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§1. Introduction.

An almost Hermitian manifold (M, J, <,») is called a nearly Kéhler manifold
provided that (Vy )Y +(Vy /) X=0 for all X, Yex(M) (X(M) denotes the Lie
algebra of all smooth vector fields on M). From the definition, it follows
immediately that a Kéhler manifold is necessarily a nearly Kdhler manifold. In
the present paper, we shall study the structure of nearly Kihler manifolds with
positive holomorphic sectional curvature. In §2, we recall some elementary
formulas in a nearly Kidhler manifold. In §3, we establish an integral formula
on the unit sphere bundle over a compact Einstein nearly Kihler manifold. In
§4, we discuss the pinching problem on the holomorphic sectional curvature of
a compact non-Kihler, nearly Kihler manifold and show some results related
to the ones obtained by Tanno [18], Takamatsu and the second named author [17].

In [7], Gray studied the structure of positively curved compact nearly K&hler
manifolds and proposed the following conjecture :

Conjecture: Let M=(M, J, {,>) be a compact nearly Kihler manifold with
positive sectional curvature. If the scalar curvature of M is constant, then M
is isometric to a complex projective space with a Kihler metric of constant
holomorphic sectional curvature or a 6-dimensional sphere with a Riemannian
metric of constant sectional curvature.

For Kihler manifolds, this conjecture is positive (cf. [5], [10], etc.). How-
ever, for non-Kdhler, nearly Kéihler manifolds, this conjecture is negative.
Namely, we shall give a counter example to this conjecture in the last section.

The authors wish to express their hearty thanks to the referee who pointed
out some errors in the original manuscript.

§2. Preliminaries.

In this section, we prepare some elementary formulas in a nearly Kéihler
manifold. Let M=(M, J, <,>) be an n(=2m)-dimensional connected nearly Kihler
manifold. We denote by V and R the Riemannian connection and the curvature
tensor of M, respectively. We assume that the curvature tensor R is defined by
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2.1) R(X, Y)Z=VxnZ—[Vx, Vy1Z, X, Y, Zex(M).

We denote by R, and R¥ the Ricci tensor and the Ricci *-tensor of M, respec-
tively. The tensor field R, and R¥ are defined respectively by

(2.2) R,(x, y)=Trace of (z— R(x, 2)y),
and
(2.3) R¥(x, y)=(1/2)Trace of (z—R(Jy, x)Jz),

for x, y, z& M, (the tangent space of M at p) (cf. [9], [19]). Then it is known
that the tensor fields R, and R¥ satisfy the following equalities :

(2.4) R(X, Y)=R\(Y, X), R(JX JY)=R(X,Y),
(2.5) R¥X, Y)=R¥Y, X), R¥UJX,JY)=R{X Y),
for X, Yex(M). The first Chern form 7 of M is given by
(2.6) 8xy(X, Y)=5R¥(JX, Y)-R.(JX, Y),

for all X, Yex(M) ([9], p. 238).

We denote by S the scalar curvature of M. The sectional curvature, the
holomorphic sectional curvature and the holomorphic bisectional curvature are
defined respectively by

Rz, )%, >
2.7 =l
D R FE T

for x, yeM, (peM) with x#0, y+#0, <{x, y>=0,
2.8) H(x)=K(x, Jx),
for xeM, (peM) with x+#0, and

{R(x, Jx)y, Jy>

@9) Bl y="—10Fr

for x, yeM, (pM) with x+0, y=+0.
A nearly Kéahler manifold M is said to be of holomorphically d-pinched
(0=0=1) if there exists a positive constant / such that

(2.10) dl=H(x)=!l,

for all non-zero xe M,, for all pc M. Since we are dealing with nearly Kéihler
manifolds, the size |(V./)y|?® will be important in the pinching estimates. A
nearly Kéhler manifold M is said to satisfy the condition T'(p, o) if

(2.11) pHx)=I(V])y|*=aH(x),
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for x, yeM, with [x|=lyll=1, <x, y>=<x, Jy>=0 for all peM ([7]).
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In the present paper, we shall adopt the following notational convention.
For an orthonormal basis {¢;} = {ea, em+a=Jea} 1=Za, B, - =m; 1=a, b, -+ 1,7, k,

- Z=n=2m), of M, (peM), we put
(2.12) e;=Je, (and hence ¢z=¢n+a, Cmia=—¢a),
(2.13) Rujr=<R(en, e.)e,, ¢y, Rrjr=<{R(es, e.e,, er,
, Riize=<R(ex, e)es, ¢,
(2.14) ViRnje=<{(Ve,R)en, ee,, er>, ViRn.j:=<{(VeR)(en, e.)e,, ery,

o, ViRgi5s=<{(Ve; R)(es, ei)e;, ex>, etc.,
and

(215) Rz;—;Rl(eu ej); R?j:R?‘(ezy e])-

The following equalities in M are well-known ([7], [9], etc.):

(2.16) RGw, )y, —(Rw, D]y, J=Tu])x, (7,112,
(2.17) {R(w, x)y, 2>=<R(Jw, Jx)]y, Jz>,
2.18) (T, )z, ¥y =5 (Res, Je)x, —CRUY, €)ey, x>

+<R<]x’ el)g]’ y>) ’
(2.19)  [VR,—VRY|*=(1/8)Trace of {(R'—(R*)")e(R'—5(R*)")<(R'—(R*)")},

where (R'x, y>=Ri(x, y), {(R*)'x, >=R¥x, y), w, x, y, z&€M, (peM).
(2.2), (2.3) and (2.18), we have

(2.20) S (P, =Rz, »—RilJx, 3),
for x, yeM, (peM). By (2.2), (2.3) and (2.16), we have
(2.21) g)l«vei])x, (Ve Dy>=Ri(x, y)—R¥(x, 3),
for x, yeM,. By (2.3), (2.4), (2.5), (2.16) and (2.21), we have

(222) 2 RadzEZZRTJ ’

a=1

We note that {(V./)y, z2>(x, ¥, z& M,) satisfies the followings :

By
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(2.23) {VD)y, 2=, )x, 2=—N2])z, ¥>,

and
Nz )Jy, 22=—N])y, 2>.

By (2.7), (2.8), (2.9) and (2.16), we have

(2.24) K(x, y)=1/8){3H(x+]y)+3H(x—]y)—H(x+y)—H(x—y)
—H(x)—H)} +G/DITNy %
(2.25) B(x, y)=K(x, y)+K(x, Jy)—=2((N)yl?

for x, yeM, (peM) with [|x|=|y|=1, <{x, y>=<x, Jy>=0.

§3. An integral formula on the unit sphere bundle.

The following fact is well-known and useful for our arguments ([2]):

PROPOSITION 3.1. Let R™ be an n-dimensional Euclidean space and f a homo-
geneous polynomial of degree v (=1) defined on R". Then we have

Ssn—l(l)(Df)(%:r(n_*_r—z)S m(flsn-l(l))@z,

Sn-1

where D denotes the Laplace operator of R™ and w, denotes the volume element of
an (n—1)-dimensional unit sphere S™ (1) with the canonical Riemannian metric.

Let M=(M, {,>) be an n-dimensional connected Riemannian manifold. We
denote by T(M) and S(M) the tangent bundle and the unit sphere bundle over
M, respectively :

T(M)={(p, x) | pEM, x€ M},
S(M)={(p, x)eT(M) | |x|=1}.
For each point p= M, we put
Sy={xeM, | |xl=1}.

Then S, is isometric to S*"*(1). We now recall the Sasaki metric <,)>* on T(M)
(cf. [12]). We denote by X" (resp. X°) the horizontal lift (resp. the vertical
lift) of Xex(M). Then the Sasaki metric {,>* on T(M) is defined by

@1 XM Y =X, YD, X5 YD'=(X,Y), X" V"'=0,

for X, Yex(M). From (3.1), we get easily

(32) (T8Y M), 0= (T VP (ROX, V),
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where ‘% denotes the Riemannian connection on T(M) with respect to the Sasaki
metric {,>%. From (3.2), we see that any horizontal lift of a geodesic in M is
a geodesic in T(M)=(T(M), <{,>*). We denote by using the same notation <, )*
the induced metric on S(M) which is induced from the Sasaki metric <{,)»* on
T(M). Let w (resp. w,) be the volume element on S(M) (resp. M) with respect
to the metric <, »* (resp. {,»). Then we have easily

3.3 o(p, D)=w(p)Awx(x),  (p, x)ES(M).

If M is compact and orientable, by (3.3), for any smooth function f on S(M),
we have

(3.4) SS(M) fm:SM{Ssp £(b, Don0fan(p).

Let (p, x) be any point of S(M). We take an orthonormal basis {e;} =
{es, -+, en} of M, such that x=e;. Then {e,®, -, e,” e -+, e,%} is an
orthonormal basis of the tangent space S(M),, .. For each yeM,, the tangent
space (Mp), (i.e., the vertical subspace of T(M),,,)) is identified with M, by
means of parallel translation. Under this identification, e,” corresponds to e,
(1=/=n). We denote by (uy, -*, Uy, Vs, *--, v,) the normal coordinate system on
a neighborhood of (p, x) in S(M) with respect to the orthonormal basis {e,”,

, e, e -, e,%. In [10], Gray has introduced a second order linear differ-
ential operator L by

5 PE
3.5) Loon={3 PR hjraﬁviavj}(pyr),

21,]22

where h,;(p, x)=<{R(e,, x)e,, x>. We denote by A" the horizontal Laplacian of
S(M). Then in terms of the normal coordinate system (uy, «--, Un, Vs, =+, Un),
A" is given by

S S N
(3.6) A(p’x)—{zgl auf}(p,x)'

For a smooth function f on S(M), we denote by grad”f (resp. grad®f) the
horizontal (resp. the vertical) component of grad f.

Now, let M=(M, J, {,>) be an n (=2m)-dimensional nearly Kihler manifold.
We may regard holomorphic sectional curvature H=FH(x) as a smooth function
on S(M). Then we have
3.7) (grad”H)m,n:é K(Ve;RY(x, Jx)x, Jx>+2{R(x, Jx)x, Vo, J)xD} e,

(38) (grade)(p' ) =(grad H)(p, ) —(grad"H)(p, ) —<(grad H) (P, Z)s x”)sx”
=4£]2<R(x, Ix)x, Je,e,’

By (3.8), we see that
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{(grad’H)p, z), x*°=L(grad"H), o, (Jx)*>*=0.

From the result due to Tanno [18] and (3.8), we may note the following

PROPOSITION 3.2. Let M=(M, ], {,>) be a nearly Kdhler manifold. Then
M is a space of constant holomorphic sectional curvature if and only if grad®’H=0
on S(M).

We assume that M=(M, J, {,>) is a connected compact Einstein nearly
Kihler manifold. First, we estimate the value L(H)(p, x) at any point
(p, x)=S(M). By (3.6) and (3.7), we get

(3.9) 2 <p, x)=(AMH)(p, %)

- z V. Mgrad"H), e,*

Il

é) K(Vee, RY(x, Jx)x, JxD4+L(Ve,R)(x, (Ve J)x)x, Jx>

+<(Ve,;R)(x jx)x (velj)x>+2<(ve,;R)(x jx)x (veij)x>
F2{R(x, Ve, Nx)x, Ve, Nx>+2{R(x, Jx)x, (Vi;e; )%}

= 3 KW R)x, J)%, JOFKT R x, J0)x, (Tef])x>

I

F2{R(x, Ve, )x)x, Ve; Nx>+2{R(x, Jx)x, (NG,e; J)xD}.

Taking account of the first Bianchi, the second Bianchi and the Ricci identities,
and (2.16), (2.17), (2.20), we get

(3.10) % B (TR, o), o>

3 (2R e, J1)x, Jx>—{(T2preR) e, x)%, JXO)

1=

—-

= { Z «TiR)e, J)x, J>

1=

-

+

]

(Rl.ijji.ri"i'Rwinz;zi +Rlzijiiji +Rt.z.‘£jRiizj)

1

54

= 3 ((TzeiR)e, )3, J>
"‘1 él(RiiuR;xxi +Riisz1,Jzi+Riix]thjE+Rifijtzzj)}

== ]i: {Rtx;xasz<x)—Ru:;rRiij.i—Rzzzj(szij+2Rizjt)}

1, 1
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= ]i: Rl:]z(ain(x)—Rifji)

1 1

+ .3 Ricsa(— Rzt (T )%, (Vs ))e)+2Rizss
+2(Te )%, (Te)23)
= 3 (Ruzs@i;Hx)~ Russe)
(= Ruags tCTer )%, Ty DO Rusy+-2Rizga
—3(Ve, %, (Ve )
= 3 Ruzye {0i;H(x)— Ruzya—3Ruzse+3(T., )%, (Ve )20}

2, 7=1

335 Rueisl(Ve )5, (T, 1)),
where we put R.;,;=Riij1, Rizjz=Rij, -+, etc. Thus, by (3.9) and (3.10), we
have

aZ

u

8

G.11) >

1=1

(p, x)

D

Y

=2

——

3 Rizss0iH) = Rusys—3Ruz,a+3(Ter)x, (Tey))0)

-

1

333 Russs(Te %, (T 00}

M=

+4 2 (e, R)(x, Jx)x, (Ve,;])x>+2§)l<R(x, Ve, Nx)x, (Ve J) x>

1=1

+2 33 (R(x, J0)%, (V)5
Similarly, we have
0*H
(3.12) m(ﬁ, 10)=—4{0,H(x)—Riz;o—3Riz55+3{(Ve; [)x, (Ve, )20}
v,
We now define smooth functions f; (A=1, 2, 3, 4) on S(M) by

(313) fp, 2= 3 RueielTe, Dz, (T, )50,
fip, )= BT Rx, J0x, (Ted)x>,

fi(p, 1= 3 ROx, (Ve ), (Teg ),
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£, 1= B <R, JO)x, (T ))5)
=—<(R(x, Jx)x, (R*—(R*)") Jx> .
From (3.5), (3.11), (3.12) and (3.13), we have
(3.14) LH)(p, x)=6f:(p, x)+4fo(p, x)+2fs(p, x)+2fi(p, %),

for all (p, x)eS(M). Since M is an Einstein space, it follows that the operator
L is self-adjoint (cf. [10]). Thus, we have the following equality ([10], p. 42):

(3.15) O:SS(M)L(HZ)Q)

SS(M) {2HL(H)+2|\grad"H |*+<{R(x, grad®H)x, grad’H>}w .

We shall evaluate the integral SS(M) l|lgrad”H|°». We define smooth functions
gu (=1, 2, 3) on S(M) by

(3.16) gi(p, =3 (W R)x, Jx)x, Jo,
gilp, 0= BT, Rx, J0)x, JOR(x, J0)x, Vo5,

gi(p, x)= 3 <R(x, Jo)x, (Te )50
for (p, x)€S(M). Then, by (3.7) and (3.16), we get

(3.17) SM) I grad"Hllzcu:Ss(M)g1w+4SS(M)(gz-i-gs)w .

Taking account of (3.4), (3.13), (3.16), Proposition 3.1 and Green’s theorem, we
have

(3.18) S o B —253@ gsw-—SS(M)H(fz+fs+f4)w .

From the results due to Gray [8] and the second named author [13], we
may note that M is a Riemannian locally 3-symmetric space if and only if g, is
identically zero.

By (3.14), (3.15), (3.17) and (3.18), we have finally

319 | [2(ei—4gu+HOf—2f—2)} +(R(x, grad’H)x, grad®H>]o=0.
The integral formula (3.19) together with (3.13) and (3.16) plays an important

role in the arguments of the next section.
In the rest of this section, we assume that M=(M, J, {,>) is a connected
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non-Kihler, Einstein nearly Kihler manifold with vanishing first Chern form
(i.e., R;=5R¥). By making use of (2.22), (3.8) and Proposition 3.1, we have
the followings :

8S
(320) SSprz— a(—m Vz ’
N 1 6452
2 —_ v 2
(3.21) Jo Hr0= gy | B H ot g 22 Ve,
where V,=Vol(S* % (1)). By (3.8) and (3.21), we have
n 1
2 _ v 2 2
(3.22) Jo, B Reseron= g, IgredHlat| o,
_ n+6 oIrits B 6452 o
= 16(n+2) Ssp"grad HlPowt g it ray Ve
If M is holomorphically d-pinched, by (2.10) and (3.20), we get
8S
<2 <
(3.23) ol 5n(nt2) =I.

§4. Some results.

S. Tanno [18] has proved the following

PROPOSITION 4.1. If a 6-dimensional nearly Kdhler manifold M=(M, ], {,>)
is of constant holomorphic sectional curvature H, then either M 1s Kdhlerian, or
M is of constant sectional curvature H>0.

First, in connection with the above result, we shall show some results. Let
M=(M, J, <,>) be a 6-dimensional connected non-Kéhler, nearly Kidhler manifold.
Then it is known that M is an Einstein space with positive scalar curvature and
vanishing first Chern form (i.e., R,=5R¥), and furthermore the following equal-
ities hold ([11]):

@D Tl (T Dey=— g (e, een, e —Cen, €<y e1)

—Jeu, ep{Jen, ex>+<Jen, ep{Je., e},
@D (T Doy ey=—ns (s, ey ead+en, eJer, €

+<ex, enr<{Je,, e},

where {e;} = {e,, es+ra=Je.} (@a=1, 2, 3) is an orthonormal basis of M, (p=M).
We now evaluate the values f;(p, x) (A=1, 3, 4). By (2.22), (3.13) and (4.1),
we get
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4.3) fip, D=5 —H(),
o £ip, == -(H—3).

Since M is an Einstein space with R,=5R¥, by (3.13), we get
2S
(4.5) f4p, x)=—EH(x).

By (3.16), (3.22) and (4.1), we get

(4.6) Ssp g0 =55 S lgrad®Hlw, .

THEOREM 4.2. Let M=(M, ], {,>) be a 6-dimensional connected complete
non-Kdhler, nearly Kdhler manifold satisfying the condition

S
120"

for x, yeM, with |x|=|y1=1, <x, y>=Xx, Jy>=0, for all pM. Then M is
1sometric to a 6-dimensional sphere of constant curvature S/30.

K(x, y)>

Proof. Since M is an Einstein space with positive scalar curvature, M is
compact by Myer’s theorem. By (3.19)~(3.21), (4.3)~(4.6), we have

@4.7) SS(M){Zgl—f-(R(x, grad”H)x, grad"H) — —=—llgrad’H|*}w=0.

120

From the hypothesis, (4.7) and Proposition 4.1, the theorem follows immediately.
Q.E.D.
Furthermore, we have the following

THEOREM 4.3. Let M=(M, ], {,>) be a 6-dimensional connected complete
non-Kdhler, nearly Kdhler manifold. If M is holomorphically & (>2/5)-pinched,
then M is i1sometric to a 6-dimensional sphere of constant curvature S/30.

Proof. By the hypothesis and (2.10), (2.24), (3.23) and (4.1), we have

1 S
K(x, y>22(35—2)1+zo—

1 S

—slt

S S S
ZT60 T4 T 120

for x, yeM, with |x|=|yll=1, <x, y>=<(x, Jy>=0, for all peM. Thus the
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theorem follows immediately from Theorem 4.2. Q.E.D.

Next, we shall deal with general cases where the dimension of M is not
necessarily equal to 6. In connection with the results obtained by Bishop and
Goldberg ([3], [4], [5]), we have the following

THEOREM 4.4. Let M=(M, ], <,>) be an n (=2m)-dimensional connected
compact non-Kdhler, nearly Kdihler manifold with constant scalar curvature. If
M satisfies the condition

(4.8) K(x, y)+K(x, Jy)+B(x, y)>0,

for x, yeM, with x+0, y=+0, <{x, y>=<x, Jy>=0, for all p€M, then the Ricc
tensor Ry of M is parallel and the first Chern form of M vanishes.

Proof. Since M is compact and the scalar curvature S of M is constant, by
the result due to Tachibana [16], the first Chern form 7 is a harmonic 2-form.

For each point p=M, we may choose an orthonormal basis {e;} ={e., ¢a}
which diagonalizes the symmetric linear endomorphism 5(R*)'—R' of M,. By
the choice of {e;}, we get

(4.9) 7(e,, ¢;)=0 for e;# *e;.

For the 2-form 7, we put

@10 F()= 2 Rtudn—, 5 Ruslulse,
where 7,;=r(e,, ¢;). By (4.9), (4.10) reduces to

(4.11) F(r)=2a% {(RapastRapap)Vaa)—Razpslaalps)-
By (2.25) and (4.11), we get

(4.12) F(r)=2a§ﬁ{Raaﬁﬁ(raa~m,§)2+2”(Vea])e,ellz(ria+T%ﬁ)},
or

F(T)Zzagﬂ {(Raﬁaﬂ+Ra,§a‘§>(Ta&_Tﬁ5)2+4”(vtfaj)eﬁHzraﬁrﬁﬁ_} .

By (4.12), we have finally
(4.13) F(Y)ZE)IS{(RaapB—FRa,sa;a—l—Raﬁaﬁ)(raa—rﬁs)z
+2((Ve, eal®(raa—+7s5)t -

Since 7 is a harmonic 2-form and F(y)=0, according to Yano and Bochner [22],
it follows that F(y)=0 and 7 is parallel. Thus, by (4.12) and (4.13), we get

(4.14) Taa—7p5=0, and [(Ve,esl*(raa+785)°=0,
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for I=sa<f=m.
Since M is non-Kdhlerian, it follows that

(4.15) (Ve Jes#0 for some a<pg.
Thus, by (4.14) and (4.15), we have

(4.16) r=0 (i.e. R,=5RY¥).
Therefore, by (2.19) and (4.16), we have

V(RI_RT):O »
and hence
VR,=0. Q.E.D.

Furthermore, we have the following

THEOREM 4.5. Let M=(M, ], {,>) be an n (=2m)-dimensional connected
compact non-Kihler, nearly Kihler manifold with constant scalar curvature. If
M satisfies the condition T(p, 6) (p>0), and is holomorphically o6 (>2/(p-+3))-
pinched, then M is an Einstein space and the first Chern form of M vanishes.

Proof. By the hypothesis and (2.10), (2.11), (2.24), we get

4.17) K(x, y)=(1/4)(30—2+3p0d)!
O
> p+31 (>0,

for x, yeM, with |x|=lyl=1, <x, y>=<x, Jy>=0, for all peM. Thus, by
(2.11), (2.25) and (4.17), we get

K(x, y)+K(x, Jy)+B(x, )
=2{K(x, y)+K(x, J9)—I(Vz])»]%
=@Bo—=2)+ IV yl?
= {B+p)—2}>0,

and hence M satisfies the condition (4.8) in Theorem 4.4. Thus, from Theorem
4.4, it follows that

VR,=0 and R,=5R?}.

Thus, taking account of (2.4), (2.5) and (4.14), we may easily see that M is an
Einstein space. Q.E.D.

In [17], Takamatsu and the second named author have proved the following
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PROPOSITION 4.6. There does not exist any dimensional, except 6-dimensional,
non-Kahler, nearly Kdhler manifold of constant holomorphic sectional curvature.

From Propositions 4.1 and 4.6, it follows immediately that a non-Kéhler,
nearly Kihler manifold of constant holomorphic sectional curvature is a 6-dimen-
sional space of positive constant curvature, and satisfies the condition 7(1, 1).
In the rest of this section, we shall prove a result (Theorem 4.10) related to
Proposition 4.6. We assume that M=(M, J, {,>) is an n (=2m)-dimensional
connected non-Kéhler, Einstein nearly Kihler manifold with vanishing first
Chern form, and furthermore satisfies the condition T'(p, ¢) with 50>4¢ and is
holomorphically 0(>2/(p+3))-pinched. First, we estimate the values of the
functions f; (A=1, 3, 4) on S(M).

LEMMA 4.7. For each point (p, x)S(M), we have
l
fi(p, x)é-g{(5p——40)(n+2)5—8p}H(x)-
Proof. Let {e;} ={e,, ez} (x=e,) be an orthonormal basis of M, which

diagonalizes the matrix ({(V,,/)x, (Vejj)x>) (1=4, j/=n). Then, by the hypothesis
for M and (2.10), (2.11), (2.16), (3.13), (3.23) and (4.17), we get

filp, x)= ZZJ) Riz5a{(Ve, J)x, (Veo, [)x>
= ; szu”(vei.])xllz— ; ”(Velj)x“‘}

S 2
= o, (5p—4a)H(x)—pH(x)

> _71_'81"_% (50—40)0lH(x)—plH(x)
=é{(5p—4d)(n+2)5—8p} H(x). Q.E.D.

LEMMA 4.8. For each point (p, x)eS(M), we have
S
filp, =01 —H(x).

Proof. Let {e;} ={e,, es} (x=e,) be an orthonormal basis of M, as in the
proof of Lemma 4.7. Then, by (2.10), (2.11), (3.13) and (4.17), we get

fp, x)= ; (R(x, Ve, )x)x, Vo, x>
<o H()(> —Hex)

éol(%—H(x)). Q.E.D.
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LEMMA 4.9. For each pont (p, x)ES(M), we have
fip, N)=— ﬁé@azwx) :
Proof. By (2.10), (2.20), (3.13) and (3.23), we get
4S
fi(p, x)=— QH(X)

< ’i}z— 8lH(x) . Q.E.D.

e

Next, we estimate the value
and (3.22), we have

o G By (2.10), (2.11), (3.16), (3.20), (3.21)

4

= 20y — 2 ——LZS v 2
w1y | pesol| TReeyo | Ho|= o] jgradHle.
We are now in a position to prove the following

THEOREM 4.10. Let M=(M, ], <,>) be an n (=6)-dimensional connected com-
pact non-Kdhler, nearly Kdhier manifold with constant scalar curvature. If M
satisfies the condition T(p, a) with 5p>40e, 3p=46—1, and is holomorphically
o-pinched (6>2/(p+3) and d=(40+3p)/(150—~12a+4)), then M s isometric to a
6-dimensional sphere of constant curvature.

Proof. First of all, we note
40+3p  4(CBp—40+1)

1— = =0,
15p—120+4  15p—120-+4
and
(4.19) 40+3p  5(n+2)0+24p—8a
150—120+4  (n+2)(150—120+4)

_ (n—6)3p—0)
T (n+2)(150—120+4)
(n—6)(3c—2p)
= (n+2)150—120+4) ~
Next, from the hypothesis for M and Theorem 4.5, it follows that M is an

Einstein space with vanishing first Chern form. Furthermore, by (3.19), (4.18),
(4.19) and Lemmas 4.7~4.9, we have

(4.20) 0225 210

S

1 ((n+2)(150—126+4)0+80—24p—4(n+2)g 20 v
+21 +-22 M. IgradHlw

2 4(n+2) o+3
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325
+ i o (150~ 120 +4)(n+2)0+80 —24p—5(n+2)a} V. Vol(M)
l/o 20
= —— — v 2,0
=2 st (T 09, leradHI=0.

Thus, from (4.20) and Proposition 3.2, it follows that M is a space of constant
holomorphic sectional curvature. Therefore, the theorem follows immediately
from Propositions 4.1 and 4.6. Q.E.D.

§5. An example.

We shall recall some elementary facts about Riemannian 3-symmetric spaces
(cf. [8], [21]). Let (G/K, J, <,>) be a compact Riemannian 3-symmetric space
such that the Riemannian metric ¢,) is determined by a biinvariant Riemannian
metric on G and J is the canonical almost complex structure. Then it is known
that (G/K, ], <,>) is a nearly Kihler manifold ([8]). We denote by g and t the
Lie algebras of G and K respectively. Then we have the following direct sum
decomposition ([8]):

5.1) g=f+m, AdK)m=m,

where m is the orthogonal complement of f in g. We may identify the sub-
space m with the tangent space (G/K).x of G/K at the origin e KeG/K. Under
this identification, we have the following formulas ([8], [20]):

(5.2) NNy=—=JIx, I, x, y€Em,

1
(5.3) K(x, p)=7l0x, y1nl*+ITx, y1dl?,
x, yem with |x|=]yl=1, <x, y>=0.

In particular, we consider the 6-dimensional compact Riemannian 3-symmetric
space (Sp@2)/(UQ)xSp)), J, {,>») in which the Riemannian metric <{, > is induced
from the inner product

(x, y)=—Real part of (Trace xy), x, yEap2).

We put G=Sp(2) and K=U(1)XSp(1). Let H be the algebra of quaternions,
i.e.,
H={g=a,+a.e,+a.e;+aze; | ay, a,, a5, a;€ER, ej=—1 (1=i=3),

€8, =—e6,=€;, €,6,=—€;6,=€;, €6;=—€,€;=€s}.
Then it is well known that the Lie algebra 8p(2) of Sp(2) is given by

8p2)={xegl(2, H)|'x=—x}.
We put
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o vzl o r=vale )
N T P
3 el )
sy o) s o)
w=[5 o) to o)

Then we see that {x,, y, (1=:=<3), s, S5, 1, t,} is an orthonormal basis of
g=28p(2) and the Lie algebra f of K (resp. the subspace m of g in the decom-
position (5.1)) is linearly spanned by {si, s, i, t2} (resp. {x,, y, (1=i/=<3)}) over

R (cf. [15]).

The canonical almost complex structure J is given by
(5.5) Jo=y.,, Jy.=—x, (1Zi£3).
By (5.2), we get
(5.6) (V= ))yl*=L1,

for x, yem with [x|=|yl=1, <{x, v>=<x, Jy>=0. By (5.6), we see that
(Sp@2)/(UN)yxSp)), J, <,>) is a non-Kidhler, nearly Kdhler manifold.
By (5.3), (5.4) and (5.5), by direct computation, we get

(6.7 H(x)=|[x, JxIul*
3\2

=2f5(at+bi+atbi—2) +5),

for any unit vector x=a,x,+b,y,+asx:+b:y,+asxs+bsy;=m. By (5.7), we have
easily

(5.8) %éH(x)gl.
Thus, by (5.6) and (5.8), we see that (Sp(2)/(U(1)xSp(1)), J, <,>) is holomorph-
ically 1/10-pinched and satisfies the condition 7(1/4, 5/2).

Let x be any unit vector in m and y any unit vector in m which is orthog-
onal to x. Then we may put

(5.9) y=aJx+bz,

where z is a unit vector in m with <x, z2>=0, {Jx, z2>=0, and a, bR with
a*+b*=1. By (5.3), taking account of (5.2), (5.6) and (5.9), we have
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K(x, 3)=160x, Jal+lalx, Jeletols, 20

Z_IZ, +llalx, Jx1a+b[x, 2142

Therefore, by (5.7), (5.8) and (5.10), we may easily see that (Sp(2)/(U(1)xSp(1)),
J, {,>) has strictly positive sectional curvature.

We remark that Sp(2)/(U(1)xSp(1)) is diffeomorphic to a complex projective
space of complex dimension 3 ([15]). We also note that K. Furukawa has
obtained the estimation (5.8) in unpublished work.
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