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HADAMARD'S VARIATIONAL FORMULA

FOR THE SZEGO KERNEL

BY GEN KOMATSU*

§ 1. A variational formula. The present note is concerned with the
HadamarcΓs (first) variational formula for the Szego kernel associated with a
strictly pseudo-convex domain in Cn with n ^ 3 . A similar formula for the
Bergman kernel has been given in [7].

Let Ω°dCn with n ^ l be a bounded domain with smooth boundary dΩ°.
Every smoothly perturbed domain of Ω° can be parametrized by a small function

R) in such a way that the boundary of that domain Ωp is given by

(1) 3Ωp={ζ+p(ζMQ;

where p{ζ)—d/dvζ denotes the unit exterior normal vector to Ω° at
identified with an element of Cn.

Let Sp(z, w) for z, w^Ωp denote the Szegδ kernel associated with Ωp, which
is the reproducing kernel associated with the space L2

bH(Ωp) of holomorphic
functions in Ωp with L2 boundary values equipped with the L\dΩp) scalar
product. With δp^C^idΩ0 R) and z, w^Ωp fixed arbitrarily, we set

( 2 ) δ S p ( z , w ) = ~ - - S p + ε δ p ( z , w ) \ ε = 0 ,
dε

which is the Hadamard's first variation of Sp(z, w) at p in the direction δp.
Our purpose is to show that, for a certain class of domains Ω°, the variation
(2) at p=0 exists and is given by

(3) -δS°(z, w) = \ n-£-lS°(z, ζ)S°(ζ, w)] δp(Qdσ°(ζ)

+ \ S\z, ζ)S°(ζ, w)H0(ζ)δp(ζ)dσ\ζ),
JdΩ°

where dσ°(Q denotes the induced surface measure of dΩ°dCn at ζ, and //°(ζ)
stands for the mean curvature of dΩ° at ζ multiplied by 2n — 1. A concrete
statement of our result is given as follows:

THEOREM. // Ω°aCn zs strictly pseudo-convex with ?2^3, then the variation
(2) at p=0 exists and is given by (3).
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Note that the right hand side of (3) makes sense, for if Ω°dCn is strictly

pseudo-convex then S°( , •) extends smoothly to (Ω°x~Ω°)\Δ{dΩύ)y where Δ(dΩ°)

denotes the diagonal of dΩ°xdΩ° (see Boutet de Monvel and Sjδstrand [1], see

also Kerzman and Stein [5]).

Remark 1. As will be seen in Section 3, the variational formula (3) is
valid whenever the Szegδ kernel associated with Ωp depends smoothly on p in
the sense of (6) in Section 2.

It is plausible that (3) holds if n = l . In fact, if n = l , then the Szegδ
kernel is expressed in terms of the Bergman kernel and the harmonic measures
(see Garabedian [3]). The smooth dependence of the Bergman kernel on p has
been established (cf. [7], Remark 2), while the harmonic measures are expressed
in terms of the Poisson kernel and thus depend smoothly on p, cf. Section 2.

The assumption n ^ 3 in Theorem above is imposed in order to use an
expression of the Szegδ kernel in terms of the 5δ-Neumann operator, see (9) in
Section 2. It is likely that Theorem above is valid also for strictly pseudo-convex
domains in C2.

Remark 2. In case n—1, Schiffer [9] has obtained another expression for
the variation (2) in terms of the Szegδ kernel and the so-called adjoint kernel.
It is not difficult to see that his formula follows from (3).

§ 2. Existence of the variation (2). Setting

cv\εi)={p<ΞC~(dΩ°;R); \p(ζ)\<e1 for ζ^dΩ0}

with εχ>0 small, we begin with constructing a family of diffeomorphisms
ep:C

n-*Cn for ^Gq/°(£ l) such that

( 4 )

eP(Q=Z+p(Q»(Q for ζe3β° (cf. (1)),

<=V\ει)^p^ep^C°°(Cn Cn) is continuous,

ep—e0 depends linearly on p and £0—identity.

In particular, (4) will imply that ep depends smoothly on p and that ep(dΩ°)—dΩp

so that ep(Ω°)—Ωp. Several ways of constructing such a family {ep ^eq^Csx)}
are possible. We shall employ the one as in [7], which will be convenient for
our purpose.

Given a small constant εo>O, we consider a tubular neighborhood N(εo)=
{z^Cn; |ro(z)|<εo} of 3Ω° in Cn, where r°^C^C71 R) is a defining function
of Ω° such that

flo={zeCB;ro(2)<O}, \dr°(z)\=l for zt=N(ε0).

Then, every point Z<BN(S0) is uniquely expressed as z=ζz+r°(z)v(ζz), where
ζ 2 e3β° is the nearest point to z. Fixing a constant ε! with 0<ε 1<ε 0/4, we
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choose 3CoeC"(β; R) satisfying

for

for
and

dr
< - - — for

4

For o e φ 0 ^ ) , we define a mapping e i 0: C re-+Cn by setting

U for
pU

(5)
ep(z)=z otherwise.

Then, {^ peci^Oi)} is a family of diffeomorphisms satisfying (4).
By means of ep, one can pull back in general a function fp in Ωp or on
and a linear operator Z/ acting on fp as follows:

Let S<*:L\dΩt>)-+LΉb(dΩP)(zL2(dΩι>) denote the Szego projector associated with
i2^, which is the orthogonal projector onto L2Hb{dΩp) — LlH(Ωp)\dΩp and is
related to Sp(z, w) by

Spfp{z)^dQpS
p{z, QfiQdσHQ for fp^L\dΩp),

where dσp(ζ) stands for the induced surface measure of dΩpdCn at ζ. Then,

Sp(z, QfP(ζ)dσp(ep(ζ)) for

Sp=e^Spep

1* satisfies

where we have set

Sp(z, w)=Sp(ep(z), ep{w)) for (z, w)^Ω°xΩ°.

Observe by (5) that Sp(z, w)=Sp(z, w) for z, w<=Ω°\N(ε0). Therefore, the vari-
ation (2) exists for z, w^Ω°\N(ε0) fixed, provided that Sp(z, w) depends smoothly
on p as far as p is small with respect to the C°°(dί20)-topology. For the later
use, we shall show that

(6) cy2 3 p ^> Sp( , w) e C°°(£F) is smooth

with w<ΞΞΩ°\N(ε0) fixed, where <V2 is a neighborhood of 0eC°°(3i20 JB).
In order to prove (6), we first recall that

Pp{w, ζ)dσp(ζ)

-)~](z) for (z, u / ) 6 ^ x ^ ,

where Pp{w, ζ) denotes the Poisson kernel associated with £? ,̂ see Kerzman and
Stein [5]. Then,
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(7) Sp(-,w)=SpPp(w, -) on Ω5 for w<ΞΩ°\N(e0).

We next recall the assumption that Ω° is strictly pseudo-convex, so that

n d2r°(z) - n n dr°(z)

(8) Σ - f^-f^CΣI&l whenever Σ ^ ~ ^ = 0
, k=i OZjOZk J=I J=i OZj

holds for each z<^dΩ°, where C>0 is a constant independent of z. Hence, if
o(Sl) is small with respect to the C2(dί2°)-toρology, say,

1 ) ; \ ρ\C2^Ω0)<ε2\ with ε 2>0 small,

then Ωp is strictly pseudo-convex uniformly in p^°(/2 in the sense that (8) holds
for each z^dΩp with rp=r°°ep

1 in place of r°, where C>0 is independent of
If moreover n ^ 3 then the following formula holds:

(9) Sp=l-$p

bN
p

b3
p

bf thus S , - l - ( ^

where 5ξ and #£ denote the tangential Cauchy-Riemann operator acting on C°°(dΩp)
and its L\dΩp) adjoint, respectively, and N% stands for the 56-Neumann operator
acting on the space C™Otί)(dΩp) of tangential (0, l)-forms on dΩp (see Kohn [6],
or Folland and Kohn [2]). The definitions of (βb)Pf {Nb)p and (db)p will be clear
except for the fact that the space efC%ιl)(dΩp) may vary with p. However, one
may modify it to be independent of p by considering the projection : efC%tl)(dΩp)
-*C°?otl)(dΩ0) (see Kuranishi [8]). The smooth dependence of this modification of
the pull-back of (Nb)p on p small is involved in Kuranishi [8]. Therefore, Sp

depends smoothly on p in the sense that

cv2χC°°(dΩ0)ΞB(p, f)^Spf^C°°(dΩ°) is smooth.

Since the Poisson kernel Pp(w> •) can be expressed in terms of the Green kernel,
the smooth dependence of Pp(w, •) on p can be proved as in Hamilton [4] (the
easier case). Hence, by virtue of (7), we have proved (6). In particular, the
variation (2) makes sense.

§ 3. Proof of the variational formula (3). The proof is similar to that in
[7]. Pick z, M/£ί3° arbitrarily and choose εo>O so small that z, w^Ω°\N(ε0).
Then,

Sp(z, w)=Sp(z, w) for

By the reproducing property for the Szego kernel, we have

Sp(z, w)=Sp(z, w)=\aQpS
p{z, QSp(ζ, w)dσp(ζ)

where Jb[βp~\ stands for the Jacobian determinant of the mapping ep restricted to



HADAMARD'S VARIATIONAL FORMULA 161

942°. Recalling (6), we take the variation at ^ = 0 in the direction δp^C°°(dΩ° R).
Then,

δS°(z, w)=δS0(z, w) = —ΓSεδp(z, u/) | s=o
de y

where

(I1)=δSQ(z9 OS°(C w),

(/,)=S°(z, ζ)S°(ζ, u/)3/6[>o](0,

and dΛ[βo] = -^Λ[>«^]|.=o. Setting δ Z 0 = - ^ - e β ^ | 8 = 0 , we get

δX0(Q=δp(Q-~, 3Λ[eo](C)=div δX0(Q=δp(QH\Q

for ζ^9β°, and

βSofe ζ)=aS°(z, ζ)+^Z0(ζ)5°(z, ζ),
(10)

3S0(C u;)=3S°(C,

for ζ^i2°, where the vector field <5Z0(ζ) in (10) is acting as a differential operator.

Note that δS\z, •) and δS°( , w) extend smoothly to Ω°, and that the relations

in (10) remain valid for ζ e β ° . Moreover, 5S°( , I/;) and δS°(z, •) are holomorphic

and conjugate holomorphic in Ω°, respectively. Since S°( , •) is hermitian sym-

metric with the reproducing property, we have

(I1)dσ\O=δS\zf w) + \ δX0(QS\z, ζ) S°(ζ,

( )=δS°(2) w) + \
Jσί/υ J

while

J ) - J a β o S o ( z , ζ)S°(ζ, w)H\Qδp(Qdσ\Q.

Summing them up, we obtain the desired variational formula (3).
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