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POINTWISE CONVERGENCE OF THE PRODUCT INTEGRAL

FOR A CERTAIN INTEGRAL TRANSFORMATION

ASSOCIATED WITH A RIEMANNIAN METRIC

BY YOSHIAKI MAEDA

§ 0. Introduction.

In [13] Inoue-Maeda present a rigorous meaning to the convergence of the
path integral in a non-compact curved space. Though comparing with Feynman's
original idea, they considered the case where ihr1 is replaced by — λ (λ>0).
Namely, they considered a certain integral transformation associated with a
given Lagrangian function of the form; L{x, x)—glJ{x)xlxj+V{x)) where G —
(gτjW) defines a Riemannian metric and V(x) is a smooth function with the
compact support, and showed the convergence of its product integral in the
topology of the uniform operator norm.

The purpose of this paper is to continue the above work as follows; First,
we extend the above integral transformations to those which acts on sections of
a general vector bundle (Cf. (0.1)). Also, we construct fundamental solutions
for parabolic systems geometrically. Here, we shall deal with the case V—0,
only for simplicity. The second aim is to show the convergence of the product
integral of the integral transformation in a refined topology (pointwise conver-
gence of the kernel function).

We suspect that these observation for the convergence of the product integral
may have interesting applications, and here we can derive the asymptotic behavior
of the fundamental solution for a parabolic system defined on the non-compact
manifold in terms of geometrical invariants.

Let (M, g) be a smooth, complete ra-dimensional Riemannian manifold and
let E be a vector bundle over M with a linear connection D. Suppose that E
is furnished with an inner product <,>* at each fibre Ex, x e M , preserved by
D. Using the connection D, we can consider the parallel translation along the
minimal geodesic γc from y to x> which maps an element of Ey to that of Ex.
We denote it by P(x, y) (Cf. § 2).

Denote by C0(E) the set of all continuous sections of E with compact support
and by C°°(£) that of all smooth sections of E. Put C~(£)=

For £<ΞC~(£), we define the ZΛnorm as
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where dμg(x) denotes the canonical measure defined by the Riemannian metric
g. We denote by L2(E) the Hubert space of sections ξ of E such that

Now, consider the following integral transformation in L2(E) with parameters
Ks<f, and λ>0 (Cf. [7], [12], [13] and [16]),

(0.1) H(λ t, s)ξ(x)^(2πλ-lrm/2\ p(t, s x, y)[exp(-λS(t, s x, 3/))]
J M

xP(x,y)ξ(y)dμg(y),

for ξ^C^(E): Here S(t, s; xy y)=d2(x, y)/(2(t-s)), where d(x, y) is the distance
function and ρ(t, s; x, y) is defined by

(0.2) p(t, s; x, y)=\detl-dxdyS(t, s x, y)yμgWμg(y)\1/2>

where μg(x) — [det(gιj(x))']1/2 ((0.2) is assumed to be well-defined here. In fact,
it is guaranteed under the assumption (A.0) which is stated later.) (Cf. [7] and
[16]).

The kernel function of H(λ t, s) will be denoted by H(λ t, s; x, y) which
may be considered as a section on £ίEl£*; the vector bundle over MxM whose
fibre at (x, y)<=MxM is given by the tensor product EXME%.

We consider the product integral for the above operator (0.1). Namely, let
σN be the Λf-equal subdivision of the interval [0, t] for given t>0 and any
positive integer N,

t} tj=(j/N)t.

We set

(0.3) H(λ; σN\t)=H(λ;t, tN.1)H{λ)tN^1, tN-2) ~Ή(λ;tlf 0),

and denote by H(λ; σN\t; x, y) the kernel function of (0.3).
In order to state our results, we introduce the following assumptions:
(A.0) (M, g) is a connected, simply connected, complete Riemannian mani-

fold and has non-positive sectional curvature.
(A.I) There exists a positive constant kλ such that for any multi-index

Gi—icί\, •" , am)f Org \a\ ̂ 3 and X G M ,

(0.4) WRtjkh(x)\z£kl9

where | \x is the norm at x defined by g and 7 and R%jkh are the Riemannian
connection and the curvature tensor defined by g respectively.

(A. 2) There exists a positive constant k2 such that the curvature 2-form Ω
of D satisfies

(0.5) \DaΩ(x)\x^k2 for 0 ^ | α | ^ 3 , and
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where | \x is the norm at x defined by <,>*.

Remark. Combining the Riemannian metric gτj(x) and the inner product
<, }χy we can define the norms for the sections of the tensor product bundles of
the tangent bundle TM, the cotangent bundle T*M, E and £*. Also, here we
extend naturally the action of D and 7 to tensor fields with values in E (or £*).
Including these, we denote these by the same letters \ \, D and 7 unless there
occurs no confusion.

We can state the main theorem of this paper.

MAIN THEOREM. Let (M, g) be a m-dimensional Riemannian manifold and
let E be a vector bundle over M satisfying (A.0)-(A.2). Fix T > 0 arbitraily.
Then, the limit

(0.6) H(λ;t; x, y)=\imH(λ; σN\t; x, y)

converges uniformly on MxM in the norm defined by E x^E* (Cf. §2) for any
0<t<T. Moreover, H(λ;t; x, y) gives a fundamental solution of the following
parabolic equation :

ί Kd/ty-λ-iJCMλ; t; x, 30=0,
(0.7)

I WmH(λ\t\ x, y)^δy(x)®Idy

where

(0.8) Mx=(l/2)A°-(l/12)Scalg(x), AD=-D*D,

D* is the adjoint operator of D with respect to the inner product on L2(E) and
Scalg(x) is the scalar curvature.

On the other hand, in the course of the proof of the main theorem, we can
get the asymptotic behavior of H(λ ]t, s\ xt y) as ί->0+, which is a partial
extension of the results in Molchanov [15] who treated the case where E—MxR.

COROLLARY. Under the same assumptions as in the main theorem, the funda-
mental solution H(λ; t, s; x, y) of (0.7) satisfies, for any 0<ε<l/2,

(0.9) \ H ( λ ; t ; x , y)-(2πλ-H)-m/2p(x, y)[exp(-λ(d\x, y)/2t))']P(x, y ) \ i x . y )

c, y)/2t)~] ,

for any x, y(=M, with some positive constant γ', where ε**=l—2ε, p(x, y)=
\άztg(dExpx

Λ)y\
112 and Expx is the exponential mapping defined by g (Cf. §2).

Remark. By a technical reason ε** appears in the above inequality, but it
seems necessary for general cases.

Acknowledgement. The author wishes to express his hearty thanks to
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§ 1. Outline of the proof of Main theorem and related remarks.

In this section, we state the plan to prove the main theorem in the intro-
duction. First, in § 3, we show the following basic properties of H(λ t, s)
defined by (0.1).

PROPOSITION 1.1. Assume (A.0)-(A.2). On fixing T>0 arbitrarily, the fol-
lowing properties hold for 0^s<t<T :

(a) The integral transformation H(λ t, s) defines a bounded linear operator
in L\E).

(b) limlli/M ί, S ) £ - £ | | L . ( » = 0 ,

Let Ή(L2(E)) be the set of all bounded linear operators on L2(E) and we
introduce the topology by the operator norm in it. Now, we study the con-
vergence of the product integral of H(λ t, 0) in £B(L2E)). So, we prove the
following in § 4-5, which is one of the key results:

THEOREM 1.2. Under the same assumptions as in Proposition 1.1, the follow-
ing properties hold:

(a) There exists a positive constant C0=C0(λ T) such that

(1.1) \Wλ;t+t', s)ξ-H(λ; t+t', t')H(λ;t', s)ξ\\L2<E)

for any ξ^L\E) and Q^s<t'<t<t+t'<T.
(b) There exists a limit H{λ t)=\imN^H{λ t, tN^) ••• H{λ tu 0), tj=(j/N)t,

; = 1 , ••-, N-l, in &(L2(E)) for any t>0. Therefore, {H(λ;t)}t^0 with H(λ;0)
—the identity operator, forms a C° semi-group in L\E).

(c) The infinitesimal generator λ"1M of H(λ t) is given by

(1.2) λ-\J{xξ)(x)=l(d/dt)H(λ; OfWUo]

Theorem 1.2 shows that the product integration of (0.6) determines a funda-
mental solution of the heat type equation (0.8) in the distribution sense. To
show the regularity, we construct a kernel function by another method (so-called
Levi's method) which is rather standard in the theory of partial differential
equation (Cf. Friedman [9]). Using this estimate, we prove the main theorem
stated in § 0. Namely, we show in § 7 the following:
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THEOREM 1.3. Under the same assumptions as in Proposition 1.1, we can
construct a fundamental solution H(λ t) with the following estimate: For any
0<ε<l/4, there exists a positive constant γ=γ(λ; T, ε) which dose not depend on
σN such that

(1.3) \ H ( λ ; t ; x , y ) - H ( λ ; σ N \ t x , y)\
{x>y)

where ε ( 4 ) =l—4ε and H(λ; t; x, y) is the kernel function of H(λ; t).

Remark 1. We cannot prove the convergence of H(λ; σN\t; x, y) without
constructing the fundamental solution by Levi's method. This may be still an
interesting problem.

For the sake of our computations, we shall introduce the local coordinate
expression. Given f e M , let U be a local coordinate neighborhood of x with
the coordinate (x1, •••, xm) such that E\v is trivialized as E\u^UxF, where F
is the standard fibre of E, Taking a frame field {ea(x)\ of E\u (i.e. ea(x)
depends smoothly on xeU and {ea(x)\ forms a basis on F for any xeί/).

Denote by Γjξ(x) the component of Dj=Dtf/dχ>) Then, for each £eC°°(£),
its covariant derivative Ό3 can be expressed by

(1.4) {Djξ)a{x)=djξ
a{x)+Γjt{x)ξb(x).

Also, for any φ^Ω1(E)J a ^-valued 1-form, expressed by ψ(x)=ψi(x)dxι with

ψi(x)=ψia(x)ea(x), we have

(1.5)

where j -\{x) is the Christoffel symbol of g. Moreover, the local coordinate

expression of the covariant derivatives for any tensor field with values in E is
obtained similarly. Using these notations, Δ^ can be expressed as

for any
Finally, we give some remarks about Main Theorem.

Remark 2. (i) Trivial bundle, E=MxR (or MxC). A section of the
trivial bundle can be identified with a function on M and C(E) = C(M). Taking
the trivial connection, i.e. P(x, y)—id.f we get a integral transformation acting
for functions on M, which is considered in [12]. So, in this case the limit

(1.4) limf .••(" H(λ;t, tv-r, x, ZN-I) ~ H{λ; tlf 0; zlf yWμgizN-J ~ dμgizj
N-κχ>jM JM

exists as a function on MxM for fixed t, 0<t<T, under the assumptions (A.O)-
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(A.I). We may denote its limit by

( ίexp(-λS(γ))-]2)F(r) (Cf. Feynman [8]),
^ ^t, o; x, y

where Ct,0;χ,y is the path space from y at t—Q to x at t^=t, S(γ) is the classical

action along the path Ct,o ,x,y and £)F{γ) is the 'notorious ' Feynman measure on

£ t, 0; x, y

(ii) The bundle of p-forms, E—AVT*M. In this bundle, we can induce the
inner product <, >* and the connection D cannonically by g. Namely, for ξ(x)
=ξίv..ιv(x)dxH/\--Γ\dxιv, rj(x)=ηlr..lp(x)dxllA"ΆdxιPGC(E)> we define the
inner product and the covariant derivative by

(1.6)

and

(1.7) (^)

Then, we get the operator JCx=—(l/2)AL—(l/12)Scalg(x): Here ΔL is the rough
Laplacian defined by g (Cf. [14]), and it is given by

(1.8)

where RXJ{x) and RιJk

h(x) are the component of the Ricci tensor and the curva-
ture tensor of g respectively, and AH denotes the Hodge-de Rham operator.

(iii) As a generalization of (ii), one may construct the fundamental solution
of the parabolic equation whose infinitesimal generator is the following:

(a) The Lichnerowicz Laplacian acting on tensor fields.
(b) The spinorial Laplacian of Lichnerowicz when M admits a spinorial

structure.

§ 2. Classical action and parallel translation.

Throughout this paper, notations and definitions concerning the differential
geometry will be refered to [3] and [13].

We recall a geodesic, i. e. a curve γ(τ) which satisfies the following differ-
ential equation,

where δ/δτ denotes the covariant derivative along the curve γ(τ). Given X E M ,
we define a mapping Expx from the tangent space TXM into M by ExpxτX—
γ(τ), where γ(τ) satisfies (2.1) with the initial conditions γ(0) — x, γ(0)—X<^TxM.
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By the assumption (A.O), Expx gives a diffeomorphism from TXM onto M.
For each X<^TXM, identifying TX(TXM) with TXM, we may induce naturally

the scalar product in TX(TXM). We denote by (dExpx)x the differential mapping
of Expx at X. Define also the function θ(x, y) on MxM by θ(x, y)=
\detg(dExpx)x\ (Cf. [3]). Then, the function p(t, s\x,y) defined by (0.2) can
be written as

(2.2) p(f, s x, y) = (t-s)-n'*p(x, y),

where p(x, y) — θ{xf y)~1/2.
To give the estimate of p(x, y), recall a Jacobi field /(τ) along the geodesic

γ(τ). By (A.O)-(A.l) and the Rauch comparison theorem we get the following
(Cf. [4]): Let /(τ) be a Jacobi field along geodesic γ{τ)—Expxτω> | ω | = l with
initial conditions /(0) —0, J(0)ΦQ. Then, there exists a positive constant ks

independent of x such that for any

(2.3)

where r—d{x, y). In particular, we have

(2.4) \p(x, y)\£l.

Denote by SM and SXM the unit sphere bundle over M and the fibre of
SM at I G M respectively. Using the Jacobi equation and (A.I), we have

LEMMA 2.1. Assume that (A.O)-(A.l) hold. Given any x, y^M, there exists
a positive constant k4 such that

(2.5) l/(r)

Moreover, we have

(2.6) \Pr(χ, y)\^kiexp(kAr), r=d{x, y),

where pr{x, y) — (dIdr)p{x, Expxrω), Expxrω~y, ω&SxM.

Now, we give an estimate of the higher order derivatives of the functions
p(x, y)> which will be proved in Appendix.

PROPOSITION 2.2. Assume that (M, g) satisfies (A.O)-(A.l). Then, there exists
a positive constant k5 such that for any x,

(2.7) Wϊp(x, y)\^k5exp(k5r), r=d(x, y), 0 ^ | α | S 3 .

Next, we recall the parallel transformation of a section of the vector bundle
E by the connection D. Given a curve γ(τ) on M such that γ(s)=y, γ(t) = x,
s<t, and ξ(y)^Ey, define | ( r ) e £ r ( r ) by
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δτ r ( Γ )

We write ζ(t) by Pl(D, γ)ξ(y). Since (2.8) is a first order differential equation,
the solution of (2.8) exists uniquely for any given curve γ(τ). In particular, if
γc(τ) be a classical path which satisfies (2.1) with γcφ)—y> Yc(t)=x, then we have

Pl(D, ϊe)ξ{y)=Pl(D, fc)ξ(y),

where γc(τ)=γc(s+τ(t—s)), for any X G M and any y^M. Moreover, we write
Pl(D, fc) by P(x, y) for simplicity.

Since each vector spaces Ex and E* are equipped with the inner products,
we can induce the inner product on EJ&E*, which will be denoted by <,>u>2/).
That is, given ξ(x, y)=ξ(x)^ξ*(y), η{x, y) = rj(x)Blη*(y), we put

(2.9) <£(*, 3;), η(x, y)><x.v>

Also, we denote the norm on EXME% by

(2.10) \ξ(χ, y)\(X,y>=<ξ(χ, y), ξ(χ, y)y\Ίy).

We extend 7 and D to a tensor fields with the values in E, and denote
also them by the same letter.

The following is obvious from the definition (2.8) (Cf. [2]):

LEMMA 2.3. For any x, y<=M, we get

( i) P(x, y) is a smooth (local) section on EME*.
(ii) P(x, x)—Id.y the identity operator on Ex.
(iii) (lxd\x, y), DxP(x} Y)>x=0.

LEMMA 2.4. Assume (A.0)-(A.2). Given ξ<BC™(E), we get

(2.11) \\P{χ,y)ζ{y)\\χ=\\ξ{y)\\v,

for any x, y^M.

Proof. Consider (2.8). Then, we get

(2.12) " J ^ ( T ) ' ^>rw=2<DuJ(τ)9 f(τ)>Γ(r)

= 0 .

Using (2.12) and (A.2), we get (2.11).

The following properties are useful throughout our computations:

LEMMA 2.5. P{x, y) satisfies the following.

(2.13) DxP(x, 3θu=y=O, AζP(x9y)]x=y=0.
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(2.14) DvP(x,y)ly.x=0, AD

yP{x, ;y), y-,=0.

Proof. Let {ea{y))l=1 be an orthonormal basis at Ey, where ά\mEy—p.
Extend {ea} to a local frame field so that they are parallel. Take a normal
coorinate (y\ •••, ym) at y and denote by Γ3

b

a the coefficients of D. By putting
I | ^ c ( τ ) ) , (2.8) can be written as

(2.15) ^ j U ^

So, using the Taylor expansion, we can write |(r) by

(2.16) t(τ)=

where (.ξaY(.0) = (d/dτ)ξa(0), etc. Differentiating (2.15) successively with respect
to τ, we get

(2-17) (ξa

(2.18) {ξΎ{ϋ)=-ldιΓ

where ExpyY = x, because j -k\(y)=0. Substituting (2.17) and (2.18) into (2.16)

and putting τ = l , we have

(2.19) ξaa)=Pξ(χ, y)ξ\y)

where Pξ(x, y) is the component of P(x, y) with respect to {ea}. Recall

(2.20) Dx,kDx,jPΐ(x, y)=dkdjPξ(x, y)+dkΓJί(Y)Pi(x, y)

ί(x, y)+Γk?(Y)djPl(x, y)

which proves the second equality of (2.13). For (2.14), remark that for any
x, z<=M, we have

(2.22) P(x, z)P(z, x)=P(x, x).

Differentiating (2.22) covariantly and using Lemma 2.3 (ii) and (2.13), we obtain
(2.14).

Lastly, we get an estimate for the higher order derivatives of P(x, y), which
will be shown in Appendix.
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PROPOSITION 2.6. Assume that (M, g) satisfies (A.0)-(A.2). Then, there exists
a positive constant k'A such that for any x, y^M and for 0^\a\^3,

, \{DxYP{x,
(2.13)

\{Dy)*P(x, 3>)l<*.,>^«exp(«r), r=d(x, y).

§ 3. Basic properties of H(λ ί, s).

Recall the operator H(λ; t, s) in (0.1). Using the notations as in §2, it can
be written as follows:

(3.1) H ( λ ; t , s)ξ(x) = ( 2 π λ ~ l r m / 2 \ p(t, s x ,
J M

*P(χ, y)ζ{y)dμg{y)
for ξ<=C0(E).

In this section, we shall give some properties of (3.1). Using (2.4) and (2.11)
and copying the proof of Lemma 2.1 [13], we get the following, which implies
the part of (a) in Proposition 1.1:

PROPOSITION 3.1. Assume that (M, g) satisfies (A.0)-(A.2) and fix T>0
arbitrarily. Then, the operator H(λ t, s) is stable, that is, there exists a positive
constants C1—C1{λ\ T) such that

(3.2) \\H{λ',t,

for 0^s<t<T and

Next, we study the behavior of H(λ t, s) as 11 s. Namely, we have the
following which is the part (b) in Proposition 1.1:

PROPOSITION 3.2. Under the same assumptions as in Proposition 3.1, we have
for any 0£s<t<T,

(3.3) lίm\\H{λ;t,s)ξ-ξ\\LtiS}=0,
tls

for any ζ^C^(E). Therefore, for fixed s^O, putting H(λ; s, s)=the identity
transformation, we have the mapping from ί e [ s , T) to H(λ; t, S ) G L 2 ( £ ) , strongly
continuous in t for each ζ^L2(E). Also, the similar statement in s as above holds.

Proof. By Proposition 3.1, it is sufficient to prove (3.3) for each ξ
We define a cut off function %eQ°(M) as X(x) = l if d(x, suppξ)^2 and =0 if
d(x, supp£)g:3. We show the following:

(3.4) lιm\\Hί(λ;t,s)ξ-ζ\\L2(E)=0,
US
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(3.5) li

where H^λ t, s)=X(x)H(λ;t, s)ξ(x) and H^λ t, s)=(l-X(x)H(λ; t, s)ξ(x).
For proving (3.4), putting y—Expxrω, ω^SxM, we get

rω), ρ(x, y) — l+p1{x rω),

where f(x, ^)=P(x, y)ξ(y)^Ex and

>rc(r)£(x, γc(τ))dτ

pλ(x rω)=-\{d/dτ)p{x, γc(τ))dτ,
Jo

where γc(τ)—Expxτω. Using Lemma 2.1 and Proposition 2.6, we get the follow-
ing, which is similar to that in Proposition 2.2, [13] :

(3.6) \H1(λ;tfs)ξ(x)--ξ(x)

X [°°rmexp(-lλr2/2(t-s)-k8(t-s)r~])dr,
Jo

with some positive constants C2 and k8. Therefore, by integrating (3.6), there
exists a positive constant C^—C^λ T) depending on the support of ξ such that

(3.7) Hffitf f, s)ξ-ξ\\L2(E)^C'2(t-sy<2supUDζ\x+\ξ\xΊ,

which gives (3.4).
Also, following the same way as in Proposition 2.2, [13] and using Lemma

2.1, Proposition 2.2 and Proposition 2.6, we get (3.5).
For later use, we give some properties of the kernel function H(λ t, s x, y)

of (3.1), which is proved analogously as in Proposition 3.2.

LEMMA 3.3. Assume (A.0)-(A.2). Let ξ(τ, y) be a continuous, bounded
mapping from [s, t]xM to E such that for any fixed τ, ξ(τ, -)^C(E), and put

(3.8) ξ(t, τ x) = \ H(λ ;t,τ; x, y)*ξ(τ, y)dμg{y),
J M

where Q^s<τ<t<T, and % is the inner product between Ey and E*. Then, the
following properties hold:

(3.10) (d/dt)ξ(t, T x)^M(d/dt)H(λ ;t,τ;x, y)*yξ{τ, y)dμg{y),

(3.11) {DxYξ{t, τ x) = \ {Dx)«H{λ ;t,τ;x, y)*ξ(τ, y)dμg{y)
J M

and
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(3.12) ]imξ(t,τ;x)=ξ(s, x)

Similarly, let ξ*(τ, y) be a continuous, bounded mapping from [5, ί ] x M to
£ * such that for each fixed τ, ?*(r, ) e C ( P ) . We get

LEMMA 3.4. Under the same assumptions as in Lemma 3.3, we have

(3.13) Urn ( £*(*, *)S#W i ί, s x, y)dμB(x)=ξ*(t, x).
t-*s

% 4. Convergence of the product integral in the operator norm.

In this section we shall show the parts (a) and (b) in Theorem 1.2. Take
T > 0 arbitrarily and fix it.

By the direct computation using the Hamilton-Jacobi equation for S(f, s x, y),
the continuity equation for p(t, s x, y) (Cf. Lemma 1.1 and Lemma 1.5 in [13]),
and Lemma 2.3 (iii), we have the following properties for the kernel function
H(λ t, s x, y):

(4.1) l(d/ds)+(2λ)-1A^H(λ ;t,s;x,y)

and

(4.2) ί(d/dt)-(2λ)-1AΏH(λ ;t}s; x, y)

= -{2λY\2πλ-1Y^e-λs\_2{lxpi DxP>+AxpP+pA°Pl.

For ξeCyCE) and 0^s<t<t'<T, we may write

(4.3) H(λ t+t', s)ξ{x)-H(λ t+f, t')H{λ t', s)ξ(x)

where
H(λ t, t', s;x,y)

=H(λ t+t', s x, y)-\ H{λ t+f, t' x, z)*H(λ t'x z, y)dμg{z).
J M

Since H(λ; t, s; x, y) has a singularity at t=s, we define, for positive ε,

(4.4) H'{λ t, f, s;x,y)

= (' - f - ( H{λ t+t', σ x, z)*H(λ σ.s z, y)dμg(z),

which satisfies lim H£{λ t, f, s x, y)—H{λ t, tf, s) x, y) for any (t, t', s, x, y),

xφy. Exchanging the differentiation and the integral in (4.4), we have
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(4.5) H ε ( λ ; t , t ' , s ; x , y )

J^ Έhάλ t, t', s, σ; x, y, z)dμg(z)dσ,

where

(4.6) h^λ t, t', s, σ x, y, z)

= lAzp(x, z)-Azp{y, z)Xexp(-λ[S(t+t\ σ x, z)+S(σ, x z, y)])]

xP(x,z)*P(z,y),

(4.7) ht(λ t, ϊ, s;x,y, z)

= lexp(-λίS(t+t', σ x, z)+S(σ, s z, 3 )̂])]

)?<V2(^, ^), D,P(y, ^)>2]and

(4.8) ΛβW ί, t', s,σ;x, yy z)

= [ e x p ( - ^ [ S ( ί + ί ' , σ x, z)+S(σ, s z, y)])]p(x, z)p{z, y)

XlA2P(x, z)*P(z, y)-P(x, z)*AzP(z, 3O] .

Consider each terms hi(λ; t, ϊ, s, σ x, y, z), / = 1 , 2, 3, in (4.6-8). Remark that
there exists a positive constant k8 such that

(4.9) \Azp(x, z)-A,p(x, z)lt-x\^r

9\VrewΔzp(x, Tc(τ))\dτ

^k8d(x, z)exp(k8d(x, z)),
and

(4.10) \Azp{x, z)]z=x-A2p(y, z)]z=y\^k8d(x, y)exp(k8d(x, y))

because of Proposition 2.2. By (4.9), (4.10) and using Proposition 2.6, we have
with some constant &9>0,

(4.11) I ΛiW t, t', s, σ x, y, z) \ u , y)

, z)exp(k8d(x, z))+d(y, z)exp(k8d(y, z))]

ί7, σ x, z)+S{σ, s z, 3;)]).

By a similar computation as in [13] using Proposition 2.2 and 2.6, there
exists a constant Cs=C3(λ; T)>0 such that for any i=l, 2, 3,

(4.12) \ \ [2πλ-\t+t'-σ)Ym/2[2πλ-1(σ-s)ym/2

J M J M

X\hi(λ;t, t', s, σ x, y, z)\fx,y)dμg{z)dμg(y)
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and

(4.13) f f [2πλ-\t+tf-σ)yn/2[2πλ'1(σ-s)yn/i

J MJ M

X \hi(λ; t, t'f s, σ; x, y, z)\{x>y)dμg{z)dμg(x)

Taking a limit as e->0+, and doing the similar computations as in [13], § 3,
we have

PROPOSITION 4.1. For any t, f, s, O ^ s < f ' < f < f + f ' < T and ξ^L2(E), the
following inequality holds :

(4.14) \\H(λ t+t', s)ξ-H(λ t+t'9 t')H(λ t', s)ξ\\LHE)

with some constant C0=C0(λ T).

We devide a closed interval [0, ί], 0<t^T, into subintervals, i.e.

(4.15) σN:0=to<t1<'"<tN-1<tN=t, tj=(J/N)t, / = 0 , 1, •••, ΛΓ.

And we define the operator

(4.16) JΪW σN\t)=H(λ ί, ί^.J - H(λ fυ 0).

Combining with Proposition 4.1 and the similar argument as in Lemma 4.6,
[13], we have the following, which is the part (b) in Theorem 1.2 (Cf. [6]).

PROPOSITION 4.2. Assume that (Λf, g) satisfies (A.0)-(A.2). Then, {H(λ σN\t)\
forms a Cauchy sequence in <B(U(E)). Therefore, there exists a C° semi-group
H(λ t), t>0, in L\E) such that for any t>0,

(4.17) Πm \\H(λ; t)-H(λ; ^ | 0 I U < L 2 ( » , = 0 ,

Moreover, there exists a positive constant C'0=CΌ( T) such that

(4.18) \\H(λ;t)-H(λ;

Remark. By a slight modification of the above, we can generalize Proposi-
tion 4.2 for arbitrary subdivision of [0, ί] (Cf. [13] and [10]).

§ 5. Computation of the infinitesimal generator.

To finish the proof of Theorem 1.2, we only compute the infinitesimal
generator of H(λ t). Namely, we get
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PROPOSITION 5.1. Assume that (M, g) satisfies (A.0)-(A.2). Then,

(5.1) (d/dt)H(λ t)ξ(x)=λ-'\_{l/2)ΔD

x-{l/l2)Scalg{x)-]H{λ t)ξ(x)

for ζ<ΞC%(E).

To prove the above proposition, we remark the following, which proved as
same as in Lemma 4.2, [13],

LEMMA 5.2. Given £eC~(£), we have

(5.2) (d/dt)H(λ t)ξ(x)ιt=o=(d/dt)H(λ t, 0)£(x),t=0.

Since H(λ; ί) is a C° semi-group, it is sufficient for proving Proposition 5.1
to show the following:

PROPOSITION 5.3. Under the same assumptions as in Proposition 5.1, we have
for any ξ^C^(E) and XZΞM,

(5.3) H(λ t9 O)ξ(x)-ζ(x)=tλ-1J{xξ(x)+tG(t ξ),

where Mxζ{x) = l{l/2)ΔD

X-{1/12)Sealg{x)~]ξ{x) and G(t ξ) satisfies

(5.4) li

Proof. Recall (4.2). By using the integration by parts, we get

(5.5) (d/dt)H(λ t, 0)ξ(x)-(λ-i/2)H(λ t, O)Aξξ(x)

=λ-K2πλ-HYm'*\ [exp(-;S(ί, 0 x, y))-]Q(x, y)ξ{y)dμg{y),
J M

where

(5.6) Q(x, y)=-(ί/2)Ayp(x, y)P(x, y)+{lyp{x, y), DyP(x, y)>y

+a/2)p(x, y)AζP(χ, y).

Noticing that Avp(x, y)ly=x=(l/6)Scalg(x) (Cf. [3], [13]), we have

(5.7) λG{t ξ)=(d/dt)H(λ t, 0)ξ(x)-(l/2)H(λ t, 0)ADξ(x)

+(\/l2)Scale{x)ξ{x),
where

(5.8) G(t ξ)=a/2)lH(λ t, 0)-/]f(z)

4 (-;S(ί, 0; x,

, y)~\ξ{y)dμs{y),
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i(x, y) = lΔyp(χ, y)-Ayp(x, y)\x=y]P(x, y),
(5.9)

q2(x, y)=2(lyp(x, y), DxP(x, y)>+p(x, y)AyP(x, y)

Using Proposition 3.2, we have, for some constant C^C^λ; T)>0,

(5.10) U15ΓM t, 0)ADξ(x)-ADζ(x)\\L2(E)

and

(5.11) limO(f;£)=0.
ί-0+

Also, by Proposition 2.2-2.6, we have

(5.12) \qi(x, y)\(x,y)^k9exp(k9d(x, y)), * = 1, 2.

for any x j e M with some constant k9>0. Then, we get for some constant

(5.13) \\G(t ξ

Remarking H(λ;t, 0)ξ(x)-ξ(x) = [\d/dσ)H(λ; σ, 0)ξ(x)dσ, we have the desired
Jo

results.

Proposition 5.3 gives the part (c) in Theorem 1.2. By §§4-5, we finish to
prove Theorem 1.2 completely.

Now, for a later use in § 6, we prepare the following properties : Let £(r, y)
be a mapping from [s, ί ] x M into E which satisfies

( i ) ί(r, )eC(£) for each fixed re=[s, ί].
(ii) ξ(τ, y) is Holder continuous in [s, T)xM.
(iii) Given any closed interval [sj, ίi]C[s, #], f(r, 3;) is bounded on [si, ί j

XM.

(iv) For any ίe[ s , T), Γdrf |f(r, ^ U ^ ^ X + o o .
J s J iff

PROPOSITION 5.4. Assume that (M, g) satisfies (A.0)-(A.2). Lei f(r, y) be
as above. Put ξ(t, τ x) and Ξ(ty x) by

ξ{t, τ x) = \ H{λ ;t,τ; x, y)ξ{τ y)dμg(y),
J M

Ξ(t, x) = \'ξ(.t,τ;x)dτ,

Then, there exists a positive constant CG depending only the closed interval
such that

(5.14) \(d/dt)ξ(t, τ\ x)\x^Clt-τY^^\
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where γ is the Holder exponent of ξ at (t, x). Also, in (5.14) the same inequalities
replacing d/dt by Dx and Δ? hold. Moreover, we have

(5.15) JCxΞ(t, x)=^JCxξ(t, τ x)dτ,

and

(5.16) (d/dt)ξ(t, x)=ξ{tt s) + \j\d/dt)ξ(t, τ x)dτ.

Proof. Given any (t, x )e [ s , T)xM, let γ be the Holder exponent of ξ at
this point. Take a closed interval [slf f j such that s < s 1 < ί 1 < 7 . Then, there
exists a positive constant Cg and δ, 0 < δ < l , such that 5i<ί—5 and if [ ί — r | < ^
and d(x, y)<δ, then

(5.17) \P(x, y)ξ(τ, y)-ξ(t, x)\x^Ci(\t-τ\r+(d(x, y)Y)

and if t-δ<τ<t<f, then

(5.18) ί {d/dt')H{λ ;t',τ; x, y)ξ(τ, y)dμg(y)=-I1-I2+h,

where

j ;t', τ x, y)ίP(y, x)ξ(t, x)-ξ(χ, y)~\dμg{y),

h=\ (d/dt')H(λ f, τ *,

/ , = ( H{λ ί', r x, y)*P(y, x)ξ(t, x)dμe(y).

So, there exists a constant C'6'>0 such that

(5.19) |/i l*^C?(f-r)- ( 1 -"«, I/ .U^C?, l/.I

which implies if t—δ^f, then

(5.20)

with some constant Cζ>0. On the other hand, if s^τ^t—s, then ί 7—r^d
Therefore, we see that (d/dt')ξ(λ f, τ; x) is uniformly bounded in (ϊ, τ, x),
because of the form (d/dt)H(λ f, τ x, y) and (iii) of the properties of ξ. So,
we have the estimate (5.16). Other estimates are obviously obtained. Now, by
properties (iii) and (iv) of £(τ, x), we have for some constant C7,

\Aζξ(λ;t, τ;
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Remarking \ (t—τ)~(1~r/2)dτ<+oo} we can interchanging the operator Mx and

the integral. So, we have (5.15). Similarly, we get (5.16).

As a direct consequence of Proposition 5.4, and Lemma 3.3, we have

COROLLARY 5.5. Under the same notations and assumptions as in Proposition
5.4, we have

(5.21) MxΞ{t, x)=\dτ\ MxH{λ;t, τ; x, y)ξ{τ, y)dμg{y),
J s J M

(5.22) Φ/dt)Ξ(f, x)=ξ{t, x)+\'dτ\ (d/dt)H(λ ;τ,s;x, y)ζ(τ, y)dμg{y).
J s j M

§ 6. Construction of the fundamental solution.

To prove the main theorem stated in the introduction, we shall construct
the fundamental solution for the following system of parabolic equations:

(6.1) (d/dt)ξ(t, x)=λ-1Mxξ(tf x), f(0, x)=ζo(x)^Co(E),

where JCx=(l/2)Aζ-(X/12)Scalβ(x).
Throughout this section, we assume the assumptions (A.0)-(A.2). We denote

by L the differential operator —(d/dή+λ^JCx. Recall the kernel function
H(λ t, s x, y) of H(λ t, s), 0^s<t<T in (4.1). Set

(6.2) Uλ t, s x } y ) = L H ( λ t, s x , y)

;t,s; x , y ) .

LEMMA 6.1. For any 0^s<t<T and x, y^M, there exists positive constants
o, k6 and M1=M1{λ\T) such that

(6.3) \H(λ;t,s;x, y)\(x,
y)

and

(6.4) \Jo(λ;t,s;x,y)\(Xt9>

c, y)/(2(t-sm,
where ε * = l — ε.

Proof. (6.3) is easily obtained by the form (3.1) and Lemma 2.4. For (6.4),
we have by (4.1)
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(6.5) l/oU ί, s x, y)!(«.,)

ΐd{x, y)

[-Λ(cί2U, y)/(2(t-s))-ksd(x, >))]

where £5 is a positive constant. Putting the function F(r), rΞgO, by

ί (r)=r[exp(*.r-isr7(2(f-s))],

we have

(6.6)

with some constants C's=C'e{λ T) and &6. Substituting (6.6) into (6.5), we get,
for any x, y<sM,

(6.7) 1/oW f, s ; * , jθl(«.v>

So, we get Lemma 6.1.

Now, we put

(6.8) U λ ; t , s ; x , y ) = \ ' d σ \ M λ ;t,σ; x , z)fjo(λ σ.s; z , y ) d μ g ( z ) .
J S J M

LEMMA 6.2. For any 0^s<t<T, and x, y<=M, there exists positive constants
M2=M2(λ; T) such that for any 0<ε<l/2,

(6.9) LΛW f, s x, 3θlu.»>

X5(3/2 :

where ε**=l—2ε, cnJ B( : ) ί's ί/iβ Beta function.

Proof. First, we put

(6.10) Jλ(λ t, s, σ x , y)=\ J0(λ t, σ xy z)*J0(λ σ, s z, y)dμg(z).

By the comparison theorem, we have d2(z, y)~^\Z—Y\2, if we can write y —
ExpxY and z—ExpxZ. Thus, we get
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\Ji(λ; t, s, σ; x , y ) \ ( x , v )

χ( exp-t f(e* |Z |V(())

+ε*\Z-Y\*/(2(σ-s)))-k\Z\)dZ,

with some constant &6>0. Since

IZ17(2(f-*))+1 Z-Y\ V(2(σ-s))

we have

(6.11) \Ji(λ;t,s,σ;x,y)\c*,y>

x, y)/(2(t-s))-k5d(x, 3-))]

X ί exp(-( I Z'\2- ife5(2(ί-(7)(<r-s)/(>ίε*(ί-s)))1'21Z' \)dZ'
J TXM

because of Q<(t—σ)/(t—s)<l. By an easy computation, we get

(6.12) \Ji(λ;t, s, σ x, y)lu.y>

(x, y)/(2(t-s))-kδd(x,

Therefore, there exists positive constants M2 and kΊ such that we^have

(6.13) IΛM ί, s ; χ , y)lu.ir)

-s)))l\\t-σ)1/2(σs)1/2dσ
JS

X5(3/2; 3/2)[exp(-^(ε**ίί2(x, y)/(2(t-s)m ,

where ε**=l—2ε, which gives Lemma 6.2.

Successively, we define, for w^l,

( 6 . 1 4 ) J n ( λ t, s ; x , y ) = \ d σ \ J0(λ ί, σ *, z ) ΐ j n - i ( * σ, s z , y ) d μ g ( z ) .

By a similar computation as above, we get
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LEMMA 6.3. For any 0^s<t<T and x, y&M, the following estimate holds:
Given any 0<ε<l/2,

(6.15) \Jn(λ;t,s;x,y)\ίx, y )

where ε**=l—2ε.

Remark that

Π B(3/2 : 3(α+l)/2)=Γ(3/2)VΠ3(n+D/2)5Ξ«/n ! .

for some positive constant k8. Then, there exists positive constants Mz~Mz{λ T)
and έ9 such that

(6.16) Σ IΛW ί, s x, y)l(χ.ϊ)
0

X[exp M3(f-s)3/2][exp -λ(s**d\x,

Thus, on {(ί-s) |Ogs<KT}xMxM, we can define a function

(6.17) tftf t, s %, y ) = ± J n ( λ ; t f s ; x f y )
no

and for any C>1, on {(ί, s) |0^s<ί<T, C " 1 < ί - s < Q x M x M , the infinite sum
of (6.17) converges uniformly on each compact set, and we have

(6.18) Wλ t, s',x,y)\(XlV)

-λ(ε**d2(x,

Moreover, by a direct computation, we get

LEMMA 6.4. Let Jn(λ; t, s; x, y) be the function defined by (6.14). For any
O^s<t<T, there exist constants M 4 =M 4 W;T)>0 and klo>O such that

(6.19) Σ o J Un(λ ;t,s; x , y) | u . y) dμg{x)

(6.20) Σ ( \Mλ;t,s;xfy)\(Xίy)dμg(y)
71 = 0 J M
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Therefore, we have

(6.21) ( \K(λ;t,s;x, y)\(x,y)dμg(y)
J M

X[exp(M4(ί-s))](ί-s)1/2

(6.22) \jK{λ;i> s' x> I <«.»> <

N o w , fix (s, y) a n d cons ider ξ(t, z)=K(λ ;t,s;x, z). Applying Corollary 5.5,
we have

(6.23) JCx\'dσ\ H{λ ;t,σ; x , z)*K(λ σ.s z , y ) d μ e ( z )
J s J M

= \ l d σ \ MXH{1 ; t , σ ; x , y)*K(λ σ, s z , y ) d μ g { z ) ,
J s J M

Thus, we get

(6.24) {d/dt)[dσ\ H(λ ί, σ x, z)*K(λ σ, s; z, y)dμg{z)
JS J M

= K ( λ t, s x , y)+\fdσ\M(d/dt)H(λ ; t , σ ; x , z)*K(λ σ, s z , y ) d μ g { z ) .

So, we have

- \ χ d / d t ) - λ - ι S C x ~ ] \ t d σ \ H(λ t, σ; x , z)*K(λ σ, s z , y ) d μ g ( z )
Js JM

= K ( λ t , s x , y ) + [ t d σ \ J0(λ t, σ x , z)*K(λ σ, s z , y ) d μ g ( z )
J S J M

= —ΛW ί, s x, y).

Therefore, we obtain the following:

PROPOSITION 6.5. Under the same assumptions and notations as above, put

( 6 . 2 5 ) H ( λ ; t , s ; x , y )

=H{λ t, s x , y ) + \ ' d σ \ H(λ ; t , σ ; x , z)*K(λ σ, s z , y ) d μ e { z ) .
J S J M

Then, the following properties hold:

( i ) H(λ;t, s; x, y) is continuous in {(t, s)\0^s<t<T\ xMxM.
(ii) H(λ t, s; x, y) satisfies
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(6.26) (d/3t)H(λ t, s x , y)=λ~ιS(xH{λ t, s x , y)

(iii) There exists a positive constant M5=M5(λ T ) such that

(6.27) \H(λ;t, s;x,y)\(x,y)

X[exp -λ(ε**d\x,
and

\ \H(λ;t, s; x, y)\<x.V)dμg(x)
j M

\H(λ;t,s;x,y)\(x,y)dμs(y)

(iv) Therefore, defining H(λ;t, s)ξ(x) — \ H(λ;t, s x, y)ξ(y)dμg(y), we have a

bounded linear operator H(λ t, s) on L\E) and is C° semi-group with infinitesimal
generator λ^JC in (6.26).

Proposition 6.5 shows that H(λ;t, s; x, y) defined by (6.25) determines a
fundamental solution for the parabolic equation (6.1).

Remark. Cheng et al. [5] gives the upper estimate for the heat kernel of
Laplace-Beltrami operator acting on functions only by assuming the boundedness
of the curvature tensor of g.

By a similar argument as in Lemma 4.4, we have

LEMMA 6.6. Let ξ(τ, z) be a bounded continuous mapping from [s, ί ] x M to
E such that for any fixed r e [ s , f], ζ{τ, )&C(E). Then, the following equalities
hold uniformly on any compact set on M:

limf ζ(τ, z)*H(λ τ, s x, y)dμg(y)=ξ(s, y),
τ-+s J M

(6.28)
J ;t,τ;z, y)*ξ{τ, z)dμg(z)=ξ(t, y).

§ 7. Convergence of the product integral as the kernel function.

In this section, we shall prove Theorem 1.3, which gives the main theorem
in the introduction, using the fundamental solution constructed in § 6. Let [0, ί]
be any closed interval such that 0 < f < T , and T be any fixed positive number.
Let σN be a iV-equal subdivision of [0, t]

(7.1) σN:O=to<t1<"'<tN^1<tN=t, tj
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We define a operator H(λ; σN\t) associated with the subdivision σN:

(7.2) H(λ σN\t)=H(λ t, tN^)H{λ tN-l9 **-,) - H(λ fc, 0),

and we denote by H(λ; σN\t; x, y) the kernel function of the operator (7.2), i.e.

(7.3) H(λ;σN\t;x,y)=\ •••( W U ^ ^ ^ Λ - Γ "

where //(^ t, s x, 3;) is defined in (4.1).
To prove Theorem 1.3, we need several steps as below. First, put

(7.4) R(λ;t, s)=H(λ;t,s)-H{λ;t,s)

and denote by R(λ;t, s; x, y) the kernel function of (7.4). Then, we get the
following, which gives Corollary stated in § 0:

PROPOSITION 7.1. For any 0<ε<l/2, there exists a positive constant γx—
riG* T, ε) such that

(7.5) \R(λ;t, s x, y)\{XlV>

^Mori(t-s)-(m-^2[exp -λ(ε**d\x,

where ε**=l—2ε.

Proof. Combining (6.25) with (7.4), we have

(7.6) \ R ( λ ; t , s ; x , y ) \ < X t y >

χ\ exp -λ(ε**(\Z\2/(2(t-σ))-\Z-Y\2/(2(σ-s)))dZdσ

α-s)-(m-3)/2[exp -λ(ε**d2(x, y)/(2(t-s))]9

by a similar computations as in § 6. Thus, we get (7.5).
Now, we obtain

(7.7) H(λ;σN\t)-H(λ;t)

=H(λ t, tN-,) >•• H{λ tlf 0)-H(λ; t)

= [JJ« ί, tN-!)+R(X t, tN.1)'] -.

-. [JEΓtf tu 0)+R(λ tu O)]-£ΓM t, 0).

Using the evolutional property of H{λ ί, s), we shall write down the right hand
side of (7.7). Let
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f ( α i , •••, ak; βu - , β k + 1 ) ; k=l, •••, N, α t > 0 , jS*^O,
(7.8) 3 =\ k

[ Σ ίat+βtl+βt+ι=N
1 = 1

Also, we denote by

(7.9) AJ=a1+ - +a,, BJ=βι+ - +β,

7 ^ 1 , i40=0, 5 β = 0 .

Thus, Ak+Bk=N. The right hand side of (7.7) is written by

(7.10) H(λ;σN\t)-H(λ;t)

= = Σ ( α 1 , . . , α Λ ; i 8 1 , . . . , i 8 A + 1 ) G £ p 3 ' ( « l ί * * * > & k ) β u '" , β k + l )

w h e r e

(7.11) £r(a!, - , ak;βίf •-, /3A+1)

=JJ«;ί, (Ak+Bk)t/N)

χR(λ'ΛAk+Bk)t/N, (Ak~l+Bk)t/N) -

χH(λ; (A^+BJt/N, (A

, (A^l+BJt/N)

χH(λ;Bj/N90).

Now, we put

(7.12) R<»{λ A39 Bj\t)=R(λ {Aj+Btf/N, (Aj-

and denote by i ? 0 ) W ; ^ , Bj\t; x, y) the kernel function of (7.12).

LEMMA 7.2. Given any 0<ε<l/3, there exists a positive constant y^—y^l T, ε)
and lfs—γz(λ\ T, ε) such that

(7.13)

X[exp -λ{ε***d\x,
where ε***=l—3ε.

Proof. Generally, take tu •••, ί α e[0, t), oSti<~'<ta<t, and put

(7.14) R(λ ta, ..., h)=R(λ ta, ta^) ••• R(λ t2, U).
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We denote by R(λ ta, •••, t1 x, y) the kernel function of (7.14). To prove (7.13),
it is sufficient to get the following estimate for (7.14):

(7.15) \R(λ;ta, - , f i ) l u . v >
α-1

ta — ̂ l))j Π (tk+l — tkY (fa — tl)~m

X [exp -λ{ε***d\x, y)/(2(ta-t1)))'] .

We shall show (7.15) by induction. Remark that (7.15) holds for a—I easily by
Lemma 7.1. Assume that (7.15) holds for a—12:1. Then, by a similar com-
putation as in Lemma 7.1, we have

(7.16) \R(λ;ta, - , ί i ) ! (» .„)

because of exp-(λε\Z\y(2(ta-ta.1))-k\Z\)^exp((ta-ta-1)k2/2λε. By (7.16), we
get

(7.17) IΛtf f., •-,*,)I(«.„
α - l

_ 112 II 3 1 k = ί

X[exp -«e***(d£(x, 3>)/(2(ία-«)))]

Therefore, we have (7.15).

Define a operator Sa)(λ; t) by

(7.18) S ω U ί)=ίΓW (Aj+BJ+1)t/N, (Aj

(A1+B1)t/N9 (A^BJt/WR^iλ A, SrfJJTtf 5̂ /ΛΓ, 0)

and we denote by SU)(λ',t; x, y) the kernel function of S(j)(λ;t). Using (7.13)
and doing the similar computations as above, we have

(7.19) \S<Hλ]t',x,y)\{Xty}

SMl^γl^lexpiγ^t/mBjm/Nγ^^Aj+B^t/N)^12

X[exp -(λε^(d\x, y)/(2(Aj+Bj)t/N)m

where ε ( 4 ) =l—4ε.

Proof of Theorem 1.3. Combining (7.11) and (7.19), we get
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(7.20) Σ ( α 1 , . . . . α Λ ; j 8 1 . . . . . j 8 A + 1 ) 6 f f | 9 ' ( α i , " , <*k',βl, ~ , βk+l',X, j θ I (ar.y)

xy 30/20]

d\x, y)/2t)l

where £Γ( ••• x, y) is the kernel function of (7.11) and ε ( 4 ) =l—4ε. So, Theo-
rem 1.3 is obtained.

Remark, The above computation can be slightly moved for general subdivi-
sion of [0, ί] (Cf. [11]).

Appendix. Growth of the higher order derivatives of p(x, y) and P(x, y).

In this appendix, we shall show the growth estimates of p(x, y) and P(x, y),
defined by §2, under the assumptions (A.0)-(A.2). First, we give the estimate
for p(x, y). Namely, we have

PROPOSITION A.I. Assume that (A.O)-(A.l) holds. Then, there exists a posi-
tive constant &4 such that

( 1 ) \Ί%p(x,y)\v^UwφkAr), r=d(x,y), 0^ |α |^3,

for any x, y^M.

To show the above proposition, we prepare some lemmas. Remark that the
exponential mapping is a diffeomorphism from TXM onto M by the assumptions.
Thus, we can introduce the normal coordinate around x (Cf. [13] for the precise
notation). By the identification TxM^SxMxR+, we shall use the normal polar
coordinate (r, ω), where ω—(ω2,'~,ωm) in a local coordinate of SXM—
{ω^TxM; \ω\x=l} and r^R+. Choosing an orthonormal vectors e2(ω), •••, em(ω),
at a point (r, ω), which are perpendicular to radial axis, we may assume that
{e2((ϋ), •••, em(ω)} depends smoothly on ω locally. We put, for a=2, •••, m,

{2) Ka(τ, ω1)=Expxτ(ω+(ε1/r)ea{ω)),

for sufficiently small ελ. Since (2) is a geodesic variation, {dldεx)Ka is a Jacobi
field along the curve Ka(τ, ωx) for each fixed Si. Therefore, we can apply the
comparison theorem and we have for some constant &4i>0,

(3)
ί I (δ/δτ)(d/dSl)Ka(r, 0) I yS&41(exp * 4 1 r ) ,

where r=d(x, y) and Expxrω=y.
Let us use t h e idices A , B, C, ••• = 1 , 2, •••, m and a, b, c, ••• =2, 3, •••, m.

Denote by ^ ^ 5 t h e component of t h e Riemannian m e t r i c g w i t h respect to t h e
coordinate (r, ω), i. e.
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gn(r, ω)τ=g((dExpx)rωω, (dExpx)rωω)=l,
( 4 )

gia(r, ω)=g((dExpx)rωω, (dExpx)rea(ώ))=0,

(5) gab(r, ώ)^=g((dExpx)rωea(ω)f (dExpx)rωeb(ω)).

Differentiating (5) directly and noticing that {d/dε1)Ka\t1=ϋz={dExpx)rωea{ω)t we
have for any 2^σ, btίm, with some constant &42>0,

ί I gab(r, ω) I ^ &42(exp ki2r),
6) \

I |3r^αδ(r, ω) I ^ &42(exp

LEMMA A.2. Under the same assumptions as in Proposition A.I, there exists
a positive constant k43 such that for any 2^a, b^m,

( 7 ) I dcgab(r, ώ) I ̂  £ 4 3 (exp k4Sr).

Proof. We take a smooth curve α>(ε2) in SXM for sufficiently small ε2 such
that (d/dε2)ω(0)~ec, c=2, •••, m. Consider

( 8 ) Ka(τ, εlf ε2)=Expxτ(ω(ε2)+(ε1/r)ea(ω(ε2))).

Then, Ka(τ, εlt ε2) is also geodesic variation in two parameters εu ε2 and has
the following initial conditions

( 9) @/3βi)/r«(0, e l f ε 2 )=0, {d/dε2)Kaφ, εly ε 2 )=0,

and

ί (δ/δτ)«S/dei)Ka{0, εl9 e2)=(
(10)

I (δ/δτ)(d/dε2)Ka(0, el9 ε2)=ω\ε2)+{εjr){d/dε2)ea{ω(ε2)).

By differentiating the Jacobi equation with respect to εi and ε2, and putting
ε 1 = ε 2 = 0 , we get

(11) (δ'/δeiδejW/δτ^Kaiτ, 0, 0)+Λ(f(r), (δ'/δεtδeJKaiτ, 0, O))f(τ)

2, ; = 1 , 2, γ(τ)—Expxτω, where Fa,ι,j(τ) is the function of i?, 7/?, (d/dεi)Ka,
(δ/δτ)(d/dετ)Ka and ( / )( / ,)tfa. Also, we have the following setimate by (2.3)
and (2.5),

(12) | F α , w ( r ) | r ( r ) ^ £ 4 Λ e x p &44r), γ(r)=Expxrω}

with some constant &44>0. Therefore, we get by variation of constant

(13) I (δyδεtδεjWair, 0, 0) | γ ω ^ £45(exp k45r),

y{r)—Expxrω, with some positive constant &45>0. Then, in accordance of



POINTWISE CONVERGENCE 221

a)=ωaea, a)=(ω2, , ωm) as the coordinate of ω, using (13), we have

(14) dcgab(r, ω)=(d/dε2)gab(r, ω(ε2)) \ H=Q

=g((δ2/δε2δε1)Ka(r, 0, 0), {d/dε^K^r, 0, 0)) r ( r)

+g((d/dε1)Ka(r> 0, 0), (δVδε2δε1)Kb(r> 0, 0)) r ( r ),
we get (7).

By Lemma A. 2 and the definitions of the Christoffel symbols and p(x, y),
we have

LEMMA A.3. Under the same assumptions as in Proposition A.I, there exists
a positive constant k46 such that the following estimates hold:

(15) \gAB{r, < o ) | ^

(16) I Γidr, ω) | g £46(exp ki6r), r = d(x, y)

where gΛB(r, ώ) and Γ£c(f> ω) a r e ihe inverse matrix of g—{gAβiχ, (o)) and the
Christoffel symbol of g with respect to the coordinate (r, ώ) respectively. Moreover,
we have

(17) Vyp(x, y)\y^k46(expk46r), r=k(x, y).

Now, let ω 2 , , ω m be t h e coordinates on p a r t of SXM. We denote by
Dp>v t h e differential operator, v—(v2, •••, vm),

Differentiating the Jacobi equation successively and using the variation of
constant, we get the following, which gives Proposition A.I, because of the
definition of p(x, y) (Cf. [3]).

LEMMA A.4. Under the same assumptions as in Proposition A.I, there exists
a positive constant ki7 such that

(18) \Dv>vJa(r, ω) | r ( r ) ^£ 4 7 (exp£ 4 7 r ) , α=2, - , m,

γ(r)=Expxrω} where Ja{τ, w)=(d/d£l)Ka(r, 0).

Remark, (i) Berard [1] has a similar estimate for p(x, y) when the case
that M is a universal coverting space of a compact manifold.
(ii) Assuming the boundedness of higher order derivatives of the curvature
tensor, we get the more higher order growth estimate for p(x, y).

Next, we give the higher order estimate for P(x, y). Namely, we get

PROPOSITION A.5. Under the assumptions (A.0)-(A.2), there exists a positive
constant k48 such that for any 0 ^ | α | ^ 3 ,
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I (Dx)
aP(x, y) I u, y) S &48(exp ki8r),

\(Dυ)
aP(x, y)l<χ.»)^*48(exp*48r), r=d(x, y).

Remark. If we obtain the above proposition, we have Proposition 2.6, because
the adjoint operator D* can be written by using Zλ

Before proving Proposition A.5 generally, we first observe the following:

LEMMA A. 6. Under the same assumptions as in Proposition A. 5, there exists
a positive constant &49 such that

\DxP(x, y)\u,y)^:kω(exp ki9r),

1 \DyP(x, y)\ix,y)^ku(expkur), r=d(x,y).

Proof. Let {e^y), - , em(y)} be an orthonormal basis of TyM and put
ζι(x, y)—P(x, y)βi(y). Take {/i(x), •••, fm(x)} as an orthonormal basis of TXM
also. Let ηfeύ be a smooth curve such that ^ ; (0) — x and (d/dε^η^fy^fjix),
y = l , •••, m. Then, we get

Dfj(x}ξ(x, y)=W*i)ξj(vλ*i)> y)i=0

Consider the variation ϋf/(τ, ει)—Expyτ(ω+{εi/r)fj(y)), where Expyrω—x and
/ / y) is the parallel transport along the geodesic from x to y, i.e. fj(y)=
P(y> x)fjW> Also, we define £/τ, Si)eE^ ( T , S l ), / = 1 , •••, m by

(δ/δτ)ξj(τ, e i ) = 0 , f; (0, β l)

for each field εlβ Differentiating covariantly (2.15) with respect to εu we get

(21) (δ/δτW/δsύξfa *i)+Ω{(δ/δτ)K,, (δ/δeι)ξJ)=0,

where Ω denotes the curvature tensor of D. Since (δ/δεJKju^o is a Jacobi
field along γ(τ)=Expxrω, we get by Lemma 2.4

(22) W/dr)|(3/3 e i)^(r,0)|

1 Γ ( r, I (δ/δτ)Kj(τ, 0) | Γ ( r ) | (δ/δεJKfa, 0) | r ( r ) | ί , | r ( r )

with some constant k'49>0. Thus, we have

TO

(23) | 0 * P ( χ , y ) l ! χ . » > = Σ \DfμxMχ, y)\%
i l J

which proves the first inequality of (20). The second one is obvious by using
P(x, y)P{yy x)=Id.
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Proof of Proposition A. 5 is easily obtained by differentiating (2.15) covariantly
and doing the similar computations as in the proof of Lemma A. 6. Thus, we
get the desired results.
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