HADAMARD'S VARIATIONAL FORMULA FOR THE SZEGÖ KERNEL

By Gen Komatsu*

§ 1. A variational formula. The present note is concerned with the Hadamard's (first) variational formula for the Szegö kernel associated with a strictly pseudo-convex domain in \boldsymbol{C}^{n} with $n \geqq 3$. A similar formula for the Bergman kernel has been given in [7].

Let $\Omega^{0} \subset \boldsymbol{C}^{n}$ with $n \geqq 1$ be a bounded domain with smooth boundary $\partial \Omega^{0}$. Every smoothly perturbed domain of Ω^{0} can be parametrized by a small function $\rho \in C^{\infty}\left(\partial \Omega^{0} ; \boldsymbol{R}\right)$ in such a way that the boundary of that domain Ω^{ρ} is given by

$$
\begin{equation*}
\partial \Omega^{\rho}=\left\{\zeta+\rho(\zeta) \boldsymbol{\nu}(\zeta) ; \zeta \in \partial \Omega^{0}\right\} \tag{1}
\end{equation*}
$$

where $\nu(\zeta)=\partial / \partial \nu_{\zeta}$ denotes the unit exterior normal vector to Ω^{0} at $\zeta \in \partial \Omega^{0}$ identified with an element of \boldsymbol{C}^{n}.

Let $S^{\rho}(z, w)$ for $z, w \in \Omega^{\rho}$ denote the Szegö kernel associated with Ω^{ρ}, which is the reproducing kernel associated with the space $L_{b}^{2} H\left(\Omega^{\rho}\right)$ of holomorphic functions in Ω^{ρ} with L^{2} boundary values equipped with the $L^{2}\left(\partial \Omega^{\rho}\right)$ scalar product. With $\delta \rho \in C^{\infty}\left(\partial \Omega^{0} ; \boldsymbol{R}\right)$ and $z, w \in \Omega^{\rho}$ fixed arbitrarily, we set

$$
\begin{equation*}
\delta S^{\rho}(z, w)=\left.\frac{d}{d \varepsilon} S^{\rho+\varepsilon \delta \rho}(z, w)\right|_{s=0} \tag{2}
\end{equation*}
$$

which is the Hadamard's first variation of $S^{\rho}(z, w)$ at ρ in the direction $\delta \rho$. Our purpose is to show that, for a certain class of domains Ω^{0}, the variation (2) at $\rho=0$ exists and is given by

$$
\begin{align*}
-\delta S^{0}(z, w)= & \int_{\partial \Omega^{0}} \frac{\partial}{\partial \nu_{\zeta}}\left[S^{0}(z, \zeta) S^{0}(\zeta, w)\right] \cdot \delta \rho(\zeta) d \sigma^{0}(\zeta) \tag{3}\\
& +\int_{\partial \Omega \Omega^{0}} S^{0}(z, \zeta) S^{0}(\zeta, w) H^{0}(\zeta) \delta \rho(\zeta) d \sigma^{0}(\zeta)
\end{align*}
$$

where $d \sigma^{0}(\zeta)$ denotes the induced surface measure of $\partial \Omega^{\circ} \subset \boldsymbol{C}^{n}$ at ζ, and $H^{0}(\zeta)$ stands for the mean curvature of $\partial \Omega^{0}$ at ζ multiplied by $2 n-1$. A concrete statement of our result is given as follows:

Theorem. If $\Omega^{\circ} \subset \boldsymbol{C}^{n}$ is strictly pseudo-convex with $n \geqq 3$, then the variation (2) at $\rho=0$ exists and is given by (3).

[^0]Note that the right hand side of (3) makes sense, for if $\Omega^{0} \subset C^{n}$ is strictly pseudo-convex then $S^{0}(\cdot, \cdot)$ extends smoothly to $\left(\overline{\Omega^{0}} \times \overline{\Omega^{0}}\right) \backslash \Delta\left(\partial \Omega^{0}\right)$, where $\Delta\left(\partial \Omega^{0}\right)$ denotes the diagonal of $\partial \Omega^{0} \times \partial \Omega^{0}$ (see Boutet de Monvel and Sjöstrand [1], see also Kerzman and Stein [5]).

Remark 1. As will be seen in Section 3, the variational formula (3) is valid whenever the Szegö kernel associated with Ω^{ρ} depends smoothly on ρ in the sense of (6) in Section 2.

It is plausible that (3) holds if $n=1$. In fact, if $n=1$, then the Szegö kernel is expressed in terms of the Bergman kernel and the harmonic measures (see Garabedian [3]). The smooth dependence of the Bergman kernel on ρ has been established (cf. [7], Remark 2), while the harmonic measures are expressed in terms of the Poisson kernel and thus depend smoothly on ρ, cf. Section 2.

The assumption $n \geqq 3$ in Theorem above is imposed in order to use an expression of the Szegö kernel in terms of the $\bar{\partial}_{b}$-Neumann operator, see (9) in Section 2. It is likely that Theorem above is valid also for strictly pseudo-convex domains in \boldsymbol{C}^{2}.

Remark 2. In case $n=1$, Schiffer [9] has obtained another expression for the variation (2) in terms of the Szegö kernel and the so-called adjoint kernel. It is not difficult to see that his formula follows from (3).
§ 2. Existence of the variation (2). Setting
with $\varepsilon_{1}>0$ small, we begin with constructing a family of diffeomorphisms $e_{\rho}: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{n}$ for $\rho \in \mathcal{V}^{0}\left(\varepsilon_{1}\right)$ such that

$$
\left\{\begin{array}{l}
e_{\rho}(\zeta)=\zeta+\rho(\zeta) \boldsymbol{\nu}(\zeta) \quad \text { for } \quad \zeta \in \partial \Omega^{0} \quad \text { (cf. (1)) } \tag{4}\\
\mathcal{\nu}^{0}\left(\varepsilon_{1}\right) \ni \rho \mapsto e_{\rho} \in C^{\infty}\left(\boldsymbol{C}^{n} ; \boldsymbol{C}^{n}\right) \text { is continuous, } \\
e_{\rho}-e_{0} \text { depends linearly on } \rho \text { and } e_{0}=\text { identity. }
\end{array}\right.
$$

In particular, (4) will imply that e_{ρ} depends smoothly on ρ and that $e_{\rho}\left(\partial \Omega^{0}\right)=\partial \Omega^{\rho}$ so that $e_{\rho}\left(\Omega^{0}\right)=\Omega^{\rho}$. Several ways of constructing such a family $\left\{e_{\rho} ; \rho \in \mathcal{V}^{0}\left(\varepsilon_{1}\right)\right\}$ are possible. We shall employ the one as in [7], which will be convenient for our purpose.

Given a small constant $\varepsilon_{0}>0$, we consider a tubular neighborhood $N\left(\varepsilon_{0}\right)=$ $\left\{z \in \boldsymbol{C}^{n} ;\left|r^{0}(z)\right|<\varepsilon_{0}\right\}$ of $\partial \Omega^{0}$ in \boldsymbol{C}^{n}, where $r^{0} \in C^{\infty}\left(\boldsymbol{C}^{n} ; \boldsymbol{R}\right)$ is a defining function of Ω^{0} such that

$$
\Omega^{0}=\left\{z \in \boldsymbol{C}^{n} ; r^{0}(z)<0\right\},\left|d r^{0}(z)\right|=1 \text { for } z \in N\left(\varepsilon_{0}\right) .
$$

Then, every point $z \in N\left(\varepsilon_{0}\right)$ is uniquely expressed as $z=\zeta_{z}+r^{0}(z) \boldsymbol{\nu}\left(\zeta_{2}\right)$, where $\zeta_{2} \in \partial \Omega^{0}$ is the nearest point to z. Fixing a constant ε_{1} with $0<\varepsilon_{1}<\varepsilon_{0} / 4$, we
choose $\chi_{0} \in C_{0}^{\infty}(\boldsymbol{R} ; \boldsymbol{R})$ satisfying

$$
\begin{array}{ll}
\chi_{0}(r)=1 & \text { for } \quad|r| \leqq \varepsilon_{1}, \\
\chi_{0}(r)=0 & \text { for } \quad|r| \geqq 3 \varepsilon_{1},
\end{array} \quad \text { and } \quad\left|\frac{d}{d r} \chi_{0}(r)\right| \leqq \frac{3}{4 \varepsilon_{1}} \quad \text { for } \quad r \in \boldsymbol{R} .
$$

For $\rho \in \mathscr{V ^ { 0 }}\left(\varepsilon_{1}\right)$, we define a mapping $e_{\rho}: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{n}$ by setting

$$
\begin{array}{ll}
e_{\rho}(z)=z+\chi_{0}\left(r^{0}(z)\right) \rho\left(\zeta_{z}\right) \boldsymbol{\nu}\left(\zeta_{z}\right) & \text { for } z \in N\left(\varepsilon_{0}\right), \tag{5}\\
e_{\rho}(z)=z & \text { otherwise } .
\end{array}
$$

Then, $\left\{e_{\rho} ; \rho \in \subset \mathcal{V}^{0}\left(\varepsilon_{1}\right)\right\}$ is a family of diffeomorphisms satisfying (4).
By means of e_{ρ}, one can pull back in general a function f^{ρ} in Ω^{ρ} or on $\partial \Omega^{\rho}$ and a linear operator L^{ρ} acting on f^{ρ} as follows:

$$
f_{\rho}=e_{\rho}^{*} f^{\rho}=f^{\rho} \cdot e_{\rho}, \quad L_{\rho} f_{\rho}=\left(e_{\rho}^{*} L^{\rho} e_{\rho}^{-1 *}\right) f_{\rho}=\left(L^{\rho}\left(f_{\rho} \circ e_{\rho}^{-1}\right)\right) \cdot e_{\rho}
$$

Let $S^{\rho}: L^{2}\left(\partial \Omega^{\rho}\right) \rightarrow L^{2} H_{b}\left(\partial \Omega^{\rho}\right) \subset L^{2}\left(\partial \Omega^{\rho}\right)$ denote the Szegö projector associated with Ω^{ρ}, which is the orthogonal projector onto $L^{2} H_{b}\left(\partial \Omega^{\rho}\right)=\left.L_{b}^{2} H\left(\Omega^{\rho}\right)\right|_{\partial \Omega^{\rho}}$ and is related to $S^{\rho}(z, w)$ by

$$
S^{\rho} f^{\rho}(z)=\int_{\partial \Omega^{\rho}} S^{\rho}(z, \zeta) f^{\rho}(\zeta) d \sigma^{\rho}(\zeta) \quad \text { for } \quad f^{\rho} \in L^{2}\left(\partial \Omega^{\rho}\right),
$$

where $d \sigma^{\rho}(\zeta)$ stands for the induced surface measure of $\partial \Omega^{\rho} \subset \boldsymbol{C}^{n}$ at ζ. Then, $S_{\rho}=e_{\rho}^{*} S^{\rho} e_{\rho}^{-1 *}$ satisfies

$$
S_{\rho} f_{\rho}(z)=\int_{\partial \Omega^{0}} S_{\rho}(z, \zeta) f_{\rho}(\zeta) d \sigma^{\rho}\left(e_{\rho}(\zeta)\right) \quad \text { for } \quad f \in L^{2}\left(\partial \Omega^{0}\right)
$$

where we have set

$$
S_{\rho}(z, w)=S^{\rho}\left(e_{\rho}(z), e_{\rho}(w)\right) \quad \text { for } \quad(z, w) \in \Omega^{0} \times \overline{\Omega^{0}} .
$$

Observe by (5) that $S_{\rho}(z, w)=S^{\rho}(z, w)$ for $z, w \in \Omega^{0} \backslash N\left(\varepsilon_{0}\right)$. Therefore, the variation (2) exists for $z, w \in \Omega^{0} \backslash N\left(\varepsilon_{0}\right)$ fixed, provided that $S_{\rho}(z, w)$ depends smoothly on ρ as far as ρ is small with respect to the $C^{\infty}\left(\partial \Omega^{0}\right)$-topology. For the later use, we shall show that

$$
\begin{equation*}
\subset V^{2} \ni \rho \mapsto S_{\rho}(\cdot, w) \in C^{\infty}\left(\overline{\Omega^{0}}\right) \quad \text { is smooth } \tag{6}
\end{equation*}
$$

with $w \in \Omega^{0} \backslash N\left(\varepsilon_{0}\right)$ fixed, where $\subset V^{2}$ is a neighborhood of $0 \in C^{\infty}\left(\partial \Omega^{0} ; \boldsymbol{R}\right)$.
In order to prove (6), we first recall that

$$
\begin{aligned}
S^{\rho}(z, w) & =\int_{\partial \Omega^{\rho}} S^{\rho}(z, \zeta) P^{\rho}(w, \zeta) d \sigma^{\rho}(\zeta) \\
& =\left[S^{\rho} P^{\rho}(w, \cdot)\right](z) \quad \text { for } \quad(z, w) \in \overline{\Omega^{\rho}} \times \Omega^{\rho},
\end{aligned}
$$

where $P^{\rho}(w, \zeta)$ denotes the Poisson kernel associated with Ω^{ρ}, see Kerzman and Stein [5]. Then,

$$
\begin{equation*}
S_{\rho}(\cdot, w)=S_{\rho} P_{\rho}(w, \cdot) \quad \text { on } \overline{\Omega^{0}} \text { for } w \in \Omega^{0} \backslash N\left(\varepsilon_{0}\right) . \tag{7}
\end{equation*}
$$

We next recall the assumption that Ω^{0} is strictly pseudo-convex, so that

$$
\begin{equation*}
\sum_{j, k=1}^{n} \frac{\partial^{2} r^{0}(z)}{\partial z_{j} \partial \bar{z}_{k}} \xi_{j} \bar{\xi}_{k} \geqq C \sum_{j=1}^{n}\left|\xi_{j}\right|^{2} \quad \text { whenever } \sum_{j=1}^{n} \frac{\partial r^{0}(z)}{\partial z_{j}} \xi_{j}=0 \tag{8}
\end{equation*}
$$

holds for each $z \in \partial \Omega^{0}$, where $C>0$ is a constant independent of z. Hence, if $\rho \in \mathcal{V}^{0}\left(\varepsilon_{1}\right)$ is small with respect to the $C^{2}\left(\partial \Omega^{0}\right)$-topology, say,

$$
\rho \in C V^{2}=\left\{\rho \in \mathcal{V}^{0}\left(\varepsilon_{1}\right) ;|\rho|_{C^{2}\left(\partial \Omega^{0}\right)}<\varepsilon_{2}\right\} \quad \text { with } \varepsilon_{2}>0 \text { small, }
$$

then Ω^{ρ} is strictly pseudo-convex uniformly in $\rho \in C V^{2}$ in the sense that (8) holds for each $z \in \partial \Omega^{\rho}$ with $r^{\rho}=r^{0} \circ e_{\rho}^{-1}$ in place of r^{0}, where $C>0$ is independent of $\rho \in C V^{2}$. If moreover $n \geqq 3$ then the following formula holds :

$$
\begin{equation*}
S^{\rho}=1-\vartheta_{b}^{\rho} N_{b}^{\rho} \widehat{\partial}_{b}^{\rho}, \quad \text { thus } S_{\rho}=1-\left(\vartheta_{b}\right)_{\rho}\left(N_{b}\right)_{\rho}\left(\partial_{b}\right)_{\rho}, \tag{9}
\end{equation*}
$$

where $\widehat{\partial}_{b}^{\rho}$ and ϑ_{b}^{ρ} denote the tangential Cauchy-Riemann operator acting on $C^{\infty}\left(\partial \Omega^{\rho}\right)$ and its $L^{2}\left(\partial \Omega^{\rho}\right)$ adjoint, respectively, and N_{b}^{ρ} stands for the $\breve{\delta}_{b}$-Neumann operator acting on the space $C_{(0,1)}^{\infty}\left(\partial \Omega^{\rho}\right)$ of tangential (0,1)-forms on $\partial \Omega^{\rho}$ (see Kohn [6], or Folland and Kohn [2]). The definitions of $\left(\vartheta_{b}\right)_{\rho},\left(N_{b}\right)_{\rho}$ and $\left(\bar{\delta}_{b}\right)_{\rho}$ will be clear except for the fact that the space $e_{\rho}^{*} C_{(0,1)}^{\infty}\left(\partial \Omega^{\rho}\right)$ may vary with ρ. However, one may modify it to be independent of ρ by considering the projection : $e_{\rho}^{*} C_{(0,1)}^{\infty}\left(\partial \Omega^{\rho}\right)$ $\rightarrow C_{(0,1)}^{\infty}\left(\partial \Omega^{0}\right)$ (see Kuranishi [8]). The smooth dependence of this modification of the pull-back of $\left(N_{b}\right)_{\rho}$ on ρ small is involved in Kuranishi [8]. Therefore, S_{ρ} depends smoothly on ρ in the sense that

$$
\mathcal{V}^{2} \times C^{\infty}\left(\partial \Omega^{0}\right) \ni(\rho, f) \mapsto S_{\rho} f \in C^{\infty}\left(\partial \Omega^{0}\right) \quad \text { is smooth. }
$$

Since the Poisson kernel $P^{\rho}(w, \cdot)$ can be expressed in terms of the Green kernel, the smooth dependence of $P_{\rho}(w, \cdot)$ on ρ can be proved as in Hamilton [4] (the easier case). Hence, by virtue of (7), we have proved (6). In particular, the variation (2) makes sense.
§ 3. Proof of the variational formula (3). The proof is similar to that in [7]. Pick $z, w \in \Omega^{0}$ arbitrarily and choose $\varepsilon_{0}>0$ so small that $z, w \in \Omega^{0} \backslash N\left(\varepsilon_{0}\right)$. Then,

$$
S_{\rho}(z, w)=S^{\rho}(z, w) \quad \text { for } \quad \rho \in \mathcal{V}^{2} .
$$

By the reproducing property for the Szegö kernel, we have

$$
\begin{aligned}
S_{\rho}(z, w) & =S^{\rho}(z, w)=\int_{\partial \Omega^{\rho}} S^{\rho}(z, \zeta) S^{\rho}(\zeta, w) d \sigma^{\rho}(\zeta) \\
& =\int_{\partial \Omega Q^{\circ}} S_{\rho}(z, \zeta) S_{\rho}(\zeta, w) J_{0}\left[e_{\rho}\right](\zeta) d \sigma^{o}(\zeta)
\end{aligned}
$$

where $J_{b}\left[e_{\rho}\right]$ stands for the Jacobian determinant of the mapping e_{ρ} restricted to
$\partial \Omega^{0}$. Recalling (6), we take the variation at $\rho=0$ in the direction $\delta \rho \in C^{\infty}\left(\partial \Omega^{0} ; \boldsymbol{R}\right)$. Then,

$$
\begin{aligned}
\delta S^{0}(z, w) & =\delta S_{0}(z, w)=\left.\frac{d}{d \varepsilon} S_{\varepsilon \delta \rho}(z, w)\right|_{\varepsilon=0} \\
& =\int_{\partial \Omega^{0}}\left\{\left(I_{1}\right)+\left(I_{2}\right)+\left(I_{3}\right)\right\} d \sigma^{0}(\zeta),
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(I_{1}\right)=\delta S_{0}(z, \zeta) S^{0}(\zeta, w), \quad\left(I_{2}\right)=S^{0}(z, \zeta) \delta S_{0}(\zeta, w), \\
& \left(I_{3}\right)=S^{0}(z, \zeta) S^{0}(\zeta, w) \delta J_{b}\left[e_{0}\right](\zeta),
\end{aligned}
$$

and $\delta J_{b}\left[e_{0}\right]=\left.\frac{d}{d \varepsilon} J_{b}\left[e_{\varepsilon \delta \rho}\right]\right|_{\varepsilon=0}$. Setting $\delta X_{0}=\left.\frac{d}{d \varepsilon} e_{\varepsilon \delta \rho}\right|_{\varepsilon=0}$, we get

$$
\delta X_{0}(\zeta)=\delta \rho(\zeta) \frac{\partial}{\partial \nu_{\zeta}}, \quad \delta J_{o}\left[e_{0}\right](\zeta)=\operatorname{div} \delta X_{0}(\zeta)=\delta \delta(\zeta) H^{0}(\zeta)
$$

for $\zeta \in \partial \Omega^{0}$, and

$$
\begin{align*}
& \delta S_{0}(z, \zeta)=\delta S^{0}(z, \zeta)+\delta X_{0}(\zeta) S^{0}(z, \zeta), \\
& \delta S_{0}(\zeta, w)=\delta S^{0}(\zeta, w)+\delta X_{0}(\zeta) S^{0}(\zeta, w) \tag{10}
\end{align*}
$$

for $\zeta \in \Omega^{0}$, where the vector field $\delta X_{0}(\zeta)$ in (10) is acting as a differential operator. Note that $\delta S^{0}(z, \cdot)$ and $\delta S^{0}(\cdot, w)$ extend smoothly to $\overline{\Omega^{0}}$, and that the relations in (10) remain valid for $\zeta \in \overline{\Omega^{0}}$. Moreover, $\delta S^{\circ}(\cdot, w)$ and $\delta S^{\circ}(z, \cdot)$ are holomorphic and conjugate holomorphic in Ω^{0}, respectively. Since $S^{0}(\cdot, \cdot)$ is hermitian symmetric with the reproducing property, we have

$$
\begin{aligned}
& \int_{\partial \Omega \Omega^{0}}\left(I_{1}\right) d \sigma^{0}(\zeta)=\delta S^{0}(z, w)+\int_{\partial \Omega 0^{0}} \delta X_{0}(\zeta) S^{0}(z, \zeta) \cdot S^{0}(\zeta, w) d \sigma^{0}(\zeta), \\
& \int_{\partial \Omega \Omega^{0}}\left(I_{2}\right) d \sigma^{0}(\zeta)=\delta S^{0}(z, w)+\int_{\partial \Omega 0^{0}} S^{0}(z, \zeta) \cdot \delta X_{0}(\zeta) S^{0}(\zeta, w) d \sigma^{0}(\zeta),
\end{aligned}
$$

while

$$
\int_{\partial \Omega 0}\left(I_{3}\right) d \sigma^{0}(\zeta)=\int_{\partial \Omega 0} S^{0}(z, \zeta) S^{0}(\zeta, w) H^{0}(\zeta) \delta \rho(\zeta) d \sigma^{0}(\zeta)
$$

Summing them up, we obtain the desired variational formula (3).

References

[1] Boutet de Monvel, L. et J. Sjostrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, 34-35 (1976), 123-164.
[2] Folland, G.B. and J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Ann. of Math. Stud., No. 75, Princeton Univ. Press, Princeton, N. J., 1972.
[3] Garabedian, P.R., Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc., 67 (1949), 1-35.
[4] Hamilton, R.S., Deformation of complex structures on manifolds with boundary. II : Families of non-coercive boundary value problems, J. Differential Geom., 14 (1979), 409-473.
[5] Kerzman, N. and E.M. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), 197-224.
[6] Kohn, J. J., Boundaries of complex manifolds, in Proc. Conf. on Complex Analysis, Minneapolis, 1964, ed. by A. Aeppli, E. Calabi and H. Röhrl, pp. 81-94, SpringerVerlag, Berlin-Heidelberg-New York, 1965.
[7] Komatsu, G., Hadamard's variational formula for the Bergman kernel, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 345-348.
[8] Kuranishi, M., Deformations of isolated singularities and $\overline{\hat{o}} b$, Preprint, Columbia Univ., 1973.
[9] Schiffer, M., Various types of orthogonalization, Duke Math. J., 17 (1950), 329-366.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan

[^0]: Received January 20, 1984.

 * Partially supported by Grant-in-Aıd for Scientific Research, Ministry of Education.

