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1. Introduction. Let R be a nonparabolic open Riemann surface and g(z, a)
denote its Green's function with logarithmic singularity at a&R. For a function
/ analytic on R, we define

1
A(f)=—area \f(R)},

ΊZ

(1.1) B(/)=sup-(( \f'{z)Vg{z,a)dxdy
a<ER π J J R

and

where z—xΎιy denotes a local coordinate on R. We consider following spaces
of analytic functions on R :

(1.2) BMOΛ(R)= {f : B(f)< +co},

AD(R)={f:D(f)<+<χ>}.

Metzger [10] introduced BMOΛ(R) by (1.1) and (1.2) and showed the inclu-
sion relation ΛD(R)(ZBMOΛ(R) by using a celebrated result of Hayman and
Pommerenke [3]. Stegenga [13] independently obtained a similar result as
theirs and remarked as an easy consequence that the inequality

(1.3) B{f)ScA{f)

with some constant c holds for functions / analytic in the unit disc U of the
complex plane C. Recently the author [8] showed that (1.3) holds with c = l ,
that is, the inequality

(1.4) B(f)SA(f)

holds for functions / analytic on R, which obviously implies
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(1.5) B(f)^D(f),

and left open problems as conjectures on equality conditions of (1.4) and (1.5).
In the present paper we offer a rather simple proof of (1.4) and settle the con-
jectures, one negatively and the other affirmatively.

In Section 2 we restate our results in the form of a theorem. In Section 3
we obtain an expression of B{f) employing least harmonic majorants, from which
we see the invariance of B(f) under the pull-back by a universal covering map.
In Section 4 we prepare preliminary lemmas, which we use in Section 5 for the
proof of our main results. In Section 6 we deal with the conjectures offered by
the author [8] on equality conditions of (1.4) and (1.5).

I would like to express my deep gratitude to Professor N. Suita for his
constant encouragement and helpful comments on the present paper, especially,
thanks to his suggestion, the proof of Lemma 4.2 was made considerably short
and simple, although the original one was somewhat long and complicated.

2* Main results.

THEOREM 2.1. // / is analytic function on R, then

(2.1) B(f)^Λ(f).

COROLLARY 2.2.

(2.2) B(f)^D(f).

Corollary 2.2 is an easy consequence of Theorem 2.1, since the inequality

(2.3) A{f)^D{f)

is obvious, where equality occurs if and only if / is univalent on R.

3. BMO norms and least harmonic majorants. We denote by ha(z) the
least harmonic majorant of \f(z)—f(a)\2 on R for every a^R. Let p:U-+R
be a universal covering map of R.

Proposition 3.1 is easily proved by a routine way using Green's formula,
which is similar to that of obtaining a formula for the solution of Dirichlet
problem in terms of the normal derivative of Green's function (see, for example,
[5, pp. 399-405] or [6, Lemma 1]).

PROPOSITION 3.1.

(3.1) ha(a) — —\\ \f'(z)\2g(z, a)dxdy.
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COROLLARY 3.2.

(3.2) β(/)=sup/ια(α).
αGJR

It is well known that a universal covering map preserves the least harmonic
majorant of any subharmonic function (see [11, p. 50] or [9, Lemma 1, p. 316]),
so we easily see that the BMO norm B(-) is invariant under the pull-back by a
universal covering map, that is

COROLLARY 3.3. B(f)=B(f*ρ).

COROLLARY 3.4. BMOA(R)={f : f°p^BMOA(U)}.

Corollaries 3.3 and 3.4 were essentially obtained by Metzger [10, p. 1257],
whose proof, however, heavily depends on a Myrberg's theorem on Green's
function of a covering surface.

4. Preliminary lemmas. In this section we prepare two preliminary lemmas.
Lemma 4.1 is easily derived from Proposition 3.1 and the subordination principle
(see, for example, [5, p. 422]).

LEMMA 4.1. Let Rx and R% be Riemann surfaces and φ:R1->R2 be an ana-
lytic map from Rλ into R2, then

(4.1) B(f°φ)^B(f)

for any f^BMOA{R2).

Let pj'.U-^Rj denotes a universal covering map of Ro for ; = 1, 2. By the
monodromy theorem, we can define an analytic function ψ in U bounded by 1
for which φ°pi~p2

oφ. We call φ an inner map when φ is an inner function,
i.e. \φ*(eiθ)\=l a.e. on the boundary of U, where ψ* denotes the Fatou's
boundary function of φ. It is known that φ preserves the least harmonic majorant
of a nonnegative subharmonic function if and only if φ is an inner map (see
[9, Theorem 1, p. 316] or [12]). Therefore, on noting Corollary 3.2, we easily
see that equality occurs in (4.1) if φ is an inner map. On the other hand, the
converse is not valid. Indeed, in the last section we will offer a counterexample,
which shows that equality can occur in (4.1) even if φ is not inner (see Corollary
6.5 in Section 6).

The next lemma was claimed by the author [7] in order to give another
proof of an inequality on image areas and # 2 norms obtained by Alexander,
Taylor and Ullman [1]. Here we state a simple proof, so as to make the present
paper self-contained and to make use of the argument for considering the equality
conditions of (2.1) and (2.2) in Section 6.

L E M M A 4.2. Let D be a plane domain of finite area and Xa(z) denote the least

harmonic majorant of \z—a\2 in D for a^D, then
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(4.2) Xa(a)^— areaCD),

and equality occurs in (4.2) if and only if D is a domain of the form
D—{z: \z—a\<r\— E, where r > 0 and E is a closed set of capacity zero.

Proof. First we assume that D is a domain with smooth boundary 3D. If
u(z) is a C2 function on the closure D of D, then by a Green's formula

(4.3) ίί Audxdy = [ d~ds,
JjD joD on

where Δ denotes the Laplacian, - o — the differentiation in the outer normal
on

d i r e c t i o n a n d ds t h e a r c l e n g t h m e a s u r e o n dD. L e t v(z) — \z—a\2 a n d a p p l y

(4.3) w i t h u — v in D, t h e n w e s e e

(4.4) 4area(£>)=ί

since Av-=4. Next let w(z)=\z—a\2e2g(z'a)=ve28 and again apply (4.3) with u = w
in D, then we see

(4.5)

^ *\ ί3

since -x— = —~ \-2v-^r~ on 3D. Combining (4.4) and (4.5), we obtain
on on on

(4.6) χ α (α)+-jMί Aw dxdy =—
4τr JjD π

ince v^-ds =—2πXa(a).
JdD on

since

In order to deal with the case where D is a general domain, let {Dm} be a
smooth exhaustion of D such that a^Dm for m = l , 2, •••. We denote by la,m
and wm, respectively, the functions for Dm which correspond to Xa and u> for
D, then (4.6) for Z?m is

1 ΓΓ
Qπ jjD

On letting m—>oo, we see by Lebesgue's monotone convergence theorem and
Fatou's lemma

(4.7) Xa(a) + -^-~\[ Aw dxdy^-area(D),
4π JJD π
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since wm converges to w uniformly on compact subsets of D. Note that Aw^O
in D since w is subharmonic, so (4.7) implies (4.2).

Suppose that equality occurs in (4.2), then we see by (4.7) that Aw=0 in D,
which means that g(z, a)=\og(r/\z—a\) for some positive constant r. Therefore
D must be a domain as mentioned in the lemma. Conversely, if D is such a
domain, then equality evidently occurs in (4.2), since in that case Xa(z)=r2 in D
and a set of capacity zero is of area zero.

COROLLARY 4.3. // I(z)=z for z^D, then

(4.8) B(I)^~ area(D),
TZ

where equality occurs if and only if D is a domain of the form D — {z : | z—c \ <r} —K
with C<ΞC, r > 0 and Cap(E)=0.

Proof. On noting Corollary 3.2, (4.8) immediately follows from (4.2). We
must prove the equality condition. For this we first assume that equality occurs
in (4.8). Take a sequence {an} of points in D such that

(4.9) JB(/)=limχα n(αn).
n->oo

We may assume, if necessary by taking a subsequence, that an converges to
some point C G D and that g(z, an) converges uniformly on compact subsets of
D—{c). Write wn{z)—\z—an\

2e8(z'an\ Applying Fatou's lemma, we see by
(4.7) and (4.9)

and hence limΔwnΞθ, since we assumed the equality in (4.8). Therefore we
7i->co

see

(4.10) Πmg(z, flB)=log(r/|z-c|)

for some positive constant r. Since Green's functions are positive, (4.10) implies
that D is contained in the disc W—{z\ \z—c\<r). Let E—W—Ό and suppose
that E is of positive capacity, then we can take a δ>0 such that Eδ=
EΓ\{z : \z—c\^δ} is of positive capacity. Let Dδ—D\J{z : \z—c\ <δ} and gδ(z, a)
be Green's function of Dδ. Since Dd.DδaWy we see by (4.10)

log(r/\z-c\)=limg(z, an)
7ϊ-»oo

^lim gδ(z, flj
ft—oo

=gδ(z, c)

S\og{r/\z-c\),
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and hence g§(z, a)=\og(r/\z—c\), which means Cap(£<5)=0. This is a contra-
diction. Therefore we see Cap(£)=0, and hence that D must be a domain as
mentioned in the corollary.

Conversely, if D is such a domain, then equality evidently occurs in (4.8),
since \imXa(d)—r2.

a-*c

Remark. The inequality (4.2) can be also deduced from an isoperimetric
inequality on symmetrized Poisson problem [2, Theorem 2.8, p. 68] by setting
f=— 4 there.

5. Proof of Theorem 2.1. Let D=f(R) and p :U->D be a universal cover-
ing map of D. By the monodromy theorem, we can determine a single-valued
branch of ρ~lof°pf which, denoted by φ, is an analytic map of U into itself
such that

(5.1) poφ=foP)

where p : U-+R denotes a universal covering map of R, as before. By Corollary
3.3, (5.1), Lemma 4.1 and Corollary 4.3, we see

1
= £(/)<—area(D),

which completes the proof of the theorem.

6. Equality conditions. In this section we are concerned with the problem
when equalities occur in (2.1) and (2.2). The author [8] presented the following
conjectures on the problem and noted that the if parts are valid for both of them
and that if the former is valid then so is the latter:

Conjecture 1. Equality occurs in (2.1) if and only if fop=cφ+d, where c
and d are constants and φ is an inner function.

Conjecture 2. Equality occurs in (2.2) // and only if R is a Riemann surface
which is obtained from a simply-connected one W by deleting at most a set of
capacity zero and f is (extended to) a con formal map of W onto a disc.

In the following, we show that Conjecture 1 is not valid, by offering a
counterexample (Example 6.4), while that Conjecture 2 is valid (Proposition 6.2).

P R O P O S I T I O N 6 . 1 . // equality occurs in ( 2 . 1 ) , then f(R)—{z\ \z—c\<r}— Ey



IMAGE AREAS AND BMO NORMS 169

with C G C , r > 0 and Cap(£)=0.

Proof. The proposition easily follows from the proof of Theorem 2.1 and
the equality condition of Corollary 4.3.

PROPOSITION 6.2. Conjecture 2 is valid.

Proof. Suppose that equality occurs in (2.2), then we see that equalities
occur both in (2.1) and (2.3). Therefore we see by Proposition 6.1 that f(R) —
{z: \z—c\<r}— E with c e C , r > 0 and Cap(£)=0, and by the equality condition
for (2.3) that / is univalent on R. Since a set of capacity zero is removable
for Hp functions (see, for example, [4] or [11]), and hence for BMOA functions,
we see that / and R must be as mentioned in Proposition 6.2.

Conversely, if / and R are as mentioned in the proposition, then it is easily
seen that ha(a) approaches to r2 if we take a—>R for which /(α)—>c, and hence
that equality occurs in (2.2), as asserted.

We conclude the present paper by giving two examples, one of which
demonstrates that the condition mentioned in Proposition 6.1 is not a sufficient
one for equality in (2.1), and the other demonstrates that equality can occur in
(2.1) even if / is not an inner map, that is, the only if part of Conjecture 1 is
not valid.

Let g be the conformal map of U onto UΓ\{z: Rez>—1/2} with g(0)=0,
and φ be the singular inner function ψ(z)—exp{—(l+z)/(l—z)}, z^U.

EXAMPLE 6.3. Let f(z)={g{z)}2, then /(£/)=£/ but equality does not occur
in (2.1).

Proof. Let ha(z) denotes the least harmonic majorant of \f(z)—f(a)\2 in U
as before, then we see by Corollary 3.2 and a simple calculation

S(/)=supΛα(fl)

τ / niθ~L-n \ 2

dθ

piθ~

since for l><5>0 we can take an ε>0 such that

1 f2*

2π Jo

if \a\^δ, a n d t h a t | / ( α ) | ^ e if | α | > δ .

dθ<l-ε
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EXAMPLE 6.4. Let f(z)=g(z)ψ(z), then f is not an inner function but equality

occurs in (2.1).

Proof. Similarly as in the proof of Example 6.3, we see by a simple calcu-

lation

Noting that the integral — ^ dθ coincides with the value at a

of the harmonic function in U with boundary value \g(ζ)\2 on dU, we see that
Aα(β)-»1 as α->l, a<^R, since \f(a)\^\ψ(a)\-*0 as α->l, α e β , and hence that
B(f) — l. On the other hand evidently A(f)^l, since | / ( z ) | ^ l for ZG{/, SO we
see that equality must occur in (2.1), as asserted.

COROLLARY 6.5. Let R^—U for ; = 1, 2, and consider the function f defined

in Example 6.4 to be analytic map of Rλ into R2, then f is not an inner map

while B(I) = B(Iof) holds.
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