NEARLY KÄHLER MANIFOLDS WITH POSITIVE HOLOMORPHIC SECTIONAL CURVATURE

By Kouei Sekigawa and Takuji Sato

§1. Introduction.

An almost Hermitian manifold $(M, J, \langle , \rangle)$ is called a nearly Kähler manifold provided that $(\nabla_X J)Y + (\nabla_Y J)X = 0$ for all $X, Y \in \mathfrak{X}(M)$ ($\mathfrak{X}(M)$ denotes the Lie algebra of all smooth vector fields on M). From the definition, it follows immediately that a Kähler manifold is necessarily a nearly Kähler manifold. In the present paper, we shall study the structure of nearly Kähler manifolds with positive holomorphic sectional curvature. In §2, we recall some elementary formulas in a nearly Kähler manifold. In §3, we establish an integral formula on the unit sphere bundle over a compact Einstein nearly Kähler manifold. In §4, we discuss the pinching problem on the holomorphic sectional curvature of a compact non-Kähler, nearly Kähler manifold and show some results related to the ones obtained by Tanno [18], Takamatsu and the second named author [17].

In [7], Gray studied the structure of positively curved compact nearly Kähler manifolds and proposed the following conjecture:

Conjecture: Let $M=(M, J, \langle , \rangle)$ be a compact nearly Kähler manifold with positive sectional curvature. If the scalar curvature of M is constant, then M is isometric to a complex projective space with a Kähler metric of constant holomorphic sectional curvature or a 6-dimensional sphere with a Riemannian metric of constant sectional curvature.

For Kähler manifolds, this conjecture is positive (cf. [5], [10], etc.). However, for non-Kähler, nearly Kähler manifolds, this conjecture is negative. Namely, we shall give a counter example to this conjecture in the last section.

The authors wish to express their hearty thanks to the referee who pointed out some errors in the original manuscript.

§2. Preliminaries.

In this section, we prepare some elementary formulas in a nearly Kähler manifold. Let $M=(M, J, \langle , \rangle)$ be an n(=2m)-dimensional connected nearly Kähler manifold. We denote by ∇ and R the Riemannian connection and the curvature tensor of M, respectively. We assume that the curvature tensor R is defined by

Received December 21, 1983

(2.1)
$$R(X, Y)Z = \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z, \quad X, Y, Z \in \mathfrak{X}(M).$$

We denote by R_1 and R_1^* the Ricci tensor and the Ricci *-tensor of M, respectively. The tensor field R_1 and R_1^* are defined respectively by

(2.2)
$$R_1(x, y) = \text{Trace of } (z \mapsto R(x, z)y),$$

and

(2.3)
$$R_1^*(x, y) = (1/2) \operatorname{Trace} \text{ of } (z \mapsto R(Jy, x)Jz),$$

for x, y, $z \in M_p$ (the tangent space of M at p) (cf. [9], [19]). Then it is known that the tensor fields R_1 and R_1^* satisfy the following equalities:

(2.4)
$$R_1(X, Y) = R_1(Y, X), \quad R_1(JX, JY) = R_1(X, Y),$$

(2.5)
$$R_1^*(X, Y) = R_1^*(Y, X), \quad R_1^*(JX, JY) = R_1^*(X, Y),$$

for X, $Y \in \mathfrak{X}(M)$. The first Chern form γ of M is given by

(2.6)
$$8\pi\gamma(X, Y) = 5R_1^*(JX, Y) - R_1(JX, Y),$$

for all X, $Y \in \mathfrak{X}(M)$ ([9], p. 238).

We denote by S the scalar curvature of M. The sectional curvature, the holomorphic sectional curvature and the holomorphic bisectional curvature are defined respectively by

(2.7)
$$K(x, y) = \frac{\langle R(x, y)x, y \rangle}{\|x\|^2 \|y\|^2},$$

for x, $y \in M_p$ $(p \in M)$ with $x \neq 0$, $y \neq 0$, $\langle x, y \rangle = 0$,

$$(2.8) H(x) = K(x, Jx),$$

for $x \in M_p$ $(p \in M)$ with $x \neq 0$, and

(2.9)
$$B(x, y) = \frac{\langle R(x, Jx)y, Jy \rangle}{\|x\|^2 \|y\|^2},$$

for x, $y \in M_p$ $(p \in M)$ with $x \neq 0$, $y \neq 0$.

A nearly Kähler manifold M is said to be of holomorphically δ -pinched $(0 \leq \delta \leq 1)$ if there exists a positive constant l such that

$$(2.10) \qquad \qquad \delta l \leq H(x) \leq l,$$

for all non-zero $x \in M_p$, for all $p \in M$. Since we are dealing with nearly Kähler manifolds, the size $\|(\nabla_x J)y\|^2$ will be important in the pinching estimates. A nearly Kähler manifold M is said to satisfy the condition $T(\rho, \sigma)$ if

(2.11)
$$\rho H(x) \leq \|(\nabla_x J)y\|^2 \leq \sigma H(x),$$

for x, $y \in M_p$ with ||x|| = ||y|| = 1, $\langle x, y \rangle = \langle x, Jy \rangle = 0$ for all $p \in M$ ([7]).

In the present paper, we shall adopt the following notational convention. For an orthonormal basis $\{e_i\} = \{e_{\alpha}, e_{m+\alpha} = Je_{\alpha}\}$ $(1 \le \alpha, \beta, \dots \le m; 1 \le a, b, \dots, j, k, \dots \le n = 2m)$, of M_p $(p \in M)$, we put

(2.12)
$$e_{\bar{\imath}} = Je_{\imath}$$
 (and hence $e_{\bar{\alpha}} = e_{m+\alpha}, e_{\overline{m+\alpha}} = -e_{\alpha}$),

$$(2.13) R_{hijk} = \langle R(e_h, e_i)e_j, e_k \rangle, R_{\bar{h}ijk} = \langle R(e_{\bar{h}}, e_i)e_j, e_k \rangle, \\ \cdots, R_{\bar{h}i\bar{j}\bar{k}} = \langle R(e_{\bar{h}}, e_{\bar{i}})e_{\bar{j}}, e_{\bar{k}} \rangle,$$

$$(2.14) \qquad \nabla_{l} R_{hijk} = \langle (\nabla_{e_{l}} R)(e_{h}, e_{i})e_{j}, e_{k} \rangle, \quad \nabla_{\bar{l}} R_{hijk} = \langle (\nabla_{e_{\bar{l}}} R)(e_{h}, e_{i})e_{j}, e_{k} \rangle, \\ \cdots, \quad \nabla_{\bar{l}} R_{h\bar{i}\bar{j}\bar{k}} = \langle (\nabla_{e_{\bar{l}}} R)(e_{\bar{h}}, e_{\bar{i}})e_{\bar{j}}, e_{\bar{k}} \rangle, \quad \text{etc.},$$

and

(2.15)
$$R_{ij} = R_i(e_i, e_j), \quad R_{ij}^* = R_i^*(e_i, e_j).$$

The following equalities in M are well-known ([7], [9], etc.):

(2.16)
$$\langle R(w, x)y, z \rangle - \langle R(w, x)Jy, Jz \rangle = \langle (\nabla_w J)x, (\nabla_y J)z \rangle,$$

(2.17) $\langle R(w, x)y, z \rangle = \langle R(Jw, Jx)Jy, Jz \rangle,$

$$(2.18) \qquad \langle (\nabla^2_{e_i e_j} J) x, y \rangle = \frac{1}{2} (\langle R(e_i, Je_j) x, y \rangle - \langle R(Jy, e_i) e_j, x \rangle + \langle R(Jx, e_i) e_j, y \rangle),$$

$$(2.19) \qquad \|\nabla R_1 - \nabla R_1^*\|^2 = (1/8) \operatorname{Trace of} \{(R^1 - (R^*)^1) \circ (R^1 - 5(R^*)^1) \circ (R^1 - (R^*)^1)\},\$$

where $\langle R^{1}x, y \rangle = R_{1}(x, y), \langle (R^{*})^{1}x, y \rangle = R_{1}^{*}(x, y), w, x, y, z \in M_{p} \ (p \in M).$ By (2.2), (2.3) and (2.18), we have

(2.20)
$$\sum_{i=1}^{n} \langle (\nabla^2_{e_i e_i} J) x, y \rangle = R_1^* (Jx, y) - R_1 (Jx, y),$$

for x, $y \in M_p$ $(p \in M)$. By (2.2), (2.3) and (2.16), we have

(2.21)
$$\sum_{i=1}^{n} \langle (\nabla_{e_i} J) x, (\nabla_{e_i} J) y \rangle = R_1(x, y) - R_1^*(x, y),$$

for x, $y \in M_p$. By (2.3), (2.4), (2.5), (2.16) and (2.21), we have

(2.22)
$$\sum_{a=1}^{n} R_{a\bar{a}ij} = 2R_{ij}^{*},$$
$$\sum_{a=1}^{n} R_{a\bar{i}j\bar{a}} = R_{ij}^{*}.$$

We note that $\langle (\nabla_x J)y, z \rangle (x, y, z \in M_p)$ satisfies the followings:

(2.23)
$$\langle (\nabla_x J)y, z \rangle = -\langle (\nabla_y J)x, z \rangle = -\langle (\nabla_x J)z, y \rangle,$$

and

142

 $\langle (\nabla_{Jx}J)Jy, z \rangle = -\langle (\nabla_{x}J)y, z \rangle.$

By (2.7), (2.8), (2.9) and (2.16), we have

(2.24)
$$K(x, y) = (1/8) \{ 3H(x+Jy) + 3H(x-Jy) - H(x+y) - H(x-y) - H(x) - H(y) \} + (3/4) \| (\nabla_x J)y \|^2,$$

(2.25)
$$B(x, y) = K(x, y) + K(x, Jy) - 2 \| (\nabla_x J) y \|^2,$$

for x, $y \in M_p$ $(p \in M)$ with ||x|| = ||y|| = 1, $\langle x, y \rangle = \langle x, Jy \rangle = 0$.

\S 3. An integral formula on the unit sphere bundle.

The following fact is well-known and useful for our arguments ([2]):

PROPOSITION 3.1. Let \mathbb{R}^n be an n-dimensional Euclidean space and f a homogeneous polynomial of degree $r (\geq 1)$ defined on \mathbb{R}^n . Then we have

$$\int_{S^{n-1}(1)} (Df) \omega_2 = r(n+r-2) \int_{S^{n-1}(1)} (f|_{S^{n-1}(1)}) \omega_2 ,$$

where D denotes the Laplace operator of \mathbb{R}^n and ω_2 denotes the volume element of an (n-1)-dimensional unit sphere $S^{n-1}(1)$ with the canonical Riemannian metric.

Let $M=(M, \langle , \rangle)$ be an *n*-dimensional connected Riemannian manifold. We denote by T(M) and S(M) the tangent bundle and the unit sphere bundle over M, respectively:

$$T(M) = \{(p, x) \mid p \in M, x \in M_p\},\$$

$$S(M) = \{(p, x) \in T(M) \mid ||x|| = 1\}.$$

For each point $p \in M$, we put

$$S_p = \{x \in M_p \mid ||x|| = 1\}.$$

Then S_p is isometric to $S^{n-1}(1)$. We now recall the Sasaki metric \langle , \rangle^s on T(M) (cf. [12]). We denote by X^h (resp. X^v) the horizontal lift (resp. the vertical lift) of $X \in \mathfrak{X}(M)$. Then the Sasaki metric \langle , \rangle^s on T(M) is defined by

$$(3.1) \qquad \langle X^h, Y^h \rangle^s = \langle X, Y \rangle, \quad \langle X^v, Y^v \rangle^s = \langle X, Y \rangle, \quad \langle X^h, Y^v \rangle^s = 0,$$

for X, $Y \in \mathfrak{X}(M)$. From (3.1), we get easily

(3.2)
$$(\stackrel{s}{\nabla}_{Xh}Y^{h})_{(p,x)} = (\nabla_{X}Y)^{h} + \frac{1}{2}(R(X, Y)x)^{v},$$

where $\overset{\circ}{\nabla}$ denotes the Riemannian connection on T(M) with respect to the Sasaki metric \langle , \rangle^s . From (3.2), we see that any horizontal lift of a geodesic in M is a geodesic in $T(M) = (T(M), \langle , \rangle^s)$. We denote by using the same notation \langle , \rangle^s the induced metric on S(M) which is induced from the Sasaki metric \langle , \rangle^s on T(M). Let $\boldsymbol{\omega}$ (resp. $\boldsymbol{\omega}_1$) be the volume element on S(M) (resp. M) with respect to the metric \langle , \rangle^s (resp. \langle , \rangle). Then we have easily

(3.3)
$$\boldsymbol{\omega}(p, x) = \boldsymbol{\omega}_1(p) \wedge \boldsymbol{\omega}_2(x), \quad (p, x) \in S(M).$$

If M is compact and orientable, by (3.3), for any smooth function f on S(M), we have

(3.4)
$$\int_{\mathcal{S}(M)} f \boldsymbol{\omega} = \int_{M} \left\{ \int_{\mathcal{S}_{p}} f(p, x) \boldsymbol{\omega}_{2}(x) \right\} \boldsymbol{\omega}_{1}(p) .$$

Let (p, x) be any point of S(M). We take an orthonormal basis $\{e_i\} = \{e_1, \dots, e_n\}$ of M_p such that $x=e_1$. Then $\{e_1^h, \dots, e_n^h, e_2^v, \dots, e_n^v\}$ is an orthonormal basis of the tangent space $S(M)_{(p,x)}$. For each $y \in M_p$, the tangent space $(M_p)_y$ (i.e., the vertical subspace of $T(M)_{(p,y)}$) is identified with M_p by means of parallel translation. Under this identification, e_i^v corresponds to e_i $(1 \le i \le n)$. We denote by $(u_1, \dots, u_n, v_2, \dots, v_n)$ the normal coordinate system on a neighborhood of (p, x) in S(M) with respect to the orthonormal basis $\{e_1^h, \dots, e_n^h, e_2^v, \dots, e_n^v\}$. In [10], Gray has introduced a second order linear differential operator L by

(3.5)
$$L_{(p,x)} = \left\{ \sum_{i=1}^{n} \frac{\partial^2}{\partial u_i^2} + \frac{1}{2} \sum_{i,j \ge 2} h_{ij} \frac{\partial^2}{\partial v_i \partial v_j} \right\}_{(p,x)},$$

where $h_{ij}(p, x) = \langle R(e_i, x)e_j, x \rangle$. We denote by Δ^h the horizontal Laplacian of S(M). Then in terms of the normal coordinate system $(u_1, \dots, u_n, v_2, \dots, v_n)$, Δ^h is given by

(3.6)
$$\Delta^{h}_{(p,x)} = \left\{ \sum_{\iota=1}^{n} \frac{\partial^{2}}{\partial u_{\iota}^{2}} \right\}_{(p,x)}.$$

For a smooth function f on S(M), we denote by $\operatorname{grad}^{h} f$ (resp. $\operatorname{grad}^{v} f$) the horizontal (resp. the vertical) component of $\operatorname{grad} f$.

Now, let $M=(M, J, \langle , \rangle)$ be an $n \ (=2m)$ -dimensional nearly Kähler manifold. We may regard holomorphic sectional curvature H=H(x) as a smooth function on S(M). Then we have

$$(3.7) \qquad (\operatorname{grad}^{h}H)_{(p,x)} = \sum_{i=1}^{n} \left\{ \langle (\nabla_{e_{i}}R)(x, Jx)x, Jx \rangle + 2 \langle R(x, Jx)x, (\nabla_{e_{i}}J)x \rangle \right\} e_{i}^{h},$$

$$(3.8) \qquad (\operatorname{grad}^{v}H)_{(p,x)} = (\operatorname{grad} H)_{(p,x)} - (\operatorname{grad}^{h}H)_{(p,x)} - \langle (\operatorname{grad} H)_{(p,x)}, x^{v} \rangle^{s} x^{v}$$

$$=4\sum_{i=2}^{n} \langle R(x, Jx)x, Je_i \rangle e_i^v.$$

By (3.8), we see that

$$\langle (\operatorname{grad}^{v}H)_{(p,x)}, x^{v} \rangle^{s} = \langle (\operatorname{grad}^{v}H)_{(p,x)}, (Jx)^{v} \rangle^{s} = 0.$$

From the result due to Tanno [18] and (3.8), we may note the following

PROPOSITION 3.2. Let $M=(M, J, \langle , \rangle)$ be a nearly Kähler manifold. Then M is a space of constant holomorphic sectional curvature if and only if $\operatorname{grad}^{v} H=0$ on S(M).

We assume that $M=(M, J, \langle , \rangle)$ is a connected compact Einstein nearly Kähler manifold. First, we estimate the value L(H)(p, x) at any point $(p, x) \in S(M)$. By (3.6) and (3.7), we get

$$(3.9) \qquad \sum_{i=1}^{n} \frac{\partial^{2}H}{\partial u_{i}^{2}}(p, x) = (\Delta^{h}H)(p, x)$$

$$= \sum_{i=1}^{n} \langle \stackrel{\circ}{\nabla}_{e_{i}}{}^{h}(\operatorname{grad}^{h}H), e_{i}{}^{h} \rangle$$

$$= \sum_{i=1}^{n} \langle \langle (\nabla_{e_{i}e_{i}}^{2}R)(x, Jx)x, Jx \rangle + \langle (\nabla_{e_{i}}R)(x, (\nabla_{e_{i}}J)x)x, Jx \rangle$$

$$+ \langle (\nabla_{e_{i}}R)(x, Jx)x, (\nabla_{e_{i}}J)x \rangle + 2 \langle (\nabla_{e_{i}}R)(x, Jx)x, (\nabla_{e_{i}}J)x \rangle$$

$$+ 2 \langle R(x, (\nabla_{e_{i}}J)x)x, (\nabla_{e_{i}}J)x \rangle + 2 \langle R(x, Jx)x, (\nabla_{e_{i}}J)x \rangle$$

$$= \sum_{i=1}^{n} \{ \langle (\nabla_{e_{i}e_{i}}^{2}R)(x, Jx)x, Jx \rangle + 4 \langle (\nabla_{e_{i}}R)(x, Jx)x, (\nabla_{e_{i}}J)x \rangle$$

$$+ 2 \langle R(x, (\nabla_{e_{i}}J)x)x, (\nabla_{e_{i}}J)x \rangle + 2 \langle R(x, Jx)x, (\nabla_{e_{i}}J)x \rangle$$

Taking account of the first Bianchi, the second Bianchi and the Ricci identities, and (2.16), (2.17), (2.20), we get

$$(3.10) \qquad \frac{1}{2} \sum_{i=1}^{n} \langle (\nabla_{e_{i}e_{i}}^{2}R)(x, Jx)x, Jx \rangle$$

$$= \frac{1}{2} \sum_{i=1}^{n} \{ \langle (\nabla_{e_{i}x}^{2}R)(e_{i}, Jx)x, Jx \rangle - \langle (\nabla_{e_{i}Jx}^{2}R)(e_{i}, x)x, Jx \rangle \}$$

$$= \frac{1}{2} \{ \sum_{i=1}^{n} \langle (\nabla_{xe_{i}}^{2}R)(e_{i}, Jx)x, Jx \rangle$$

$$+ \sum_{i, j=1}^{n} (R_{ixij}R_{j\bar{x}x\bar{x}} + R_{ix\bar{x}j}R_{ijx\bar{x}} + R_{ixxj}R_{i\bar{x}j\bar{x}} + R_{ix\bar{x}j}R_{i\bar{x}j\bar{x}} + R_{ix\bar{x}j}R_{i\bar{x}j\bar{x}} + R_{ix\bar{x}j}R_{i\bar{x}j\bar{x}} + R_{ix\bar{x}j}R_{i\bar{x}j\bar{x}} + R_{ix\bar{x}j}R_{i\bar{x}j\bar{x}} + R_{ix\bar{x}j}R_{i\bar{x}x\bar{x}} + R_{i\bar{x}\bar{x}j}R_{i\bar{x}x\bar{x}} + R_{i\bar{x}\bar{x}j}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}j}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}j}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}j}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}j}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x}\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}\bar{x}} + R_{i\bar{x}\bar{x}\bar{x}\bar{x}}R_{i\bar{x$$

$$\begin{split} &= \sum_{i,j=1}^{n} R_{ixjx} (\delta_{ij}H(x) - R_{i\bar{x}j\bar{x}}) \\ &+ \sum_{i,j=1}^{n} R_{ixj\bar{x}} (-R_{ixx\bar{j}} + \langle (\nabla_{e_i}J)x, (\nabla_{Jx}J)e_j \rangle + 2R_{i\bar{x}\bar{j}\bar{x}} \\ &+ 2\langle (\nabla_{e_i}J)Jx, (\nabla_{e_j}J)x \rangle) \\ &= \sum_{i,j=1}^{n} \{ R_{ixjx} (\delta_{ij}H(x) - R_{i\bar{x}j\bar{x}}) \\ &+ (-R_{ixjx} + \langle (\nabla_{e_i}J)x, (\nabla_{e_j}J)x \rangle) (R_{ixjx} + 2R_{i\bar{x}j\bar{x}} \\ &- 3\langle (\nabla_{e_i}J)x, (\nabla_{e_j}J)x \rangle) \} \\ &= \sum_{i,j=1}^{n} R_{ixjx} \{ \delta_{ij}H(x) - R_{ixjx} - 3R_{i\bar{x}j\bar{x}} + 3\langle (\nabla_{e_i}J)x, (\nabla_{e_j}J)x \rangle \} \\ &+ 3\sum_{i,j=1}^{n} R_{ix\bar{j}\bar{x}} \langle (\nabla_{e_i}J)x, (\nabla_{e_j}J)x \rangle , \end{split}$$

where we put $R_{ixjx} = R_{i1j1}$, $R_{i\bar{x}j\bar{x}} = R_{i1j1}$, \cdots , etc. Thus, by (3.9) and (3.10), we have

$$(3.11) \qquad \sum_{i=1}^{n} \frac{\partial^{2} H}{\partial u_{i}^{2}}(p, x)$$

$$=2\left\{\sum_{i,j=1}^{n} R_{ixjx}(\delta_{ij}H(x) - R_{ixjx} - 3R_{i\bar{x}j\bar{x}} + 3\langle (\nabla_{e_{i}}J)x, (\nabla_{e_{j}}J)x \rangle \right)$$

$$+3\sum_{i,j=1}^{n} R_{ix\bar{j}\bar{x}}\langle (\nabla_{e_{i}}J)x, (\nabla_{e_{j}}J)x \rangle \right\}$$

$$+4\sum_{i=1}^{n} \langle (\nabla_{e_{i}}R)(x, Jx)x, (\nabla_{e_{i}}J)x \rangle + 2\sum_{i=1}^{n} \langle R(x, (\nabla_{e_{i}}J)x)x, (\nabla_{e_{i}}J)x \rangle$$

$$+2\sum_{i=1}^{n} \langle R(x, Jx)x, (\nabla_{e_{i}e_{i}}J)x \rangle.$$

Similarly, we have

$$(3.12) \qquad \frac{\partial^2 H}{\partial v_i \partial v_j}(p, x) = -4 \{ \delta_{ij} H(x) - R_{ixjx} - 3R_{i\bar{x}j\bar{x}} + 3 \langle (\nabla_{e_i} J)x, (\nabla_{e_j} J)x \rangle \}.$$

We now define smooth functions f_{λ} $(\lambda{=}1,\,2,\,3,\,4)$ on S(M) by

(3.13)
$$f_{1}(p, x) = \sum_{i, j=1}^{n} R_{ixj\bar{x}} \langle (\nabla_{e_{i}} J)x, (\nabla_{e_{j}} J)x \rangle,$$
$$f_{2}(p, x) = \sum_{i=1}^{n} \langle (\nabla_{e_{i}} R)(x, Jx)x, (\nabla_{e_{i}} J)x \rangle,$$
$$f_{3}(p, x) = \sum_{i=1}^{n} \langle R(x, (\nabla_{e_{i}} J)x)x, (\nabla_{e_{i}} J)x \rangle,$$

$$f_4(p, x) = \sum_{i=1}^n \langle R(x, Jx)x, (\nabla^2_{e_i e_i} J)x \rangle$$
$$= -\langle R(x, Jx)x, (R^1 - (R^*)^1)Jx \rangle.$$

From (3.5), (3.11), (3.12) and (3.13), we have

$$(3.14) L(H)(p, x) = 6f_1(p, x) + 4f_2(p, x) + 2f_3(p, x) + 2f_4(p, x),$$

for all $(p, x) \in S(M)$. Since M is an Einstein space, it follows that the operator L is self-adjoint (cf. [10]). Thus, we have the following equality ([10], p. 42):

$$(3.15) \qquad 0 = \int_{\mathcal{S}(M)} L(H^2) \boldsymbol{\omega}$$
$$= \int_{\mathcal{S}(M)} \{2HL(H) + 2\|\operatorname{grad}^{h}H\|^{2} + \langle R(x, \operatorname{grad}^{v}H)x, \operatorname{grad}^{v}H \rangle \} \boldsymbol{\omega}.$$

We shall evaluate the integral $\int_{S(M)} \|grad^h H\|^2 \omega$. We define smooth functions g_{μ} ($\mu=1, 2, 3$) on S(M) by

$$(3.16) g_1(p, x) = \sum_{i=1}^n \langle (\nabla_{e_i} R)(x, Jx)x, Jx \rangle^2,$$

$$g_2(p, x) = \sum_{i=1}^n \langle (\nabla_{e_i} R)(x, Jx)x, Jx \rangle \langle R(x, Jx)x, (\nabla_{e_i} J)x \rangle,$$

$$g_3(p, x) = \sum_{i=1}^n \langle R(x, Jx)x, (\nabla_{e_i} J)x \rangle^2,$$

for $(p, x) \in S(M)$. Then, by (3.7) and (3.16), we get

(3.17)
$$\int_{\mathcal{S}(M)} \|\operatorname{grad}^{h}H\|^{2} \omega = \int_{\mathcal{S}(M)} g_{1} \omega + 4 \int_{\mathcal{S}(M)} (g_{2} + g_{3}) \omega$$

Taking account of (3.4), (3.13), (3.16), Proposition 3.1 and Green's theorem, we have

(3.18)
$$\int_{S(M)} g_2 \omega = -2 \int_{S(M)} g_3 \omega - \int_{S(M)} H(f_2 + f_3 + f_4) \omega.$$

From the results due to Gray [8] and the second named author [13], we may note that M is a Riemannian locally 3-symmetric space if and only if g_1 is identically zero.

By (3.14), (3.15), (3.17) and (3.18), we have finally

(3.19)
$$\int_{S(M)} \left[2 \{ g_1 - 4g_3 + H(6f_1 - 2f_3 - 2f_4) \} + \langle R(x, \operatorname{grad}^v H) x, \operatorname{grad}^v H \rangle \right] \omega = 0.$$

The integral formula (3.19) together with (3.13) and (3.16) plays an important role in the arguments of the next section.

In the rest of this section, we assume that $M=(M, J, \langle , \rangle)$ is a connected

non-Kähler, Einstein nearly Kähler manifold with vanishing first Chern form (i.e., $R_1=5R_1^*$). By making use of (2.22), (3.8) and Proposition 3.1, we have the followings:

(3.20)
$$\int_{S_p} H \omega_2 = \frac{8S}{5n(n+2)} V_2,$$

(3.21)
$$\int_{S_p} H^2 \boldsymbol{\omega}_2 = \frac{1}{4(n+2)} \int_{S_p} \|\mathbf{grad}^v H\|^2 \boldsymbol{\omega}_2 + \frac{64S^2}{25n^2(n+2)^2} V_2,$$

where $V_2 = Vol(S^{n-1}(1))$. By (3.8) and (3.21), we have

(3.22)
$$\int_{S_p} \sum_{k=1}^n (R_{x\bar{x}xk})^2 \boldsymbol{\omega}_2 = \frac{1}{16} \int_{S_p} \|\operatorname{grad}^v H\|^2 \boldsymbol{\omega}_2 + \int_{S_p} H^2 \boldsymbol{\omega}_2$$
$$= \frac{n+6}{16(n+2)} \int_{S_p} \|\operatorname{grad}^v H\|^2 \boldsymbol{\omega}_2 + \frac{64S^2}{25n^2(n+2)^2} V_2.$$

If M is holomorphically δ -pinched, by (2.10) and (3.20), we get

$$\delta l \leq \frac{8S}{5n(n+2)} \leq l.$$

§4. Some results.

S. Tanno [18] has proved the following

PROPOSITION 4.1. If a 6-dimensional nearly Kähler manifold $M=(M, J, \langle , \rangle)$ is of constant holomorphic sectional curvature H, then either M is Kählerian, or M is of constant sectional curvature H>0.

First, in connection with the above result, we shall show some results. Let $M=(M, J, \langle , \rangle)$ be a 6-dimensional connected non-Kähler, nearly Kähler manifold. Then it is known that M is an Einstein space with positive scalar curvature and vanishing first Chern form (i.e., $R_1=5R_1^*$), and furthermore the following equalities hold ([11]):

(4.1)
$$\langle (\nabla_{e_h} J) e_i, (\nabla_{e_j} J) e_k \rangle = -\frac{S}{30} \{ \langle e_i, e_j \rangle \langle e_h, e_k \rangle - \langle e_h, e_j \rangle \langle e_i, e_k \rangle - \langle Je_i, e_j \rangle \langle Je_i, e_k \rangle + \langle Je_h, e_j \rangle \langle Je_i, e_k \rangle \},$$

(4.2)
$$\langle \langle \nabla_{e_{k}e_{j}}^{2} J \rangle e_{i}, e_{h} \rangle = -\frac{S}{30} \{ \langle e_{k}, e_{j} \rangle \langle Je_{i}, e_{h} \rangle + \langle e_{k}, e_{i} \rangle \langle Je_{h}, e_{j} \rangle + \langle e_{k}, e_{h} \rangle \langle Je_{j}, e_{i} \rangle \},$$

where $\{e_i\} = \{e_{\alpha}, e_{\beta+\alpha} = Je_{\alpha}\}$ ($\alpha = 1, 2, 3$) is an orthonormal basis of M_p ($p \in M$).

We now evaluate the values $f_{\lambda}(p, x)$ ($\lambda=1$, 3, 4). By (2.22), (3.13) and (4.1), we get

(4.3)
$$f_1(p, x) = \frac{S}{30} \left(\frac{S}{30} - H(x) \right),$$

(4.4)
$$f_{s}(p, x) = -\frac{S}{30} \Big(H(x) - \frac{S}{6} \Big).$$

Since M is an Einstein space with $R_1 = 5R_1^*$, by (3.13), we get

(4.5)
$$f_4(p, x) = -\frac{2S}{15}H(x).$$

By (3.16), (3.22) and (4.1), we get

(4.6)
$$\int_{S_p} g_3 \boldsymbol{\omega}_2 = \frac{S}{480} \int_{S_p} \|\mathbf{grad}^{\boldsymbol{\nu}} H\|^2 \boldsymbol{\omega}_2.$$

THEOREM 4.2. Let $M=(M, J, \langle , \rangle)$ be a 6-dimensional connected complete non-Kähler, nearly Kähler manifold satisfying the condition

$$K(x, y) > \frac{S}{120},$$

for x, $y \in M_p$ with ||x|| = ||y|| = 1, $\langle x, y \rangle = \langle x, Jy \rangle = 0$, for all $p \in M$. Then M is isometric to a 6-dimensional sphere of constant curvature S/30.

Proof. Since M is an Einstein space with positive scalar curvature, M is compact by Myer's theorem. By $(3.19)\sim(3.21)$, $(4.3)\sim(4.6)$, we have

(4.7)
$$\int_{\mathcal{S}(M)} \left\{ 2g_1 + \langle R(x, \operatorname{grad}^v H) x, \operatorname{grad}^v H \rangle - \frac{S}{120} \| \operatorname{grad}^v H \|^2 \right\} \boldsymbol{\omega} = 0.$$

From the hypothesis, (4.7) and Proposition 4.1, the theorem follows immediately. Q. E. D.

Furthermore, we have the following

THEOREM 4.3. Let $M=(M, J, \langle , \rangle)$ be a 6-dimensional connected complete non-Kähler, nearly Kähler manifold. If M is holomorphically δ (>2/5)-pinched, then M is isometric to a 6-dimensional sphere of constant curvature S/30.

Proof. By the hypothesis and (2.10), (2.24), (3.23) and (4.1), we have

$$K(x, y) \ge \frac{1}{4} (3\delta - 2)l + \frac{S}{40}$$

> $-\frac{1}{5}l + \frac{S}{40}$
> $-\frac{S}{60} + \frac{S}{40} = \frac{S}{120}$,

for x, $y \in M_p$ with ||x|| = ||y|| = 1, $\langle x, y \rangle = \langle x, Jy \rangle = 0$, for all $p \in M$. Thus the

theorem follows immediately from Theorem 4.2. Q.E.D.

Next, we shall deal with general cases where the dimension of M is not necessarily equal to 6. In connection with the results obtained by Bishop and Goldberg ([3], [4], [5]), we have the following

THEOREM 4.4. Let $M=(M, J, \langle , \rangle)$ be an $n \ (=2m)$ -dimensional connected compact non-Kähler, nearly Kähler manifold with constant scalar curvature. If M satisfies the condition

(4.8)
$$K(x, y) + K(x, Jy) + B(x, y) > 0,$$

for x, $y \in M_p$ with $x \neq 0$, $y \neq 0$, $\langle x, y \rangle = \langle x, Jy \rangle = 0$, for all $p \in M$, then the Ricci tensor R_1 of M is parallel and the first Chern form of M vanishes.

Proof. Since M is compact and the scalar curvature S of M is constant, by the result due to Tachibana [16], the first Chern form γ is a harmonic 2-form.

For each point $p \in M$, we may choose an orthonormal basis $\{e_i\} = \{e_{\alpha}, e_{\bar{\alpha}}\}$ which diagonalizes the symmetric linear endomorphism $5(R^*)^1 - R^1$ of M_p . By the choice of $\{e_i\}$, we get

(4.9)
$$\gamma(e_i, e_j) = 0 \quad \text{for} \quad e_j \neq \pm e_i.$$

For the 2-form γ , we put

(4.10)
$$F(\gamma) = \sum_{i,j,k} R_{ij} \gamma_{ik} \gamma_{jk} - \frac{1}{2} \sum_{h,i,j,k} R_{hijk} \gamma_{hi} \gamma_{jk},$$

where $\gamma_{ij} = \gamma(e_i, e_j)$. By (4.9), (4.10) reduces to

(4.11)
$$F(\gamma) = 2 \sum_{\alpha,\beta} \left\{ (R_{\alpha\beta\alpha\beta} + R_{\alpha\bar{\beta}\alpha\bar{\beta}})(\gamma_{\alpha\bar{\alpha}})^2 - R_{\alpha\bar{\alpha}\beta\bar{\beta}}\gamma_{\alpha\bar{\alpha}}\gamma_{\beta\bar{\beta}} \right\}.$$

By (2.25) and (4.11), we get

(4.12)
$$F(\gamma) = 2 \sum_{\alpha < \beta} \left\{ R_{\alpha \bar{\alpha} \beta \bar{\beta}} (\gamma_{\alpha \bar{\alpha}} - \gamma_{\beta \bar{\beta}})^2 + 2 \| (\nabla_{e_{\alpha}} J) e_{\beta} \|^2 (\gamma_{\alpha \bar{\alpha}}^2 + \gamma_{\beta \bar{\beta}}^2) \right\},$$

or

$$F(\gamma) = 2 \sum_{\alpha < \beta} \left\{ (R_{\alpha\beta\alpha\beta} + R_{\alpha\bar{\beta}\alpha\bar{\beta}})(\gamma_{\alpha\bar{\alpha}} - \gamma_{\beta\bar{\beta}})^2 + 4 \| (\nabla_{e_{\alpha}} J) e_{\beta} \|^2 \gamma_{\alpha\bar{\alpha}} \gamma_{\beta\bar{\beta}} \right\}.$$

By (4.12), we have finally

(4.13)
$$F(\gamma) = \sum_{\alpha < \beta} \left\{ (R_{\alpha \bar{\alpha} \beta \bar{\beta}} + R_{\alpha \beta \alpha \beta} + R_{\alpha \bar{\beta} \alpha \bar{\beta}}) (\gamma_{\alpha \bar{\alpha}} - \gamma_{\beta \bar{\beta}})^2 + 2 \| (\nabla_{e_{\alpha}} J) e_{\beta} \|^2 (\gamma_{\alpha \bar{\alpha}} + \gamma_{\beta \bar{\beta}})^2 \right\}.$$

Since γ is a harmonic 2-form and $F(\gamma) \ge 0$, according to Yano and Bochner [22], it follows that $F(\gamma)=0$ and γ is parallel. Thus, by (4.12) and (4.13), we get

(4.14)
$$\gamma_{\alpha\bar{\alpha}} - \gamma_{\beta\bar{\beta}} = 0$$
, and $\| (\nabla_{e_{\alpha}} J) e_{\beta} \|^2 (\gamma_{\alpha\bar{\alpha}} + \gamma_{\beta\bar{\beta}})^2 = 0$,

for $1 \leq \alpha < \beta \leq m$.

Since M is non-Kählerian, it follows that

(4.15)
$$(\nabla_{e_{\alpha}}J)e_{\beta} \neq 0$$
 for some $\alpha < \beta$.

Thus, by (4.14) and (4.15), we have

(4.16) $\gamma = 0$ (i.e. $R_1 = 5R_1^*$).

Therefore, by (2.19) and (4.16), we have

$$\nabla(R_1 - R_1^*) = 0$$
,

and hence

$$\nabla R_1 = 0$$
. Q.E.D.

Furthermore, we have the following

THEOREM 4.5. Let $M=(M, J, \langle , \rangle)$ be an $n \ (=2m)$ -dimensional connected compact non-Kähler, nearly Kähler manifold with constant scalar curvature. If M satisfies the condition $T(\rho, \sigma) \ (\rho > 0)$, and is holomorphically $\delta \ (>2/(\rho+3))$ pinched, then M is an Einstein space and the first Chern form of M vanishes.

Proof. By the hypothesis and (2.10), (2.11), (2.24), we get

(4.17) $K(x, y) \ge (1/4)(3\delta - 2 + 3\rho\delta)l$

$$> \frac{
ho}{
ho+3}l$$
 (>0),

for x, $y \in M_p$ with ||x|| = ||y|| = 1, $\langle x, y \rangle = \langle x, Jy \rangle = 0$, for all $p \in M$. Thus, by (2.11), (2.25) and (4.17), we get

$$K(x, y) + K(x, Jy) + B(x, y)$$

=2 {K(x, y)+K(x, Jy)- ||(\nabla_x J)y||^2}
\ge (3\delta - 2)l + ||(\nabla_x J)y||^2
\ge {(3\epsilon - 2)l > 0,

and hence M satisfies the condition (4.8) in Theorem 4.4. Thus, from Theorem 4.4, it follows that

$$\nabla R_1 = 0$$
 and $R_1 = 5R_1^*$.

Thus, taking account of (2.4), (2.5) and (4.14), we may easily see that M is an Einstein space. Q.E.D.

In [17], Takamatsu and the second named author have proved the following

PROPOSITION 4.6. There does not exist any dimensional, except 6-dimensional, non-Kähler, nearly Kähler manifold of constant holomorphic sectional curvature.

From Propositions 4.1 and 4.6, it follows immediately that a non-Kähler, nearly Kähler manifold of constant holomorphic sectional curvature is a 6-dimensional space of positive constant curvature, and satisfies the condition T(1, 1). In the rest of this section, we shall prove a result (Theorem 4.10) related to Proposition 4.6. We assume that $M=(M, J, \langle , \rangle)$ is an n (=2m)-dimensional connected non-Kähler, Einstein nearly Kähler manifold with vanishing first Chern form, and furthermore satisfies the condition $T(\rho, \sigma)$ with $5\rho > 4\sigma$ and is holomorphically $\delta(>2/(\rho+3))$ -pinched. First, we estimate the values of the functions f_{λ} ($\lambda=1$, 3, 4) on S(M).

LEMMA 4.7. For each point $(p, x) \in S(M)$, we have

$$f_1(p, x) \ge \frac{l}{8} \{ (5\rho - 4\sigma)(n+2)\delta - 8\rho \} H(x) .$$

Proof. Let $\{e_i\} = \{e_{\alpha}, e_{\bar{\alpha}}\}$ $(x=e_1)$ be an orthonormal basis of M_p which diagonalizes the matrix $(\langle (\nabla_{e_i} J)x, (\nabla_{e_j} J)x \rangle)$ $(1 \leq i, j \leq n)$. Then, by the hypothesis for M and (2.10), (2.11), (2.16), (3.13), (3.23) and (4.17), we get

$$\begin{split} f_{1}(p, x) &= \sum_{i,j} R_{ixj\bar{x}} \langle (\nabla_{e_{i}}J)x, (\nabla_{e_{j}}J)x \rangle \\ &= \sum_{i} R_{ixix} \| (\nabla_{e_{i}}J)x \|^{2} - \sum_{i} \| (\nabla_{e_{i}}J)x \|^{4} \\ &\geq \frac{S}{5n} (5\rho - 4\sigma) H(x) - \rho H(x)^{2} \\ &\geq \frac{n+2}{8} (5\rho - 4\sigma) \delta l H(x) - \rho l H(x) \\ &= \frac{l}{8} \{ (5\rho - 4\sigma)(n+2)\delta - 8\rho \} H(x) . \end{split}$$

LEMMA 4.8. For each point $(p, x) \in S(M)$, we have

$$f_{\mathfrak{z}}(p, x) \leq \delta l \left(\frac{S}{n} - H(x) \right).$$

Proof. Let $\{e_i\} = \{e_{\alpha}, e_{\bar{\alpha}}\}$ $(x=e_1)$ be an orthonormal basis of M_p as in the proof of Lemma 4.7. Then, by (2.10), (2.11), (3.13) and (4.17), we get

$$f_{\mathfrak{s}}(\mathfrak{p}, x) = \sum_{i} \langle R(x, (\nabla_{e_{i}}J)x)x, (\nabla_{e_{i}}J)x \rangle$$

$$\leq \sigma H(x) \Big(\frac{S}{n} - H(x)\Big)$$

$$\leq \sigma l \Big(\frac{S}{n} - H(x)\Big).$$
Q.E.D.

LEMMA 4.9. For each point $(p, x) \in S(M)$, we have

$$f_4(p, x) \leq -\frac{n+2}{2} \delta l H(x)$$
.

Proof. By (2.10), (2.20), (3.13) and (3.23), we get

$$f_4(p, x) = -\frac{4S}{5n}H(x)$$

$$\leq -\frac{n+2}{2}\delta lH(x). \qquad Q. E. D.$$

Next, we estimate the value $\int_{S_p} g_{\scriptscriptstyle 3} \omega_{\scriptscriptstyle 2}$. By (2.10), (2.11), (3.16), (3.20), (3.21) and (3.22), we have

(4.18)
$$\int_{S_p} g_s \omega_2 \leq \sigma l \left[\int_{S_p} \sum_k (R_{x\bar{x}xk})^2 \omega_2 - \int_{S_p} H^2 \omega_2 \right] = \frac{\sigma l}{16} \int_{S_p} \|\operatorname{grad}^v H\|^2 \omega_2.$$

We are now in a position to prove the following

THEOREM 4.10. Let $M=(M, J, \langle , \rangle)$ be an $n (\geq 6)$ -dimensional connected compact non-Kähler, nearly Kähler manifold with constant scalar curvature. If M satisfies the condition $T(\rho, \sigma)$ with $5\rho > 4\sigma$, $3\rho \geq 4\sigma - 1$, and is holomorphically δ -pinched $(\delta > 2/(\rho+3))$ and $\delta \geq (4\sigma+3\rho)/(15\rho-12\sigma+4))$, then M is isometric to a 6-dimensional sphere of constant curvature.

Proof. First of all, we note

$$1 - \frac{4\sigma + 3\rho}{15\rho - 12\sigma + 4} = \frac{4(3\rho - 4\sigma + 1)}{15\rho - 12\sigma + 4} \ge 0,$$

and

(4.19)
$$\frac{4\sigma + 3\rho}{15\rho - 12\sigma + 4} - \frac{5(n+2)\sigma + 24\rho - 8\sigma}{(n+2)(15\rho - 12\sigma + 4)} \\ = \frac{(n-6)(3\rho - \sigma)}{(n+2)(15\rho - 12\sigma + 4)} \\ \ge \frac{(n-6)(3\sigma - 2\rho)}{(n+2)(15\rho - 12\sigma + 4)} \ge 0.$$

Next, from the hypothesis for M and Theorem 4.5, it follows that M is an Einstein space with vanishing first Chern form. Furthermore, by (3.19), (4.18), (4.19) and Lemmas $4.7 \sim 4.9$, we have

$$(4.20) \quad 0 \ge 2 \int_{\mathcal{S}(M)} g_1 \omega \\ + \frac{l}{2} \Big\{ \frac{(n+2)(15\rho - 12\sigma + 4)\delta + 8\sigma - 24\rho - 4(n+2)\sigma}{4(n+2)} + \frac{2\rho}{\rho+3} \Big\} \int_{\mathcal{S}(M)} \|\text{grad}^{\nu}H\|^2 \omega$$

Thus, from (4.20) and Proposition 3.2, it follows that M is a space of constant holomorphic sectional curvature. Therefore, the theorem follows immediately from Propositions 4.1 and 4.6. Q.E.D.

§5. An example.

We shall recall some elementary facts about Riemannian 3-symmetric spaces (cf. [8], [21]). Let $(G/K, J, \langle , \rangle)$ be a compact Riemannian 3-symmetric space such that the Riemannian metric \langle , \rangle is determined by a biinvariant Riemannian metric on G and J is the canonical almost complex structure. Then it is known that $(G/K, J, \langle , \rangle)$ is a nearly Kähler manifold ([8]). We denote by g and f the Lie algebras of G and K respectively. Then we have the following direct sum decomposition ([8]):

(5.1)
$$g = \mathfrak{t} + \mathfrak{m}$$
, $\operatorname{Ad}(K)\mathfrak{m} = \mathfrak{m}$,

where m is the orthogonal complement of t in g. We may identify the subspace m with the tangent space $(G/K)_{eK}$ of G/K at the origin $eK \in G/K$. Under this identification, we have the following formulas ([8], [20]):

(5.2) $(\nabla_x J)y = -J[x, y]_{\mathfrak{m}}, \quad x, y \in \mathfrak{m},$

(5.3)
$$K(x, y) = \frac{1}{4} \| [x, y]_{\mathfrak{m}} \|^{2} + \| [x, y]_{\mathfrak{t}} \|^{2},$$
$$x, y \in \mathfrak{m} \quad \text{with} \quad \| x \| = \| y \| = 1, \ \langle x, y \rangle = 0.$$

In particular, we consider the 6-dimensional compact Riemannian 3-symmetric space $(Sp(2)/(U(1) \times Sp(1)), J, \langle, \rangle)$ in which the Riemannian metric \langle, \rangle is induced from the inner product

$$(x, y) = -\text{Real part of } (\text{Trace } xy), \quad x, y \in \mathfrak{sp}(2).$$

We put G=Sp(2) and $K=U(1)\times Sp(1)$. Let **H** be the algebra of quaternions, i.e.,

$$H = \{q = a_0 + a_1 e_1 + a_2 e_2 + a_3 e_3 \mid a_0, a_1, a_2, a_3 \in \mathbf{R}, e_i^2 = -1 \ (1 \le i \le 3), e_1 e_2 = -e_2 e_1 = e_3, e_2 e_3 = -e_3 e_2 = e_1, e_3 e_1 = -e_1 e_3 = e_2 \}.$$

Then it is well known that the Lie algebra $\mathfrak{sp}(2)$ of Sp(2) is given by

$$\mathfrak{sp}(2) = \{ x \in \mathfrak{gl}(2, \boldsymbol{H}) \mid {}^{t}x = -\bar{x} \}.$$

We put

(5.4)
$$x_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad y_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & e_{1} \\ e_{1} & 0 \end{bmatrix}, \\ x_{2} = \begin{bmatrix} -e_{2} & 0 \\ 0 & 0 \end{bmatrix}, \quad y_{2} = \begin{bmatrix} e_{3} & 0 \\ 0 & 0 \end{bmatrix}, \\ x_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & e_{2} \\ e_{2} & 0 \end{bmatrix}, \quad y_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & e_{3} \\ e_{3} & 0 \end{bmatrix}, \\ s_{1} = \begin{bmatrix} 0 & 0 \\ 0 & e_{2} \end{bmatrix}, \quad s_{2} = \begin{bmatrix} 0 & 0 \\ 0 & e_{3} \end{bmatrix}, \\ t_{1} = \begin{bmatrix} e_{1} & 0 \\ 0 & 0 \end{bmatrix}, \quad t_{2} = \begin{bmatrix} 0 & 0 \\ 0 & e_{1} \end{bmatrix}.$$

Then we see that $\{x_i, y_i \ (1 \le i \le 3), s_1, s_2, t_1, t_2\}$ is an orthonormal basis of $g = \mathfrak{sp}(2)$ and the Lie algebra \mathfrak{k} of K (resp. the subspace \mathfrak{m} of \mathfrak{g} in the decomposition (5.1)) is linearly spanned by $\{s_1, s_2, t_1, t_2\}$ (resp. $\{x_i, y_i \ (1 \le i \le 3)\}$) over \mathbf{R} (cf. [15]).

The canonical almost complex structure J is given by

(5.5)
$$Jx_i = y_i, \quad Jy_i = -x_i \quad (1 \le i \le 3).$$

By (5.2), we get

(5.6)
$$\|(\nabla_x J)y\|^2 = 1$$
,

for $x, y \in \mathbb{m}$ with ||x|| = ||y|| = 1, $\langle x, y \rangle = \langle x, Jy \rangle = 0$. By (5.6), we see that $(Sp(2)/(U(1) \times Sp(1)), J, \langle , \rangle)$ is a non-Kähler, nearly Kähler manifold.

By (5.3), (5.4) and (5.5), by direct computation, we get

(5.7)
$$H(x) = \| [x, Jx]_{\mathfrak{t}} \|^{2} = 2 \left\{ 5 \left(a_{1}^{2} + b_{1}^{2} + a_{3}^{2} + b_{3}^{2} - \frac{3}{5} \right)^{2} + \frac{1}{5} \right\}$$

for any unit vector $x = a_1x_1 + b_1y_1 + a_2x_2 + b_2y_2 + a_3x_3 + b_3y_3 \in \mathfrak{m}$. By (5.7), we have easily

$$(5.8) \qquad \qquad \frac{2}{5} \leq H(x) \leq 4.$$

Thus, by (5.6) and (5.8), we see that $(Sp(2)/(U(1) \times Sp(1)))$, $J, \langle , \rangle)$ is holomorphically 1/10-pinched and satisfies the condition T(1/4, 5/2).

Let x be any unit vector in \mathfrak{m} and y any unit vector in \mathfrak{m} which is orthogonal to x. Then we may put

$$(5.9) y = aJx + bz,$$

where z is a unit vector in m with $\langle x, z \rangle = 0$, $\langle Jx, z \rangle = 0$, and $a, b \in \mathbb{R}$ with $a^2+b^2=1$. By (5.3), taking account of (5.2), (5.6) and (5.9), we have

(5.10)
$$K(x, y) = \frac{1}{4} \|b[x, z]_{\mathfrak{m}}\|^{2} + \|a[x, Jx]_{\mathfrak{l}} + b[x, z]_{\mathfrak{l}}\|^{2}$$
$$= \frac{b^{2}}{4} + \|a[x, Jx]_{\mathfrak{l}} + b[x, z]_{\mathfrak{l}}\|^{2}.$$

Therefore, by (5.7), (5.8) and (5.10), we may easily see that $(Sp(2)/(U(1) \times Sp(1)))$, J, \langle , \rangle has strictly positive sectional curvature.

We remark that $Sp(2)/(U(1) \times Sp(1))$ is diffeomorphic to a complex projective space of complex dimension 3 ([15]). We also note that K. Furukawa has obtained the estimation (5.8) in unpublished work.

References

- [1] BERGER, M., Les variétés riemanniennes homogénes simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa, 15 (1961), 179-246.
- [2] BERGER, M., GAUDUCHON, P. AND E. MAZET, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer (1971).
- [3] BISHOP, R.L. AND S.I. GOLDBERG, On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119-122.
- [4] BISHOP, R.L. AND S.I. GOLDBERG, Rigidity of positively curved Kähler manifolds, Proc. Nat. Acad. Sci. 54 (1965), 1037-1041.
- [5] BISHOP, R.L. AND S.I. GOLDBERG, On the topology of positively curved Kähler manifolds II, Tôhoku Math. J. 17 (1965), 310-318.
- [6] FURUKAWA, K. AND S. SAWAKI, Pinching of a 6-dimensional nearly Kähler manifold, Tensor, N.S., 38 (1982), 53-61.
- [7] GRAY, A., Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283-309.
- [8] GRAY, A., Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry 7 (1972), 343-369.
- [9] GRAY, A., The structure of nearly Kähler manifolds, Math. Ann. 223 (1976), 233-248.
- [10] GRAY, A., Compact Kähler manifolds with nonnegative sectional curvature, Inventiones Math. 41 (1977), 33-43.
- [11] MATSUMOTO, M., On 6-dimensional almost Tachibana spaces, Tensor, N.S., 23 (1972), 250-252.
- [12] SASAKI, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354.
- [13] SATO, T., Riemannian 3-symmetric spaces and homogeneous K-spaces, Memoirs Fac. Tech., Kanazawa Univ., 12 (1979), 137-143.
- [14] SEKIGAWA, K., Almost Hermitian manifolds satisfying some curvature conditions, Kodai Math. J. 2 (1979), 384-405.
- [15] SEKIGAWA, K. AND J. WATANABE, On some compact Riemannian 3-symmetric spaces, Sci. Rep. Niigata Univ. 19 (1983), 1-17.
- [16] TACHIBANA, S., On infinitesimal conformal and projective transformations of compact K-spaces, Tôhoku Math. J. 13 (1961), 386-392.
- [17] TAKAMATSU, K. AND T. SATO, A K-space of constant holomorphic sectional curvature, Kodai Math. Sem. Rep. 27 (1976), 116-127.
- [18] TANNO, S., Constancy of holomorphic sectional curvature in almost Hermitian

manifolds, Kodai Math. Sem. Rep. 25 (1973), 190-201.

- [19] TRICERRI, F. AND L. VANHECKE, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398.
- [20] WALLACH, N.R., Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. 96 (1972), 277-295.
- [21] WOLF, J.A. AND A. GRAY, Homogeneous spaces defined by Lie group automorphisms, I, II, J. Differential Geometry 2 (1968), 77-159.
- [22] YANO, K. AND S. BOCHNER, Curvature and Betti numbers, Annals of Math. Studies 32, Princeton Univ. Press, 1953.

Niigata University Niigata, Japan

Kanazawa University Kanazawa, Japan