(d/d7)é*(0), etc. Differentiating (2.15) successively with respect
to 7, we get

(2.17) €Y (O)=—T8(YE(y)
(2.18) 9" (O)=—[0. Y'Y +TenNDE»)Y Y1),
where Exp,Y=x, because {J.’k}(y)=o. Substituting (2.17) and (2.18) into (2.16)
and putting z=1, we have
(2.19) £()=P(x, )8()
=[0§—15(y)Y’ —1/2)[0.8(y)YY?
+LEN )Y YII+H0(Y*)]E(y) ,

where P§(x, y) is the component of P(x, y) with respect to {e,}. Recall
(2.20) Dz Dy, jP3(x, y)=0,0,;P§(x, y)+0:L,4(Y)Pi(x, y)

+18(Y )0, Pi(x, y)+1W3(Y)0;Ps(x, ¥)

=—(1/2)[0:1;8(3)+0; 1§ () +21 (0 5(»)]
F0 L)+ (9)+0Y),

which proves the second equality of (2.13). For (2.14), remark that for any
x, ze M, we have

(2.22) P(x, z2)P(z, x)=P(x, x).

Differentiating (2.22) covariantly and using Lemma 2.3 (ii) and (2.13), we obtain
(2.14).

Lastly, we get an estimate for the higher order derivatives of P(x, y), which
will be shown in Appendix.
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PROPOSITION 2.6. Assume that (M, g) satisfies (A.0)-(A.2). Then, there exists
a positive constant k; such that for any x, yeM and for 0= |a|<3,

{ [(D2)*P(x, )| (z,yy = kiexp(kir),
[(DY*P(x, M@ p=kiexplkir), r=d(x, ).

(2.13)

§3. Basic properties of H(4;1t, s).

Recall the operator H(4;t, s) in (0.1). Using the notations as in §2, it can
be written as follows :

@1  HAst, S)E(X)=(27r2“)“"”2SMp(t, s; x, y)[exp(—A(d*(x, y)/2(t—s))]

XP(x, y)E(y)dp(y)
for §€Cy(E).
In this section, we shall give some properties of (3.1). Using (2.4) and (2.11)
and copying the proof of Lemma 2.1 [13], we get the following, which implies
the part of (a) in Proposition 1.1:

PROPOSITION 3.1. Assume that (M, g) satisfies (A.0)-(A.2) and fix T>0
arbitrarily. Then, the operator H(;t, s) is stable, that is, there exists a positive
constants C,=C,(A; T) such that

(3.2) [H(; t, $)6(x) || L2 @ =(exp(Cit—$NEll 2o
for 0=s<t<T and E=CY(E).

Next, we study the behavior of H(A;t, s) as t]s. Namely, we have the
following which is the part (b) in Proposition 1.1:

PROPOSITION 3.2. Under the same assumptions as in Proposition 3.1, we have
for any 0=s<t<T,

(3.3) lim | A3 8, $)6—€lz2e=0,

for any E€CP(E). Therefore, for fixed s=0, putting H(A; s, s)=the identity
transformation, we have the mapping from t€[s, T) to HQA;t, s)e LXE), strongly
continuous in t for each € L*(E). Also, the similar statement in s as above holds.

Proof. By Proposition 3.1, it is sufficient to prove (3.3) for each £€Cy(E).
We define a cut off function XeCy(M) as X(x)=1 if d(x, suppé)=<2 and =0 if
d(x, supp &£)=3. We show the following :

(3.4 lim [ H,2; t, 96—l 20 =0,
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(3.5 lim | (3 ¢, )82 =0,

where H,(4;¢t, s)=X(x)H(A;t, s)é(x) and Hy(4;t, s)=(1—X(x)H(A;t, s)&(x).
For proving (3.4), putting y=Exp.r0, oS, M, we get

E(x, »)=E(x)+&(x; rw), plx, y)=14+p:(x; r0),
where &£(x, y)=P(x, )é(y)€E, and

£i(x; rw)=S:Drc<r>§(x, 7.(0))dt

o5 )= (d/d0)p(x, 1)z,

where 7.(z)=FExp,trw. Using Lemma 2.1 and Proposition 2.6, we get the follow-
ing, which is similar to that in Proposition 2.2, [13]:

(B.6)  |H@; 1, )x)—§(x) | = Cx)vol(S™~3)(t—5)"" sup [| DE |+ [€].]
><S?rmexp(—[1r2/2(t—8)—ks(t—3)7’])d7’,

with some positive constants C, and ks. Therefore, by integrating (3.6), there
exists a positive constant C;=Cj3(A; T) depending on the support of & such that

CX) 1Hi(45 ¢, S)E~$Hmuz>§C£<t—5)”2§23 [IDél+1€l=],

which gives (3.4).

Also, following the same way as in Proposition 2.2, [13] and using Lemma
2.1, Proposition 2.2 and Proposition 2.6, we get (3.5).

For later use, we give some properties of the kernel function H(4;t, s; x, y)
of (3.1), which is proved analogously as in Proposition 3.2.

LEmMMA 3.3. Assume (A.0)-(A.2). Let &(z, y) be a continuous, bounded
mapping from [s, t]XM to E such that for any fixed =, &§(z, -)EC(E), and put

(38) &, v =] Ha;1, 73 x, DIEE 2dpay),

where 0=s<t<t<T, and § is the inner product between E, and E%. Then, the
following properties hold :

(10 @/@Ee T 0=] @/HR; L T x, VIEE D),
(3.11) (D)€, =5 x)=SM(Dz>“H(Z; t, T x, 9)3€(, ¥)dpe(y),
0=|al=2,

and
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(3.12) zl‘g’s &t, ©; x)=§(s, x)

Similarly, let £*(z, y) be a continuous, bounded mapping from [s, t]XM to
E* such that for each fixed z, &*(zr, -)€C(E*). We get

LEMMA 3.4. Under the same assumptions as in Lemma 3.3, we have

3.13) 8%12 SMG*(T, x)iHQ@; 1, 55 x, 3)dp(x)=E*(C, x).

,
-8

§4. Convergence of the product integral in the operator norm.

In this section we shall show the parts (a) and (b) in Theorem 1.2. Take
T>0 arbitrarily and fix it.

By the direct computation using the Hamilton-Jacobi equation for S(t, s; x, ),
the continuity equation for p(¢, s; x, y) (Cf. Lemma 1.1 and Lemma 1.5 in [13]),
and Lemma 2.3 (iii), we have the following properties for the kernel function
HQA;t s;x, 9):

4.1) [(0/0s)+Q2ATAYIHQA; L, 55 %, ¥)
=(22)"2rA7) ™%~ 25[2{N yp, D, P>+A,pP+pALP]

and

4.2) [(@/0t)—@N)ARIH(A;t, s; x, ¥)
=—(22)2x27Y) ™2~ 5[2(Vp, D.P)+A.0P+pA2P].

For £CF(E) and 0<s<t<t’'<T, we may write

4.3) HQ@;t41, $)8(x)—HQ; t+t, thYHQA; t', s)&(x)

=[ HA 1. ¥, 55 2, 93D,

where
H@;t, ¢, s;5x, 9)

=HQ;t+t, s; x, y)—SMH(Z; 4t v x, 2FHQA Vx5 2, 3)dp,(2).

Since H(A;1t, s; x, y) has a singularity at t=s, we define, for positive e,

4.4 He@;¢8, ¢, 8%, 9)

_(t 4 bt g x H: 6. S
<[l ] HGs e, 055, DHQ 6, 552, 3)dp@),

which satisfies lin‘} HeQA;t, t, s; x, y)=HQA;t t', s; x, y) for any (¢, t/, s, x, y),
el
x#7y. Exchanging the differentiation and the integral in (4.4), we have
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(4.5) HeQs8, 0,85 %, 9)
=—( ritr—omrpnae— 9] Ry

<[ Br@n v, s 055, 9, ddpdo,
where
(4.6) hA;tt, s, 0%, 9, 2)
=[A.0(x, 2)—A;0(y, 2)][exp(—A[SE+t', 0 x, 2)+S(a, x5 2, y)])]

XP(x, 2)§P(z, y),
4.7) ho(A;t,t,s; %, 9, 2)

=[exp(—A[S{¢t+t', 0; x, 2)+S(0, s; 2, )]

X[{V.p0(x, 2), D.P(x, 2)),}P(z, v)—P(x, 2)}<N.(y, 2), D,P(, 2)>.]
and

(4.8) hy(A;t, t',s,0; %, 9, 2)
=[exp(—A[S(t+t, a; x, 2)+S(e, s; 2, )Dplx, 2)plz, »)
X[Azp(x) Z)fP(Z, y)_P(X, Z)fAzP(Zy y)] .

Consider each terms h;(A;2,t/, s, 0;x, v, 2), i=1, 2, 3, in (4.6-8). Remark that
there exists a positive constant %, such that

4.9) [A,0(x, 2)—A,p(x, 2).Z=II§S:IVfE<T>Azp(x, 7))l de
éksd(xy Z)eXp(ksd(x» Z)) ’

and

(4.10) [8,0(x, 2)12=2—8,0(y, 2)1,=y| Sksd(x, y)exp(ked(x, ¥))

because of Proposition 2.2. By (4.9), (4.10) and using Proposition 2.6, we have
with some constant k,>0,

(4-11) [hl(z; t: t,y S, 0, X, Y, Z)] (z,y)
=2ko[d(x, z)exp(ksd(x, 2))+d(y, z)exp(ksd(y, 2))]
xexp(—A[S¢+t', a; x, 2)+S(a, s 2, ¥)1).
By a similar computation as in [13] using Proposition 2.2 and 2.6, there
exists a constant Cy=C,(A; T)>0 such that for any /=1, 2, 3,
4.12) S S (27272t +t'— )] ™[22 A" (g —s)] ™2
MIM
XhiA;t, 1,5, 0;%, 9, 2)| @ pdp2)dp,(y)
ZCLE+H —0) P+ (o —5)"],
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and

4.13) SMSM[an“(t—!—t’—a)]“’"’2[27r2“(0‘—s)]""’2
X hi@A5t, 8, s, 0;%, 9, )| zpndpegz)dpx)
SGLE+H —a) 24 (0—s)VE].

Taking a limit as eé—0+, and doing the similar computations as in [13], §3,
we have

PROPOSITION 4.1. For any t, t/, s, 0=<s<t'<t<t+t'<T and &= L*E), the
following inequality holds:

(4.14) [H(A; t+t, )§—HQ@;t+t, )HQA; 1, $)llrem
G+ =)=+ =) *1él 2w »
with some constant Co=Cy(A; T).

We devide a closed interval [0, t], 0<t<T, into subintervals, i.e.
4.15) oy 0=t,<t;<-- <ty <ty=t, t;=(/N), 7=0, 1, ---, N.
And we define the operator
4.16) HQ; on|)=HQ;t, ty-y) - H(A; 1y, 0).

Combining with Proposition 4.1 and the similar argument as in Lemma 4.6,
[13], we have the following, which is the part (b) in Theorem 1.2 (Cf. [6]).

PROPOSITION 4.2.  Assume that (M, g) satisfies (A.0)-(A.2). Then, {HQA; ax|t)}
forms a Cauchy sequence in B(L*E)). Therefore, there exists a C° semi-group
H(;t), t>0, in L*E) such that for any t>0,

4.17) I}IEOHH(Z; H—HQ@; oxlDl2wem=0,
Moreover, there exists a positive constant Co=Cq( ; T) such that
(4.18) IH@; )—HQ@; on|t)ll g wem) <CitN *(exp(Cst''?)) .
Remark. By a slight modification of the above, we can generalize Proposi-

tion 4.2 for arbitrary subdivision of [0, ] (Cf. [13] and [10]).

§5. Computation of the infinitesimal generator.

To finish the proof of Theorem 1.2, we only compute the infinitesimal
generator of H(4;?). Namely, we get



POINTWISE CONVERGENCE 207
PROPOSITION 5.1.  Assume that (M, g) satisfies (A.0)-(A.2). Then,
G.1) @/0)H (A5 )§(x)=2""[(1/2)A2—(1/12)Scal ((x)]H (2 ; )§(x)
for E€CT(E).

To prove the above proposition, we remark the following, which proved as
same as in Lemma 4.2, [13],

LEMMA 5.2. Given E€CT(E), we have
(5.2) 0/ H (R ; 1)é(x)11-0=(0/0)H(A ; t, 0)E(x) 1= .

Since H(A;1t) is a C° semi-group, it is sufficient for proving Proposition 5.1
to show the following :

PROPOSITION 5.3. Under the same assumptions as in Proposition 5.1, we have
for any E€CY(E) and x€M,

(5.3) H(;t, 0)&(x)—&(x)=tA" 4 £(x)+1G(t; &),
where I ,6(x)=[(1/2)A2—(1/12)Scal (x)]&(x) and G(t; §) satisfies
(5.4) lim |G Ol 2w =0.
Proof. Recall (4.2). By using the integration by parts, we get
(5.5) @/0)H(A; t, 0)6(x)—(27/2)H(A ; t, 0)ARE(x)
=2"(27r2"t)‘”‘“SM[eXp(—XS(t, 05 x, ¥)1Qx, »E)dp(y),
where

(5.6) Qx, y»)=—1/2)A,p(x, y)P(x, y)+<y0(x, ¥), D,P(x, y)>,
+(1/2)p(x, »)AYP(x, ¥).

Noticing that A, p(x, ¥)iy-a=(1/6)Scal (x) (Cf. [3], [13]), we have

6.7 AG@; &)=/ HQ; t, 0&(x)—(1/2)HQ ; t, 0APE(x)
+(1/12)Scal ,(x)&(x) ,

where

(5.8) G@; §)=1/2)[HA; ¢, 0)—I]&(x)

—(/2) x| Texp(—25(, 0; x, 3)]

X [g:(x, y)+g(x, )€ du (),
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{ g1(x, »)=[A,p(x, y)—A,0(x, ¥)iz=y]P(x, ¥),

(5.9
q:(x, y)=2yp(x, 3), DoP(x, y)>+p(x, y)A,P(x, y)

Using Proposition 3.2, we have, for some constant C,=C,(1; T)>0,

(5.10) [H(; t, 0)APE(x)—APE(x) ]| 2.my
=Ct? ggg[lvélz-l- [§1:1+0¢5 8),

and

(5.11) lim O(t; §)=0.

t-0x
Also, by Proposition 2.2-2.6, we have

(6.12) lqi(x, W)@ =ksexplhed(x, y)), =1, 2.

for any x, yeM with some constant k,>0. Then, we get for some constant
Cs=Cs(2; T),

(5.13) IG5 e =[Cst"* exp(bgt ) ]11€] 22 ca) -

Remarking H(4;t, 0)&(x)—$(x)=Si(d/da)H(2; o, 0)&(x)de, we have the desired
results.

Proposition 5.3 gives the part (¢) in Theorem 1.2. By §§4-5, we finish to
prove Theorem 1.2 completely.

Now, for a later use in § 6, we prepare the following properties: Let &(z, y)
be a mapping from [s, t{]XM into E which satisfies

(i) &z, -)eC(E) for each fixed z<[s, t].

(ii) &(z, y) is Holder continuous in [s, T)X M.

(iii) Given any closed interval [s,, t;]1C[s, t1, &(z, y) is bounded on [s, f,]
X M. .

() For any tefs, ), [\de 1660 »lydpy)<+es.

PROPOSITION 5.4. Assume that (M, g) satisfies (A.0)-(A.2). Let &(z, y) be
as above. Put &G, t; x) and E(t, x) by

&t v =] HQ;t, 73 5, 98 ndp),

g, x)=§:§(t, T; x)dt,

Then, there exists a positive constant C, depending only the closed interval [s;, t;]
such that

(5.14) [@/006¢, 75 ). =Celt—7)~ 472, 5, Se<t<ty,
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where 1 is the Hilder exponent of & at (¢, x). Also, in (5.14) the same inequalities
replacing 8/dt by D, and A2 hold. Moreover, we have

(5.15) .80, x)=S:Afze(t, 5 0)dr,
and
6.16) @/ange, n=8a, 9+ @z, ; vde.

Proof. Given any (¢, x)[s, T)XM, let v be the Holder exponent of & at
this point. Take a closed interval [s,, #;] such that s<s;<t;<T. Then, there
exists a positive constant C; and d, 0<d<1, such that s,<¢—d and if [t—7|<d
and d(x, y)<0, then

G17) |P(x, 38, 9)—80, H|.ZCYlt—z|7+(d(x, 3)))
and if t—0<r<t<t’, then

.18) | @t v, o5 x, 98 dps)=—Li—T+1s,
where

I, (@/0t"hH(A; ', =; x, y)[P(y, x)6, x)—&(x, y)]dps(y),

Il

Sd(z, y)so

I,

Il

o @ROHA 75 5, 9)IPG, 06 =&, 9)1dps),

1=[ HG ¥, 75 2 9P, D66 D).
So, there exists a constant C{>0 such that
(5.19) ], =C{@—o)" 10, | L1,=CY,  [Is] . =C{E—7)"1/®
which implies if t—d=t’, then
(5.20) [@/0DEQR;t, ;5 x)| . SCY(H —7)~ 41

with some constant C#/>0. On the other hand, if s,<t<t—s, then t'—7=d>0.
Therefore, we see that (0/0t')é(A;t’, z; x) is uniformly bounded in (#, z, x),
because of the form (9/0)H(A;t’, z; x, y) and (iii) of the properties of & So,
we have the estimate (5.16). Other estimates are obviously obtained. Now, by
properties (iii) and (iv) of &(z, x), we have for some constant C,,

D261, ©; x)| 2= Cot—7)~ 4 7T/®

[A26(A5 2, ©; 0)o=Calt—)" 4772, s =c=t<dy.
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Remarking Sb(t——r)“"'7’2’dr< +co, we can interchanging the operator 4, and
s

the integral. So, we have (5.15). Similarly, we get (5.16).
As a direct consequence of Proposition 5.4, and Lemma 3.3, we have

COROLLARY 5.5. Under the same notations and assumptions as in Proposition
5.4, we have

6.21) H.E x)=5:drgﬂﬂxH(l; o x, 2T, Ddpy),

6.22)  @/NEW V=8, )+ de| @/OHR; T, 55 %, 98 Ddp).

§6. Construction of the fundamental solution.

To prove the main theorem stated in the introduction, we shall construct
the fundamental solution for the following system of parabolic equations :

6.1) (0/00)8(t, x)=2""H 5, x), &0, x)=&(x)EC(E),

where 4 ,=(1/2)A2—(1/12)Scal ,(x).

Throughout this section, we assume the assumptions (A.0)-(A.2). We denote
by L the differential operator —(@/0t)+A7*4,. Recall the kernel function
H(;t,s; x,y) of HA;t, s), 0=s<t<T in (4.1). Set

(6.2) Jo(A;t, s x, v)=LHQA;t, s;x, y)
=—[(0/0)—A"" % JHQA;t, s; %, ¥).

LEMMA 6.1. For any 0=s<t<T and x, yEM, there exists positive constants
M,, ke and My,=M,(2; T) such that

6.3) [HQA5t 55 %, M@

SMA™Ht—s) ™" exp[—A(d*(x, y)/(2(E—s))]
and
<6'4) 1]0(2; t,' S, X, y)l(-l'.y)

S My(M,/e)(exp(ksT /eA)A™ 3t —s)~m-D/2
xexp[—A(e*d*(x, y)/@2t—s)],
where e¥=1—e¢.

Proof. (6.3) is easily obtained by the form (3.1) and Lemma 2.4. For (6.4),
we have by (4.1)
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(6.5) [Jo(Ast, 55 %, M@
SMA™MP kgt —5)"™""d(x, y)
xexp[—A(d*(x, y)/@2(t—s))—ksd(x, y))]

where k; is a positive constant. Putting the function F(r), »=0, by

F(r)=r[exp(ksr—Aer?/2E—s))],
we have

(6.6) F(r)S(22e)7(t— )" *[hs(t— )1 +((ks)*(t— ) +44e)"%]
X [exp((44e)~ (ks(t—s)+((ks)*(t—5)+44))!*(t —5)1/%)]
=Cua e Lexp(k T /ed)](t—s)""2,

with some constants C{=C4(A; T) and k., Substituting (6.6) into (6.5), we get,
for any x, yeM,

6.7) [JoA5t, 55 %, v
<M, Ciam 22 1 [exp(keT /eA)](t—s)~m-D/2

xexp[—A(e*d*(x, )/(2(t—s))]
So, we get Lemma 6.1.

Now, we put
t
68 Lt 55w 0=\ da| J@it, 05 x, DU 0, 552 Ddpsla).

LEMMA 6.2. For any 0=s<t<T, and x, yE M, there exists positive constants
M,=M,(A; T) such that for any 0<e<1/2,

6.9) [JiA5t, 5% M@
S M(M,/e)2(e¥)-™2[exp(keT /eA)]A- ™2 2(t—s)~ (m/n+2
X B(3/2: 3/2)[exp(—A(e**d*(x, y)/2(t—s))],

where e*¥*=1—2¢, and B( :) is the Beta function.
Proof. First, we put
610 LAty s, 05 % 9)=| Jlkit, 055, DLR; 0, 552, Ndps(a).

By the comparison theorem, we have d*(z, y)=|Z—Y|% if we can write y=
Exp,Y and z=FExp,Z. Thus, we get
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|]1('2; t; S, g, X, y)' (z,y)
< M3M3Lexp(k,T/eA)JAm =44t — ) (m-DIx(g —g)-(m-DI2

X[, exp —((e*| Z[*/2t—0)

+e*|Z-Y |*/Q2(e—s))—k|Z])dZ,
with some constant %2;>0. Since

|Z|2/@Et—ao)N+|Z—Y |?/(2(c—s))
=[{—s)/@t—0)o—sN|Z—((t—a)/t—s)Y |?

+1/@E—=sMIY %
we have

(6.11) 1458 5,05 %, Ve
S MM, /&) [exp2keT /eA)]A™ 42/ Ae¥)™/2(t—s)~™/2
X (t—o)* (o —s)"*[exp —((Ae*d*(x, y)/(RE—s))—ksd(x, )]

x[, exp(—(12 "= k2t—0)a—5)/Gert—s)| 2/ a2’

because of 0<(t—0)/(t—s)<1. By an easy computation, we get

(6.12) |15t 8,05 %, My
=(m /221 ) MM,/ &)*(e*) ™22 ™0 ~4[exp(2kT /eA)]
X (t—a) ¥ g—s)2(t—s) ™ 2vol(S™ ) [exp(t—s) k2/8Ae*]
X [exp(—A(e*d™(x, y)/Q2(t—s))—ksd(x, y)))].

Therefore, there exists positive constants M, and k, such that we}have

(6.13) 11258, 85 %, 9] @w
S MY(M,/e)(e*) ™22 ™ 4 [exp(kT /eA)]*(t—s)" ™/

X [exp(—A(e**d*(x, )/@t—s ]| (t—0)"a—9)""dg

< MM /)% ™A™ [exp(iT/eD]H(t—s) 0"
X B(3/2; 3/2) exp(—A(e**d*(x, 3)/@t—s))],

where e**=1—2¢, which gives Lemma 6.2.
Successively, we define, for n=1,
610 T3t 552 0={ do| 125t 05 %, D2aniBs 0, 532 Ddpmela).

By a similar computation as above, we get
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LEMMA 6.3. For any 0=s<t<T and x, yeM, the following estimate holds:
Given any 0<e<1/2,

(6.15) JA5t, 852, My
§M6L+1(M2/6)n+1[exp(k7T/sl)]n+1(8*)—m+n/2(t_s)-(m—1-3n)/2

X AMIETRAD ﬁ13(3/2 :3(a+1)/2)[exp(—A(e**d*(x, ¥)/2(—s)))]

(nz=1),

where e¥*=1—2¢.
Remark that

f[ﬂ B(3/2:3(a+1)/2)=I"(3/2)"/I"3(n+1)/2)< kG /n!.

for some positive constant k,. Then, there exists positive constants M;=M;(4; T)
and k%, such that

(6.16) @t 555 Dlay
= MoMoam+=*[exp((Mye™27(s%) ™ %) expley T/ 2)](¢ —s)™m 0
X [exp My(t—s)"*Ilexp —A(s*d*(x, )/2t—)].

Thus, on {({—s)|[0=s<t<T} XMXM, we can define a function
(6.17) KQ;t, 555, 9)= 3351, 85 %, 9)

and for any C>1, on {({, s)|0=s<i<T, C'<t—s<C} X MXM, the infinite sum
of (6.17) converges uniformly on each compact set, and we have

(6.18) |K(A;t, 85 % My
S M M,A™ 2% [exp(M,se™'A7*(e¥) ™/ exp(k, T /2¢))][exp M(t—s)]
X(t—s)" MV 2exp —A(e**d*(x, ¥)/Q2(t—s)].

Moreover, by a direct computation, we get

LEMMA 6.4. Let J,(2;t, s; x, y) be the function defined by (6.14). For any
0<s<t<T, there exist constants My=M,A; T)>0 and k,,>0 such that

619 [ 1@t 555 Dl pden)
SMMA™* 2 [exp((M,e™ A 2(e*) ™2 exp( k1, T/ 4e))1[exp(M,(t—s))]

6200 B[ 1@t 555 9lendu)
S MM A2 Lexp(Mie A7) ™ /%) exp(k1 T /Ae)) ] [exp(M (I —s))]
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Therefore, we have

6.21) SMIK(J 1552 ) dits(y)

SMM A2 [exp(M e A7%(e*)™™/% exp(k1oT /A¢))]
X [exp(M (t—s))](t—s)'*

(6.22) SMIK(Z 01551, ) e pdpg(x)

SMMA™2 2 [exp((Me*A7%(e*) ™% exp(k,, T/ A¢))]
X [exp(M,(t—s))](t—s)"2.

Now, fix (s, y) and consider &, z2)=K(A;t, s; x, z). Applying Corollary 5.5,
we have

(6.23) j[zS:doSMH(l; 1,05 x, K@ 0, 532, 9)dps)

=('do| w.HGst 05 %, KR 0,552, 9)dpg),
Thus, we get

(6.24) (8/3t)S:daSMH(Z; ta;x, KR 0, 552, v)dps2)

=K@st, 5%, »+| dol @o0HG 1 05 %, DIKG 0, 552, )dp).
So, we have

—[(B/at)—l'lﬂ[,]S:doSMH(Z; ta:x, KR 0, 52, 9)dp(2)

=K(@;t, s; x, y)-l—S:doSMJo(l it 0 x, 2)iK@A; 0, 552, y)dp,(2)
=—J;t, s; %, 9).
Therefore, we obtain the following :
PROPOSITION 6.5. Under the same assumptions and notations as above, put
(6.25) HQ;t s;x,9)
=HQA;t, s; x, y)—i—S:daSMH(Z; t,a;x, 2fKQA; 0, s;2 y)dpz).

Then, the following properties hold :
(i) HQ;t, s;x, y) is continuous in {{t, s)|0=s<t<T} XMXM.
(ii) H(A;t, s; x, y) satisfies
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(6.26) 0/0)H QA5 t, s; x, »)=A""H HQA;t, s; %, )
(iii) There exists a positive constant Ms=My(A; T) such that

(6.27) [HQ;t, 55 %, 9@
S MoM:A™*[exp((Mse™'A7%(e*)"™/* exp(k, T /Ae))1[exp(M;(t—s))]
x [exp —A(e**d*(x, y)/(2(t—s))]
and
[ JHGt 552 ) e pdeo)

S M, M2 *[exp(Mse™*27%(e*)"™/* exp(k.,T'/A¢)) ] [exp(Ms(t—s))]

SMIH(Z 3t S5 %, Ml ndps(y)
S M MA™*[exp((Mse™*27%(e*)"™/* exp(k;oT /2e)) ] [exp(Ms(t—s))] .

(iv) Therefore, defining H(Z;t, s)é(x)=SMH(2;t, s;x, Y)E)du(y), we have a

bounded linear operator H(A;t, s) on LYE) and is C° semi-group with infinitesimal
generator A9 in (6.26).

Proposition 6.5 shows that H(A;t, s; x, y) defined by (6.25) determines a
fundamental solution for the parabolic equation (6.1).

Remark. Cheng et al. [5] gives the upper estimate for the heat kernel of
Laplace-Beltrami operator acting on functions only by assuming the boundedness
of the curvature tensor of g.

By a similar argument as in Lemma 4.4, we have

LEMMA 6.6. Let &(z, z) be a bounded continuous mapping from [s, t] XM to
E such that for any fixed t<[s, t], &(z, -)eC(E). Then, the following equalities
hold uniformly on any compact set on M:

lim| &, DPHQ; 7, 55 %, 9)dp(0=EGs, ),
(6.28)
tim{ Bt 752, 0266, 2dp@=80, 9).

Tt

§7. Convergence of the product integral as the kernel function.

In this section, we shall prove Theorem 1.3, which gives the main theorem
in the introduction, using the fundamental solution constructed in §6. Let [0, £]
be any closed interval such that 0<t<T, and T be any fixed positive number.
Let o5 be a N-equal subdivision of [0, ¢];

(7.1) oy 0=t <t, <<ty <ty=t, t,=(/N)t.
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We define a operator H(; oy|t) associated with the subdivision oy :
(7.2) HQ; ox|)=HA;t, ty )HQA; tyy, tyoo) - HQA5 15, 0),

and we denote by H(A; ox|t; x, y) the kernel function of the operator (7.2), i.e.

7.3) H@s onlts x, )= | HGt, oo 2, 2wty
8 HQAst, 052, 3)dpg(zn-n) - dpglzy),

where H(A;t, s; x, y) is defined in (4.1).
To prove Theorem 1.3, we need several steps as below. First, put

(7.4) RA;t, s)=H(A;t, s)—H(A;t, s)

and denote by R(4;¢, s; x, y) the kernel function of (7.4). Then, we get the
following, which gives Corollary stated in §0:

PROPOSITION 7.1. For any 0<e<1/2, there exists a positive constant y;=
7:(4; T, €) such that

(7.5) [R5t 85 %, My
SMopa(t—s)" ™22 [exp —A(e**d*(x, y)/(2(t—s)))]

where e¥*=1—2¢.
Proof. Combining (6.25) with (7.4), we have
(7.6) [R(A5t, 55 %, v

§M07’15:(f—o')""/2(a.—s)-(m—n/z

XST A, EXP —AE**(| Z 2/ 2t—0)—|Z—=Y |}/(2(e—s))dZde
=Mopi(t—s)~ ™2 72[exp —A(e**d*(x, )/Q(t—s)],

by a similar computations as in §6. Thus, we get (7.5).
Now, we obtain
7.7) H; 05 t)—H(;1)
=H;t, ty-1) - HA; t, 00— H(A; )
=[H@;t, ty-)+RQA; 1, ty_)]
~[H@A;t, 00+R@A;t, 0J—H@A;t, 0).

Using the evolutional property of H(Z;¢t, s), we shall write down the right hand
side of (7.7). Let
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(ah Tty Qg ﬁl, B) ,Bk-H); k:l, T N’ al>07 ,Bi.Z—O;
(7.8) P= k .
1’2=1[a1;+‘81]+13k+1:N
Also, we denote by
(7.9 Aj=ay+ - +a,, B;=fi+ - +8,
]gl B AOZO, BOZO-
Thus, A;x+B,=N. The right hand side of (7.7) is written by
(7.10) HQA;oy|t)—HQ;1)
=2(a1,-~~.ak;ﬁ;w-,ﬁkﬂ)eng(ah ey By, Beer)
where
(7.11) T(ay, =, Qg ; 191, ty ﬂkﬂ)
=H(;t, (Ax+But/N)
XR(A; (Ag+Bpt/N, (Ax—1+Bpt/N) -
< R(A; (Ap-1+14+Bpt/N, (Ar-1+Bi)t/N)
XH(A; (Ap-1+Be)t/N, (Ap-1+B-1)t/N)
X R(A; (A,+By)t/N, (A,—1+B)t/N) -+
-+ R(A; 14+Bt/N, Bit/N)
X H(A; Bit/N, Q).
Now, we put
(7.12) R9; A,, B;It)=R(; (A,+Byt/N, (A;—1+Bt/n) -
- R(A; (A,-1+14-B)t/N, (A,-1+B))t/N)
and denote by R (2; A,, B;|t; x, y) the kernel function of (7.12).

LEMMA 7.2. Given any 0<e<1/3, there exists a positive constant y,=y,(3; T, ¢)
and ys=ys(A; T, €) such that

(7.13) |IRPQA; A, Byt %, Ml
=Mgoygifexp(ys(a;/N)tIE/N)**i'*(at/N)~-™*

X [exp —A(e***d*(x, y)/(2t;/N))]
where e***=1—3¢,

Proof. Generally, take ¢, ---, t,[0, #), 0=t,<---<t,<t, and put

(7.14) R te, =+, t)=R(4; ta, ta-s) = R(A; 1 1)
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We denote by R(4;t,, -, t1; x, ¥) the kernel function of (7.14). To prove (7.13),
it is sufficient to get the following estimate for (7.14):

(715) [R(Z;ta; ) tl)l(z,y)
< M5 787 [exp(ralta—t)] L (thas—ta)*ta—t) ™
X [exp —Ae™**d(x, 3)/@ta—t)]

We shall show (7.15) by induction. Remark that (7.15) holds for a=1 easily by
Lemma 7.1. Assume that (7.15) holds for a—1=1. Then, by a similar com-
putation as in Lemma 7.1, we have

(7.16) [R(l;ta’ ) tl)[(r.y)
éMé'—ng'z[eXD(Ta(fa-1—tl)),ﬁz(tk+1—tk)slz(ta—fa—l)“(m'”/z
X(ta'—tl)_m/ZST ,EXP =T (| Z*/Qta—ta-1)
—|Z=Y |*/@¢.—t))dZ

because of exp —(Ae|Z|2/Q2(ta—to-1))—k|Z|)<exp((ta—tqa-1)k2/24e. By (7.16), we
get

(7.17) [R5 ta, ) t)| @
<Mersnlexp ralta—t)] T (=t 2(ta—t) ™
X [exp —(2e™**(d*(x, 3)/Qta—t))]
XSTrMexp —(Ae***| Z"|2/2)d Z".

Therefore, we have (7.15).

Define a operator S“’(1;t) by
(7.18) SP;)=H(4; (A;+B;)t/N, (A;+Bpt/N)RP(4; A,, Bjt) -+
- HQA; (Ai+B)t/N, (Ai+B)t/N)R®(A; Ay, Bit)H(A; Bit/N, 0)

and we denote by SY¥(4;¢; x, y) the kernel function of S?(4;¢). Using (7.13)
and doing the similar computations as above, we have

(7.19) [SP@5t; %, Ve
SMAyitilexp(rs(t/N)Bp1(t/N)*4i'*(A;+ Bt/ N)=™2
X [exp —(Ae®(d¥(x, y)/(2(A;+B)t/N))]

where ¢ =1—A4e.

Proof of Theorem 1.3. Combining (7.11) and (7.19), we get
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(7.20) Doy aps pro Brepee | T(@s, o5 s iy, oy Brsrs X, Ml
SMetettpgteti[exp(yst) J(¢/N )4 #/% ™ 2[exp —(Ae @ d¥(x, ¥)/21))]
= Muyst™™[exp(ys) (14 Mays(t/N)**)¥ —1)[exp — (e d¥(x, y)/21)]
= MoysLexp(yst)Jt™/*(t/N)**[exp(Mays(t/N)""*)1lexp —(2e @ d*(x, y)/21)]

where g(-+-; -+ ; x, y) is the kernel function of (7.11) and ¢ =1—4¢. So, Theo-
rem 1.3 is obtained.

Remark. The above computation can be slightly moved for general subdivi-
sion of [0, ¢] (Cf. [11]).

Appendix. Growth of the higher order derivatives of p(x, y) and P(x, »).

In this appendix, we shall show the growth estimates of p(x, y) and P(x, y),
defined by §2, under the assumptions (A.0)-(A.2). First, we give the estimate
for o(x, y). Namely, we have

PROPOSITION A.l. Assume that (A.0)-(A.1) holds. Then, there exists a posi-
tive constant k, such that

(1) [Vio(x, )| Skdexp k), r=d(x,y), 0=lal=3,
for any x, yEM.

To show the above proposition, we prepare some lemmas. Remark that the
exponential mapping is a diffeomorphism from T .M onto M by the assumptions.
Thus, we can introduce the normal coordinate around x (Cf. [13] for the precise
notation). By the identification T .M=S.MXR*, we shall use the normal polar
coordinate (r, w), where w=(w? -, ®™) in a local coordinate of S, M=
{weT . M; |w|,=1} and reR*. Choosing an orthonormal vectors e¢,(®), **-, en(®),
at a point (r, w), which are perpendicular to radial axis, we may assume that
{es(w), -+, en(w)} depends smoothly on w locally. We put, for a=2, ---, m,

(2) Ko(z, o)=Exp,t(0+(e,/7)eq(w)),

for sufficiently small ¢;. Since (2) is a geodesic variation, (9/de;)K, is a Jacobi
field along the curve K,(r, w,) for each fixed &,. Therefore, we can apply the
comparison theorem and we have for some constant %, >0,

{ [(0/0e) Ka(r, 0)]y=kulexp kar),

3)
( [(0/07)(@/0e ) Kalr, 0)] vSkalexp kar),

where r=d(x, y) and Exp,ro=y.

Let us use the idices 4, B, C, ---=1,2, ---, m and @, b, ¢, - =2, 3, -, m.
Denote by g4s the component of the Riemannian metric g with respect to the
coordinate (», w), i.e.
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{ gur, @)=g((dExp)rew, (dExpz)rew)=1,
g1a(r, ©)=g(dExpz)r0w, (dExps)req(®))=0,

(4)

(5) Zar(t, ©)=g(dExpz)reea(®), (AExps)rues(®)) .

Differentiating (5) directly and noticing that (9/0e,)Kaic,-o=(dExpz)rua(®), We
have for any 2=<a, b=<m, with some constant %,,>0,

{ |gas(r, @) = ki(exp kyr),

(6)
larga»(f’, @) | Skys(exp kyr) .

LEMMA A.2. Under the same assumptions as in Proposition A.l, there exists
a positive constant ky such that for any 2=a, b=m,

(7) [0cgas(r, )| =kys(exp kyr).

Proof. We take a smooth curve w(e,) in S;M for sufficiently small ¢, such
that (0/0e,)w(0)=e., ¢=2, ---, m. Consider

(8) Ko(z, €3, e2)=Exp.t(w(e;)+(e1/)eqwle,)) .

Then, K,(z, ¢, €,) is also geodesic variation in two parameters ¢;, &, and has
the following initial conditions

(9) (a/aex)Ka(O, &1, €)=0, (a/asz)Ka(O; &1, €2)=0,

and

(0/07)(0/0e ) Ko(0, €5, e2)=(1/r)eq(w(es)),
(10) {

(0/07)(0/0e) Ko (0, €1, e2)=0'(e,)+(e1/7)(d/ des)eq(wle,)) .

By differentiating the Jacobi equation with respect to &, and ¢,, and putting
e;—=¢,=0, we get

(11 (0°/de:0¢,)(0%/07%) K o(z, O, 0)+ R(7(z), (0°/de:0¢;)K(z, 0, 0))7(z)
= a,z,j(T)’

i, 1=1, 2, y(t)=Exp,7w, where F,, ;(r) is the function of R, VR, (0/0e;)K,,
(0/07)(0/0e,)K, and ( / )/ )K,. Also, we have the following setimate by (2.3)
and (2.5),

(12) lFa,z,j(r) ] 7 Shkylexp kur), T(T)=Expx7’(0 »
with some constant k,,>0. Therefore, we get by variation of constant
(13) [(0%/0e:0e)Ka(r, 0, 0) |,y = kus(exp kyst),

r(r=Exp,rw, with some positive constant k,>0. Then, in accordance of
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w=w,, o=(? ---, ®™) as the coordinate of , using (13), we have
(14) 0:8an(r, @)=(d/des)gan(r, @(e2))|cy=0
=g((0°/de,0e,) K, (r, 0, 0), (0/3e,)K(r, 0, 0)); )
+g((0/0e1) K, (r, 0, 0), (0%/0e.08,)Ky(r, 0, 0)),cry
we get (7).

By Lemma A.2 and the definitions of the Christoffel symbols and p(x, y),
we have

LEMMA A.3. Under the same assumptions as in Proposition A.1, there exists
a positive constant kys such that the following estimates hold :

(15) |g“(f’, )| = kylexp kyer),
(16) [I3c(r, )| Skyelexp ki),  r=d(x, y)

where g48(r, w) and I $¢(r, w) are the inverse matrix of g=(gas(r, ®)) and the
Christoffel symbol of g with respect to the coordinate (v, ) respectively. Moreover,
we have

amn [Vyo(x, ¥)ySki(exp kyer),  r=k(x, y).
Now, let @? -+, ®™ be the coordinates on part of S,M. We denote by
D?-® the differential operator, v=,, -+, Un),
D?P-*=(3/0r)?(0/0w?)’2 --- (0/0aw™)*™ .

Differentiating the Jacobi equation successively and using the variation of
constant, we get the following, which gives Proposition A.1, because of the
definition of p(x, y) (Cf. [3]).

LEMMA A.4. Under the same assumptions as in Proposition A.1l, there exists
a positive constant ks, such that

(18) le,’Dja(r) w);r(r)ékn(exp k47r); 0:21 tt,Mm,
r(r)=Expre, where J.(t, ®)=(0/0¢;)K,(z, 0).

Remark. (i) Bérard [1] has a similar estimate for o(x, y) when the case
that M is a universal coverting space of a compact manifold.
(i) Assuming the boundedness of higher order derivatives of the curvature
tensor, we get the more higher order growth estimate for p(x, y).

Next, we give the higher order estimate for P(x, y). Namely, we get

PROPOSITION A.5. Under the assumptions (A.0)-(A.2), there exists a positive
constant ks such that for any 0=|a|=3,



222 YOSHIAKI MAEDA
[(Ds)*P(x, )| (J:,y)§k4s(exp kyr),
[(DY)*P(x, Mz, SkulExp kyr), r=d(x, y).

Remark. 1If we obtain the above proposition, we have Proposition 2.6, because
the adjoint operator D* can be written by using D.
Before proving Proposition A.5 generally, we first observe the following :

LEMMA A.6. Under the same assumptions as in Proposition A.5, there exists
a positive constant k,y such that

{ | D.P(x, y)l(z,y)éku(eXp kyr),
[DyP(x, M. =kulexp kyr), r=d(x, y).

(20)

Proof. Let {ei(y), ---, en(y)} be an orthonormal basis of T,M and put
&(x, y)=P(x, y)es(y). Take {fi(x), -+, fu(x)} as an orthonormal basis of T .M
also. Let 75,(e;) be a smooth curve such that 5;(0)=x and (d/de,)n,;(0)=f,(x),
j=1, -+, m. Then, we get

Dy;é(x, y)=(0/0e1)§(n,(e1), ¥)1=0.

Consider the variation K;(r, &;)=FExp,v(w+(e1/7)f;(y)), where Exp,ro=x and
fi(») is the parallel transport along the geodesic from x to y, i.e. f,(y)=
P(y, x)fi(x). Also, we define &z, &)€Ek;c,ep, J=1, -+, m by

(0/07)64(z, e)=0, &0, e)=e,(y),
for each field ¢,. Differentiating covariantly (2.15) with respect to ¢;,, we get
21) (0/07)(0/0e1)8(z, &)+L(8/07)K,, (6/0¢1)6;,)=0,

where 2 denotes the curvature tensor of D. Since (0/0e1)Kj1e,=0 is a Jacobi
field along y(z)=Exp,rw, we get by Lemma 2.4

(22) (d/d7)|(0/0e1)é5(z, 0)]
2218211 [(0/00) Kz, 0) ;0 [(0/0e)Kj(z, 0); 00 16517000
=2kis(exp kigr)

with some constant k4,>0. Thus, we have
(23) |D=P(x, 9)lte.p=35 IDsmfilx, )13
Z2ko(exp kyr),

which proves the first inequality of (20). The second one is obvious by using
P(x, y)P(y, x)=Id.
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Proof of Proposition A.5 is easily obtained by differentiating (2.15) covariantly
and doing the similar computations as in the proof of Lemma A.6. Thus, we
get the desired results.
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