HADAMARD'S VARIATIONAL FORMULA FOR THE SZEGÖ KERNEL

By Gen Komatsu*

§ 1. A variational formula. The present note is concerned with the Hadamard's (first) variational formula for the Szegö kernel associated with a strictly pseudo-convex domain in C^n with $n \ge 3$. A similar formula for the Bergman kernel has been given in [7].

Let $\Omega^0 \subset C^n$ with $n \ge 1$ be a bounded domain with smooth boundary $\partial \Omega^0$. Every smoothly perturbed domain of Ω^0 can be parametrized by a small function $\rho \in C^{\infty}(\partial \Omega^0; \mathbf{R})$ in such a way that the boundary of that domain Ω^{ρ} is given by

(1)
$$\partial \Omega^{\rho} = \{ \zeta + \rho(\zeta) \nu(\zeta) ; \zeta \in \partial \Omega^{0} \},$$

where $\nu(\zeta) = \partial/\partial \nu_{\zeta}$ denotes the unit exterior normal vector to Ω° at $\zeta \in \partial \Omega^{\circ}$ identified with an element of C^{n} .

Let $S^{\rho}(z, w)$ for $z, w \in \Omega^{\rho}$ denote the Szegö kernel associated with Ω^{ρ} , which is the reproducing kernel associated with the space $L^2_bH(\Omega^{\rho})$ of holomorphic functions in Ω^{ρ} with L^2 boundary values equipped with the $L^2(\partial\Omega^{\rho})$ scalar product. With $\delta\rho \in C^{\infty}(\partial\Omega^{\rho}; \mathbf{R})$ and $z, w \in \Omega^{\rho}$ fixed arbitrarily, we set

(2)
$$\delta S^{\rho}(z, w) = \frac{d}{d\varepsilon} S^{\rho + \varepsilon \delta \rho}(z, w)|_{\varepsilon=0},$$

which is the Hadamard's first variation of $S^{\rho}(z, w)$ at ρ in the direction $\delta \rho$. Our purpose is to show that, for a certain class of domains Ω^{0} , the variation (2) at $\rho=0$ exists and is given by

$$(3) \qquad -\delta S^{0}(z, w) = \int_{\partial \Omega^{0}} \frac{\partial}{\partial \nu_{\zeta}} \left[S^{0}(z, \zeta) S^{0}(\zeta, w) \right] \cdot \delta \rho(\zeta) d\sigma^{0}(\zeta)$$
$$+ \int_{\partial \Omega^{0}} S^{0}(z, \zeta) S^{0}(\zeta, w) H^{0}(\zeta) \delta \rho(\zeta) d\sigma^{0}(\zeta) ,$$

where $d\sigma^0(\zeta)$ denotes the induced surface measure of $\partial \Omega^0 \subset C^n$ at ζ , and $H^0(\zeta)$ stands for the mean curvature of $\partial \Omega^0$ at ζ multiplied by 2n-1. A concrete statement of our result is given as follows:

THEOREM. If $\Omega^0 \subset \mathbb{C}^n$ is strictly pseudo-convex with $n \ge 3$, then the variation (2) at $\rho = 0$ exists and is given by (3).

Received January 20, 1984.

^{*} Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Note that the right hand side of (3) makes sense, for if $\Omega^0 \subset C^n$ is strictly pseudo-convex then $S^0(\cdot, \cdot)$ extends smoothly to $(\overline{\Omega^0} \times \overline{\Omega^0}) \setminus \mathcal{L}(\partial \Omega^0)$, where $\mathcal{L}(\partial \Omega^0)$ denotes the diagonal of $\partial \Omega^0 \times \partial \Omega^0$ (see Boutet de Monvel and Sjöstrand [1], see also Kerzman and Stein [5]).

Remark 1. As will be seen in Section 3, the variational formula (3) is valid whenever the Szegö kernel associated with Ω^{ρ} depends smoothly on ρ in the sense of (6) in Section 2.

It is plausible that (3) holds if n=1. In fact, if n=1, then the Szegö kernel is expressed in terms of the Bergman kernel and the harmonic measures (see Garabedian [3]). The smooth dependence of the Bergman kernel on ρ has been established (cf. [7], Remark 2), while the harmonic measures are expressed in terms of the Poisson kernel and thus depend smoothly on ρ , cf. Section 2.

The assumption $n \ge 3$ in Theorem above is imposed in order to use an expression of the Szegö kernel in terms of the $\bar{\partial}_b$ -Neumann operator, see (9) in Section 2. It is likely that Theorem above is valid also for strictly pseudo-convex domains in C^2 .

Remark 2. In case n=1, Schiffer [9] has obtained another expression for the variation (2) in terms of the Szegö kernel and the so-called adjoint kernel. It is not difficult to see that his formula follows from (3).

§ 2. Existence of the variation (2). Setting

$$CV^0(\varepsilon_1) = \{ \rho \in C^{\infty}(\partial \Omega^0; \mathbf{R}); |\rho(\zeta)| < \varepsilon_1 \text{ for } \zeta \in \partial \Omega^0 \}$$

with $\varepsilon_1 > 0$ small, we begin with constructing a family of diffeomorphisms $e_{\rho}: C^n \to C^n$ for $\rho \in \mathcal{CV}^0(\varepsilon_1)$ such that

$$\left\{ \begin{array}{ll} e_{\rho}(\zeta) = \zeta + \rho(\zeta) \nu(\zeta) & \text{for } \zeta \in \partial \Omega^{0} & \text{(cf. (1))}, \\ & \mathcal{CV}^{0}(\varepsilon_{1}) \ni \rho \mapsto e_{\rho} \in C^{\infty}(\mathbb{C}^{n}; \mathbb{C}^{n}) & \text{is continuous,} \\ & e_{\rho} - e_{0} & \text{depends linearly on } \rho & \text{and } e_{0} = \text{identity.} \end{array} \right.$$

In particular, (4) will imply that e_{ρ} depends smoothly on ρ and that $e_{\rho}(\partial \Omega^0) = \partial \Omega^{\rho}$ so that $e_{\rho}(\Omega^0) = \Omega^{\rho}$. Several ways of constructing such a family $\{e_{\rho}; \rho \in \mathcal{CV}^0(\varepsilon_1)\}$ are possible. We shall employ the one as in [7], which will be convenient for our purpose.

Given a small constant $\varepsilon_0>0$, we consider a tubular neighborhood $N(\varepsilon_0)=\{z\in \mathbb{C}^n\,;\,|r^0(z)|<\varepsilon_0\}$ of $\partial\Omega^0$ in \mathbb{C}^n , where $r^0\in C^\infty(\mathbb{C}^n\,;\,\mathbb{R})$ is a defining function of Ω^0 such that

$$\Omega^0 = \{z \in \mathbb{C}^n : r^0(z) < 0\}, |dr^0(z)| = 1 \text{ for } z \in N(\varepsilon_0).$$

Then, every point $z \in N(\varepsilon_0)$ is uniquely expressed as $z = \zeta_z + r^0(z)\nu(\zeta_z)$, where $\zeta_z \in \partial \Omega^0$ is the nearest point to z. Fixing a constant ε_1 with $0 < \varepsilon_1 < \varepsilon_0/4$, we

choose $\chi_0 \in C_0^{\infty}(\mathbf{R}; \mathbf{R})$ satisfying

$$\chi_0(r)=1$$
 for $|r| \leq \varepsilon_1$, $\chi_0(r)=0$ for $|r| \geq 3\varepsilon_1$, and $\left|\frac{d}{dr}\chi_0(r)\right| \leq \frac{3}{4\varepsilon_1}$ for $r \in \mathbb{R}$.

For $\rho \in \mathcal{O}^0(\varepsilon_1)$, we define a mapping $e_{\rho}: \mathbb{C}^n \to \mathbb{C}^n$ by setting

$$e_{\rho}(z) = z + \chi_0(r^0(z))\rho(\zeta_z) \nu(\zeta_z) \quad \text{for} \quad z \in N(\varepsilon_0),$$
 (5)
$$e_{\rho}(z) = z \quad \text{otherwise.}$$

Then, $\{e_{\rho}; \rho \in \mathcal{CV}^{0}(\varepsilon_{1})\}\$ is a family of diffeomorphisms satisfying (4).

By means of e_{ρ} , one can pull back in general a function f^{ρ} in Ω^{ρ} or on $\partial \Omega^{\rho}$ and a linear operator L^{ρ} acting on f^{ρ} as follows:

$$f_{\rho} = e_{\rho}^* f^{\rho} = f^{\rho} \circ e_{\rho}, \quad L_{\rho} f_{\rho} = (e_{\rho}^* L^{\rho} e_{\rho}^{-1*}) f_{\rho} = (L^{\rho} (f_{\rho} \circ e_{\rho}^{-1})) \circ e_{\rho}.$$

Let $S^{\rho}: L^{2}(\partial \Omega^{\rho}) \rightarrow L^{2}H_{b}(\partial \Omega^{\rho}) \subset L^{2}(\partial \Omega^{\rho})$ denote the Szegö projector associated with Ω^{ρ} , which is the orthogonal projector onto $L^{2}H_{b}(\partial \Omega^{\rho}) = L^{2}_{b}H(\Omega^{\rho})|_{\partial \Omega^{\rho}}$ and is related to $S^{\rho}(z, w)$ by

$$S^{\rho}f^{\rho}(z) = \int_{\partial\Omega^{\rho}} S^{\rho}(z, \zeta) f^{\rho}(\zeta) d\sigma^{\rho}(\zeta) \qquad \text{for} \quad f^{\rho} \in L^{2}(\partial\Omega^{\rho}),$$

where $d\sigma^{\rho}(\zeta)$ stands for the induced surface measure of $\partial \Omega^{\rho} \subset C^n$ at ζ . Then, $S_{\rho} = e_{\rho}^* S^{\rho} e_{\rho}^{-1*}$ satisfies

$$S_{
ho}f_{
ho}(z) = \int_{\partial\Omega^0} S_{
ho}(z, \zeta) f_{
ho}(\zeta) d\sigma^{
ho}(e_{
ho}(\zeta)) \qquad ext{for} \quad f \in L^2(\partial\Omega^0) \,,$$

where we have set

$$S_{\rho}(z, w) = S^{\rho}(e_{\rho}(z), e_{\rho}(w))$$
 for $(z, w) \in \Omega^{0} \times \overline{\Omega^{0}}$.

Observe by (5) that $S_{\rho}(z, w) = S^{\rho}(z, w)$ for $z, w \in \Omega^{0} \backslash N(\varepsilon_{0})$. Therefore, the variation (2) exists for $z, w \in \Omega^{0} \backslash N(\varepsilon_{0})$ fixed, provided that $S_{\rho}(z, w)$ depends smoothly on ρ as far as ρ is small with respect to the $C^{\infty}(\partial \Omega^{0})$ -topology. For the later use, we shall show that

(6)
$$CV^2 \ni \rho \mapsto S_{\rho}(\cdot, w) \in C^{\infty}(\overline{Q^0}) is smooth$$

with $w \in \Omega^0 \setminus N(\varepsilon_0)$ fixed, where CV^2 is a neighborhood of $0 \in C^{\infty}(\partial \Omega^0; \mathbf{R})$. In order to prove (6), we first recall that

$$S^{\rho}(z, w) = \int_{\partial\Omega^{\rho}} S^{\rho}(z, \zeta) P^{\rho}(w, \zeta) d\sigma^{\rho}(\zeta)$$
$$= [S^{\rho}P^{\rho}(w, \cdot)](z) \quad \text{for} \quad (z, w) \in \overline{\Omega^{\rho}} \times \Omega^{\rho},$$

where $P^{\rho}(w, \zeta)$ denotes the Poisson kernel associated with Ω^{ρ} , see Kerzman and Stein [5]. Then,

(7)
$$S_{\rho}(\cdot, w) = S_{\rho} P_{\rho}(w, \cdot) \text{ on } \overline{\Omega}^{0} \text{ for } w \in \Omega^{0} \setminus N(\varepsilon_{0}).$$

We next recall the assumption that Ω^0 is strictly pseudo-convex, so that

(8)
$$\sum_{j,k=1}^{n} \frac{\partial^{2} r^{0}(z)}{\partial z_{i} \partial \overline{z}_{k}} \xi_{j} \overline{\xi}_{k} \ge C \sum_{j=1}^{n} |\xi_{j}|^{2} \quad \text{whenever} \quad \sum_{j=1}^{n} \frac{\partial r^{0}(z)}{\partial z_{i}} \xi_{j} = 0$$

holds for each $z \in \partial \Omega^0$, where C > 0 is a constant independent of z. Hence, if $\rho \in CV^0(\varepsilon_1)$ is small with respect to the $C^2(\partial \Omega^0)$ -topology, say,

$$\rho \in CV^2 = \{ \rho \in CV^0(\varepsilon_1) ; |\rho|_{C^2(\partial\Omega^0)} < \varepsilon_2 \} \quad \text{with } \varepsilon_2 > 0 \text{ small,}$$

then Ω^{ρ} is strictly pseudo-convex uniformly in $\rho \in \mathcal{O}^2$ in the sense that (8) holds for each $z \in \partial \Omega^{\rho}$ with $r^{\rho} = r^0 \circ e_{\rho}^{-1}$ in place of r^0 , where C > 0 is independent of $\rho \in \mathcal{O}^2$. If moreover $n \geq 3$ then the following formula holds:

(9)
$$S^{\rho} = 1 - \vartheta_b^{\rho} N_b^{\rho} \tilde{\delta}_b^{\rho}$$
, thus $S_{\rho} = 1 - (\vartheta_b)_{\rho} (N_b)_{\rho} (\bar{\delta}_b)_{\rho}$,

where δ^{ρ}_{ℓ} and ϑ^{ρ}_{ℓ} denote the tangential Cauchy-Riemann operator acting on $C^{\infty}(\partial \Omega^{\rho})$ and its $L^{2}(\partial \Omega^{\rho})$ adjoint, respectively, and N^{ρ}_{ℓ} stands for the δ_{b} -Neumann operator acting on the space $C^{\infty}_{(0,1)}(\partial \Omega^{\rho})$ of tangential (0,1)-forms on $\partial \Omega^{\rho}$ (see Kohn [6], or Folland and Kohn [2]). The definitions of $(\vartheta_{b})_{\rho}$, $(N_{b})_{\rho}$ and $(\bar{\delta}_{b})_{\rho}$ will be clear except for the fact that the space $e^{*}_{\rho}C^{\infty}_{(0,1)}(\partial \Omega^{\rho})$ may vary with ρ . However, one may modify it to be independent of ρ by considering the projection : $e^{*}_{\rho}C^{\infty}_{(0,1)}(\partial \Omega^{\rho}) \to C^{\infty}_{(0,1)}(\partial \Omega^{\rho})$ (see Kuranishi [8]). The smooth dependence of this modification of the pull-back of $(N_{b})_{\rho}$ on ρ small is involved in Kuranishi [8]. Therefore, S_{ρ} depends smoothly on ρ in the sense that

$$CV^2 \times C^{\infty}(\partial \Omega^0) \ni (\rho, f) \mapsto S_{\rho} f \in C^{\infty}(\partial \Omega^0)$$
 is smooth.

Since the Poisson kernel $P^{\rho}(w, \cdot)$ can be expressed in terms of the Green kernel, the smooth dependence of $P_{\rho}(w, \cdot)$ on ρ can be proved as in Hamilton [4] (the easier case). Hence, by virtue of (7), we have proved (6). In particular, the variation (2) makes sense.

§ 3. Proof of the variational formula (3). The proof is similar to that in [7]. Pick z, $w \in \Omega^0$ arbitrarily and choose $\varepsilon_0 > 0$ so small that z, $w \in \Omega^0 \setminus N(\varepsilon_0)$. Then,

$$S_{\rho}(z, w) = S^{\rho}(z, w)$$
 for $\rho \in \mathbb{C}^2$.

By the reproducing property for the Szegö kernel, we have

$$S_{\rho}(z, w) = S^{\rho}(z, w) = \int_{\partial\Omega^{\rho}} S^{\rho}(z, \zeta) S^{\rho}(\zeta, w) d\sigma^{\rho}(\zeta)$$

$$= \int_{\partial\Omega^{0}} S_{\rho}(z, \zeta) S_{\rho}(\zeta, w) J_{b}[e_{\rho}](\zeta) d\sigma^{0}(\zeta),$$

where $J_b[e_{\rho}]$ stands for the Jacobian determinant of the mapping e_{ρ} restricted to

 $\partial \Omega^0$. Recalling (6), we take the variation at $\rho = 0$ in the direction $\delta \rho \in C^{\infty}(\partial \Omega^0; \mathbf{R})$. Then,

$$\begin{split} \delta S^{0}(z, w) = & \delta S_{0}(z, w) = \frac{d}{d\varepsilon} S_{\varepsilon \delta \rho}(z, w) |_{\varepsilon = 0} \\ = & \int_{\partial O^{0}} \{ (I_{1}) + (I_{2}) + (I_{3}) \} d\sigma^{0}(\zeta) , \end{split}$$

where

$$\begin{split} &(I_1) = & \delta S_0(z, \zeta) S^0(\zeta, w) , \quad (I_2) = S^0(z, \zeta) \delta S_0(\zeta, w) , \\ &(I_3) = & S^0(z, \zeta) S^0(\zeta, w) \delta J_b \lceil e_0 \rceil(\zeta) , \end{split}$$

and
$$\delta J_b[e_0] = \frac{d}{d\varepsilon} J_b[e_{\varepsilon\delta\rho}]|_{\varepsilon=0}$$
. Setting $\delta X_0 = \frac{d}{d\varepsilon} e_{\varepsilon\delta\rho}|_{\varepsilon=0}$, we get

$$\delta X_0(\zeta) = \delta \rho(\zeta) \frac{\partial}{\partial \nu_{\zeta}}, \quad \delta J_b[e_0](\zeta) = \text{div } \delta X_0(\zeta) = \delta \rho(\zeta) H^0(\zeta)$$

for $\zeta \in \partial \Omega^0$, and

(10)
$$\delta S_0(z, \zeta) = \delta S^0(z, \zeta) + \delta X_0(\zeta) S^0(z, \zeta), \\ \delta S_0(\zeta, w) = \delta S^0(\zeta, w) + \delta X_0(\zeta) S^0(\zeta, w)$$

for $\zeta \in \Omega^{\circ}$, where the vector field $\delta X_{\circ}(\zeta)$ in (10) is acting as a differential operator. Note that $\delta S^{\circ}(z, \cdot)$ and $\delta S^{\circ}(\cdot, w)$ extend smoothly to $\overline{\Omega^{\circ}}$, and that the relations in (10) remain valid for $\zeta \in \overline{\Omega^{\circ}}$. Moreover, $\delta S^{\circ}(\cdot, w)$ and $\delta S^{\circ}(z, \cdot)$ are holomorphic and conjugate holomorphic in Ω° , respectively. Since $S^{\circ}(\cdot, \cdot)$ is hermitian symmetric with the reproducing property, we have

$$\begin{split} &\int_{\partial\Omega^0} (I_1) d\, \boldsymbol{\sigma}^0(\zeta) \!=\! \delta S^0(z,\ w) \!+\! \int_{\partial\Omega^0} \!\! \delta X_0(\zeta) S^0(z,\ \zeta) \!\cdot\! S^0(\zeta,\ w) d\, \boldsymbol{\sigma}^0(\zeta)\,, \\ &\int_{\partial\Omega^0} \!\! (I_2) d\, \boldsymbol{\sigma}^0(\zeta) \!=\! \delta S^0(z,\ w) \!+\! \int_{\partial\Omega^0} \!\! S^0(z,\ \zeta) \!\cdot\! \delta X_0(\zeta) S^0(\zeta,\ w) d\, \boldsymbol{\sigma}^0(\zeta)\,, \end{split}$$

while

$$\int_{\partial\Omega^0} (I_3) d\sigma^0(\zeta) = \int_{\partial\Omega^0} S^0(z, \zeta) S^0(\zeta, w) H^0(\zeta) \delta\rho(\zeta) d\sigma^0(\zeta).$$

Summing them up, we obtain the desired variational formula (3).

REFERENCES

- [1] BOUTET DE MONVEL, L. ET J. SJÖSTRAND, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, 34-35 (1976), 123-164.
- [2] FOLLAND, G.B. AND J.J. KOHN, The Neumann Problem for the Cauchy-Riemann Complex, Ann. of Math. Stud., No. 75, Princeton Univ. Press, Princeton, N. J., 1972.
- [3] GARABEDIAN, P.R., Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc., 67 (1949), 1-35.

- [4] Hamilton, R.S., Deformation of complex structures on manifolds with boundary. II: Families of non-coercive boundary value problems, J. Differential Geom., 14 (1979), 409-473.
- [5] KERZMAN, N. AND E.M. STEIN, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), 197-224.
- [6] Kohn, J. J., Boundaries of complex manifolds, in Proc. Conf. on Complex Analysis, Minneapolis, 1964, ed. by A. Aeppli, E. Calabi and H. Röhrl, pp. 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [7] KOMATSU, G., Hadamard's variational formula for the Bergman kernel, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 345-348.
- [8] Kuranishi, M., Deformations of isolated singularities and \bar{o}_b , Preprint, Columbia Univ., 1973.
- [9] Schiffer, M., Various types of orthogonalization, Duke Math. J., 17 (1950), 329-366.

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan