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§ 1. Introduction.

An almost Hermitian manifold (M, /, <,» is called a nearly Kahler manifold
provided that C7xJ)Y+WrJ)X=0 for all X, YZΞ3C{M) (X{M) denotes the Lie
algebra of all smooth vector fields on M). From the definition, it follows
immediately that a Kahler manifold is necessarily a nearly Kahler manifold. In
the present paper, we shall study the structure of nearly Kahler manifolds with
positive holomorphic sectional curvature. In §2, we recall some elementary
formulas in a nearly Kahler manifold. In §3, we establish an integral formula
on the unit sphere bundle over a compact Einstein nearly Kahler manifold. In
§ 4, we discuss the pinching problem on the holomorphic sectional curvature of
a compact non-Kahler, nearly Kahler manifold and show some results related
to the ones obtained by Tanno [18], Takamatsu and the second named author [17].

In [7], Gray studied the structure of positively curved compact nearly Kahler
manifolds and proposed the following conjecture:

Conjecture: Let M—(M,J, < , » be a compact nearly Kahler manifold with
positive sectional curvature. If the scalar curvature of M is constant, then M
is isometric to a complex projective space with a Kahler metric of constant
holomorphic sectional curvature or a β-dimensional sphere with a Riemannian
metric of constant sectional curvature.

For Kahler manifolds, this conjecture is positive (cf. [5], [10], etc.). How-
ever, for non-Kahler, nearly Kahler manifolds, this conjecture is negative.
Namely, we shall give a counter example to this conjecture in the last section.

The authors wish to express their hearty thanks to the referee who pointed
out some errors in the original manuscript.

§ 2. Preliminaries.

In this section, we prepare some elementary formulas in a nearly Kahler
manifold. Let M—(M, J, < , » be an n(=2m)-dimensional connected nearly Kahler
manifold. We denote by 7 and R the Riemannian connection and the curvature
tensor of M, respectively. We assume that the curvature tensor R is defined by
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(2.1) R(X, Y)Z=lιx,γ,Z-\lx, 7y]Z, X, Y, ZeZ(M).

We denote by Rλ and Rf the Ricci tensor and the Ricci *-tensor of M, respec-
tively. The tensor field i?i and Rf are defined respectively by

(2.2) R,{x, ;y)=Trace of (z^R(x, z)y),

and

(2.3) R*(x, y)=(l/2)Trace of (z^R{Jy, x)Jz),

for x, 3/, eeMp (the tangent space of M at p) (cf. [9], [19]). Then it is known
that the tensor fields Rx and Rf satisfy the following equalities:

(2.4) RAX, Y^RΛY, X), Ri(JX, JY)=Rχ(X, Y),

(2.5) Rf{X, Y)=Rf(Yf X), RfiJX, JY)=Rf(X, Y),

for X, YΪΞX(M). The first Chern form γ of M is given by

(2.6) 8πγ(X, Y)=5Rf(JX, Y)-R1(JXf Y),

for all X, Y^DC(M) ([9], p. 238).
We denote by S the scalar curvature of M. The sectional curvature, the

holomorphic sectional curvature and the holomorphic bisectional curvature are
defined respectively by

(2 7) K(x v)- <R(X' y)Xf y>

W.7) K(x, y)- u n y γ ,

for x, y(ΞMp (p^M) with xΦO, yΦO, <x, y>=0,

(2.8) H(x)=K(x,Jx),

for X(ΞMP (p^M) with xΦO, and

(2 9) B(x y)= <R(X> Jx)y> Jy>

κ } {X> y ) \\χ\\2\\y\\2

for x, y^Mp (p<=M) with xΦO, yΦO.
A nearly Kahler manifold M is said to be of holomorphically ^-pinched

(O^δ^l) if there exists a positive constant / such that

(2.10)

for all non-zero x e Mp, for all p<^M. Since we are dealing with nearly Kahler
manifolds, the size ||(VX/)}>||2 will be important in the pinching estimates. A
nearly Kahler manifold M is said to satisfy the condition T(p, σ) if

(2.11)
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for x, y^Mp with ||JC:|| = ||3^|| — X, <x, y>=<x, Jy>=0 for all p^M ([7]).
In the present paper, we shall adopt the following notational convention.

For an orthonormal basis {#*} = {ea, em+a—Jea) ( 1 ^ « , β, ••• ^ m ; l^a, b,- -t,j,k,
of Mp (peλf), we put

(2.12) ei=Jet (and hence £«=έ?m+«, e^^=—ea),

(2.13) Rhιjk=<R(eh, et)eJf ek), Rhljk=<R(en, ex)e3, ek},

•••, Rκijt=<R(ejit eι)e-Ί, e-k),

(2.14) ! ι R m j k = < C 7 e ι R ) ( e h , e t ) e J y e k ) , V ϊ / ? Λ ι , * = < ( V e I # ) ( e Λ , e t ) e J f e k > ,

^ϊ)βj, ^Λ-> , e tc . ,

and

(2.15) RlJ^R1{el,ej), R*j=Rf(et, eΛ).

The following equalities in M are well-known ([7], [9], etc.):

(2.16) <R(w, x)y, z}-(R(w, x)]y, Jz>=<φwJ)x, (

(2.17) <R(w, x)y, z>=<R(Jw, Jx)Jy, Jz> ,

(2.18) <W\<,J)x, y> = j«R(eτ, Je3)x, y}-<R(Jy, eι)eJ, x>

+<R(Jx, eι)eJ, j /» ,

(2.19) HV^-V^flΓ-d/δ)Trace of {(/?1-(7?*)1)o(/el-5(/?*)1)o(i?1-(i?*)1)},

where <R*x, y}=R1(x, y), <(R*Yx, y> = Rf(x, y), w, x, y, z<=Mp (j&eM). By
(2.2), (2.3) and (2.18), we have

(2.20) ±<(ΨeίeίJ)χ, y>=Rΐ(Jχ, y)-Ri(Jχ, y),

for x, y(=Mp (p<=M). By (2.2), (2.3) and (2.16), we have

(2.21) Σ<(Vβl/)χ, WeiJ)y>=Ri(x, y)-Rf(χ, y),

for x, y^Mp. By (2.3), (2.4), (2.5), (2.16) and (2.21), we have

(2.22) Σ i?αβ»j=2/?* ,
α l

We note that <C7xJ)y, z)(x, y, z^Mp) satisfies the followings:
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(2.23) <WxJ)y, ^>=-<(7y/)x, z>=-«$xJ)z, y>,

and

By (2.7), (2.8), (2.9) and (2.16), we have

(2.24) K(x, y)=(l/S){3H(x+Jy)+3H(x-Jy)-H(x+y)-H(x-y)

-H(x)-H(y)} +m)\\WJ)y\\\

(2.25) B(x, y)=K(x, y)+K{x, Jy)-2\\WxJ)y\\\

for x, y^Mp ( f ε M ) with ||jc|| = ||;y|| = l, <x, y>=<x, Jy>=0.

% 3. An integral formula on the unit sphere bundle.

The following fact is well-known and useful for our arguments ([2]):

PROPOSITION 3.1. Let Rn be an n-dimensιonal Euclidean space and f a homo-
geneous polynomial of degree r (§:1) defined on Rn. Then we have

where D denotes the Laplace operator of Rn and ω2 denotes the volume element of
an (n —1)-dimensional unit sphere Sn~1{l) with the canonical Riemannian metric.

Let M=-(M, < ,» be an n-dimensional connected Riemannian manifold. We
denote by T(M) and S(M) the tangent bundle and the unit sphere bundle over
My respectively:

T(M)={(p, I

For each point peM, we put

Sp={x<=Mp\ | | JC | |=1} .

Then 5 P is isometric to S^Kϊ). We now recall the Sasaki metric <, ) s on T(M)
(cf. [12]). We denote by I 7 1 (resp. Xv) the horizontal lift (resp. the vertical
lift) of X(Ξ3£(M). Then the Sasaki metric <,>* on 7(M) is defined by

(3.1) <xh,

for X, Y(Ξ3£(M). From (3.1), we get easily

(3.2) άYh) ?7Y)h+
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where 7 denotes the Riemannian connection on T{M) with respect to the Sasaki
metric <, >s. From (3.2), we see that any horizontal lift of a geodesic in M is
a geodesic in T{M)—(T(M), <,>*). We denote by using the same notation <,>s

the induced metric on S(M) which is induced from the Sasaki metric <, >s on
T(M). Let ω (resp. ωx) be the volume element on S(M) (resp. M) with respect
to the metric < , >s (resp. < ,» . Then we have easily

(3.3) ω(p, x)=ω1(p)Λω2{x), (p, X)<ΞS(M).

If M is compact and orientable, by (3.3), for any smooth function / on S(M),
we have

(3.4) ( fω=\ \\ /(/>, x)ω
2
(x)\ω

1
(p).

Let (p, x) be any point of S(M). We take an orthonormal basis {<?*} —
U i , •-, e n } o f Mp s u c h t h a t x — e x . T h e n { e ^ , •••, e n

h , e 2 > •••, e n

v ) i s a n
orthonormal basis of the tangent space S(M)(PiX). For each y^Mp, the tangent
space (Mp)y (i.e., the vertical subspace of T(M)(p>y)) is identified with Mp by
means of parallel translation. Under this identification, et

Ό corresponds to e%

(l^t^n). We denote by (ulf •••, un, v2, ••, vn) the normal coordinate system on
a neighborhood of (p, x) in S(M) with respect to the orthonormal basis {ef,
'", βnh, β2

v

f -" , en

v\. In [10], Gray has introduced a second order linear differ-
ential operator L by

(3.5) I ( 1 ,» ,={Σ—Γ + ^ Σ λ . , ,

where ΛZi7 (j&, x)—(R(ely x)eJy x}. We denote by Δ71 the horizontal Laplacian of
S(M). Then in terms of the normal coordinate system {uu •••, wn, v2, •••, vn),
Δft is given by

(3.6) Δfp.,,-

For a smooth function / on S(M), we denote by grad71/ (resp. gradυ/) the
horizontal (resp. the vertical) component of grad/.

Now, let M—{M, J, < , » be an n (=2m)-dimensional nearly Kahler manifold.
We may regard holomorphic sectional curvature H=H(x) as a smooth function
on S(M). Then we have

(3.7) (graάhH)(p,x)=Σ K(Vei7?)(x, Jx)x, Jx>+2<R(x, Jx)x,

(3.8) ( g r a d υ / / ) ( P ι x) = ( g r a d H){PtX}-(grad71//)(Pi Λ ) - < ( g r a d / / ) (

=4 Σ <^(^, Jx)x, M>eι

υ.
1 = 2

By (3.8), we see that
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<(graάvH)(p,x), xvy=<(gradvH)(p,x), (Jxγy=0.

From the result due to Tanno [18] and (3.8), we may note the following

PROPOSITION 3.2. Let M=(M, J, < ,» be a nearly Kdhler manifold. Then
M is a space of constant holomorphic sectional curvature if and only if grad^ίf=0
on S(M).

We assume that M—{M, J, < ,» is a connected compact Einstein nearly
Kahler manifold. First, we estimate the value L(H)(p, x) at any point
(/>, *)e=S(M). By (3.6) and (3.7), we get

(3.9) έ | ? ( ί , x)=(AhH)(pf x)
i GUI

= Σ K(Vi(βlΛ)(x, Jχ)x, Jχ>+<(leiR)(χ, C7,4/)x)χ, Jx>

+<(VeiR)(x, Jx)x, WeJ)x>+2<WeiR)(x, Jx)x, &uJ)x>

+2<R(x, {lej)x)x, (VeJ)x>+2<R(x, Jx)x, (Ψe(e(J)x>}

= Σ K(Vϊlί(Λ)(*, Jx)x, /%>+4<(7etJR)(x, Jx)x, {lej)x>

+2</?(x, (7,,/)x)x, C7eiJ)x>+2(R(x, Jx)x, (7ϊ,β</)x>}.

Taking account of the first Bianchi, the second Bianchi and the Ricci identities,
and (2.16), (2.17), (2.20), we get

(3.10) — Σ <(V|<ei/?)U, Jx)x,

= TΓΣ {<(Vl,ar/?)(̂ ι, / * ) * , JX) — (.(^liJχR)(βt, x)x,
Z ι = l l

1 Γ
 π

— J V1 /(V2 Rλ(a Fr)x
Z I 1 = 1

- Σ(
t, J = l

Σ
I , .7 = 1
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= Σ Rtχ]x(δijH(x)-RiSJS)

Σ
1,3=1

3<(V.4/)x,

+3 Σ Rχx}x«ytiJ)x, (7,,/)x>,

where we put RιX)X=Ru}\, Rtxjx=Rnn, •••, etc. Thus, by (3.9) and (3.10), we
have

(3.11) Στπr(ί, *)

ί </)x f (7<y/)x»

+3 Σ RlχiΛlei])X, (7, J)X>)
I , .7 = 1 "̂  J

+4Σ<(V,t/?)(x, /x)x, (7,i/)x>+2g</?(x, (7€</)x)x, (7βi/)x>

+2Σ<Λ(X, /X)X, (ΨeieJ)x>.

Similarly, we have

(3.12) g^-(/>, Jt)=-4{3o/ί(x)-Λ,» ί»-3/?w/J+3<(7.4/)x, (7βj/)x>}

We now define smooth functions / 2 U=l, 2, 3, 4) on S(M) by

(3.13) /,(/», x)= t^ iΛ,,i ί<(7 ί (/)x, (7ίy/)x> ,

UP, x)= Σ<(7(1Λ)(x, 7x)x, (7βl/)x>,Σ

to, x)= Σ <R(χ, (VeJ)x)x, (Veί/)jc>,
1 = 1
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UP, x)=ik<R(x, JX)X, (Ψe

= -<R(x, Jx)x, (ΛMΛ*) 1 )/*)

From (3.5), (3.11), (3.12) and (3.13), we have

(3.14) L(H)(p, x)=6Mp, x)+4/,(/>, x)+2f*(p, x)+2Up, x),

for all (p, x)^S(M). Since M is an Einstein space, it follows that the operator
L is self-adjoint (cf. [10]). Thus, we have the following equality ([10], p. 42):

(3.15) 0=f L(H2)ω
JS(M)

{2HL(H)+2\\graάhHΓ+(R(x, gra<Wί)x,
S (M)

We shall evaluate the integral I ||gradΛ//||2ω. We define smooth functions
JS(M)

gμ (μ = l, 2, 3) on S(M) by

(3.16) gl(p, x)= Σ <(7ei/?)(x, Jx)x, JxY,

)=Σ<
ι=i

, Jχ)x, JχXR(χ, Jχ)x,

gzip, χ)= Σ <R(χ, Jχ)χ, WeJ)χ>\
1 = 1

for (p, X)ZΞS(M). Then, by (3.7) and (3.16), we get

(3.17)

Taking account of (3.4), (3.13), (3.16), Proposition 3.1 and Green's theorem, we
have

(3.18) ( g2(o=-2\ g3ω-\

From the results due to Gray [8] and the second named author [13], we
may note that M is a Riemannian locally 3-symmetric space if and only if gx is
identically zero.

By (3.14), (3.15), (3.17) and (3.18), we have finally

(3.19) \ ί2{g1-4g3+H(6f1-2fs-2f4)} +<R(x, gradvH)x,

The integral formula (3.19) together with (3.13) and (3.16) plays an important
role in the arguments of the next section.

In the rest of this section, we assume that M—{M, J, < ,» is a connected
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non-Kahler, Einstein nearly Kahler manifold with vanishing first Chern form
(i.e., R1=5Rf). By making use of (2.22), (3.8) and Proposition 3.1, we have
the followings:

(3 21) ],
where y2=Vol(Sn-1(l)). By (3.8) and (3.21), we have

(3.22) f ±(Rxlxk)
2ωz=-~\ ||grad<7/||2ω2+[

JSpk=l ΪΌjSp JSp

64S2

If M is holomorphically ^-pinched, by (2.10) and (3.20), we get

oo

(3.23) ^ ^

§4. Some results.

S. Tanno [18] has proved the following

PROPOSITION 4.1. // a ^-dimensional nearly Kdhler manifold M=(M, ], < , »
is of constant holomorphic sectional curvature H, then either M is Kdhlerian, or
M is of constant sectional curvature H>0.

First, in connection with the above result, we shall show some results. Let
M=(M, J, < ,» be a β-dimensional connected non-Kahler, nearly Kahler manifold.
Then it is known that M is an Einstein space with positive scalar curvature and
vanishing first Chern form (i.e., i?!=57?f), and furthermore the following equal-
ities hold ([11]):

5
(4.1) <WehJ)elf (^ejj)ek} = -^{<elf ej)<eh, ek)-<eh, e,Xex, ek)

h, ek>+<Jeh, eJ}(Jeι, ek}},

(4.2) <(ΨekeJJ)eι, ehy = -j0{(ek, eJ><Jeι, eh> + <ek, etXJeh,

+ <ek, βhXJej, eι>},

where {ei} = {ea, ez+a—Jea} (α=l , 2, 3) is an orthonormal basis of Mp (P<EM).
We now evaluate the values fλ(p, x) (λ=l, 3, 4). By (2.22), (3.13) and (4.1),

we get



148 KOUEI SEKIGAWA AND TAKUJI SATO

(43) Up, x)=-§_(S__mχ)y

(4.4) Up, X)=-±(H(X)-J).

Since M is an Einstein space with R1=5Rf, by (3.13), we get

(4.5) Up,x)=-=±

By (3.16), (3.22) and (4.1), we get

(4.6)

THEOREM 4.2. Let M—(M, J, < ,» be a ^-dimensional connected complete
non-Kahler, nearly Kdhler manifold satisfying the condition

K(x, y)>
120 '

for x, y(ΞMp with ||χ|| = |l3>ll=l, <*, y> = <x, Jy>=0, for all p^M. Then M is
isometric to a ^-dimensional sphere of constant curvature S/30.

Proof. Since M is an Einstein space with positive scalar curvature, M is
compact by Myer's theorem. By (3.19)~(3.21), (4.3)~(4.6), we have

(4.7)

From the hypothesis, (4.7) and Proposition 4.1, the theorem follows immediately.
Q.E.D.

Furthermore, we have the following

THEOREM 4.3. Let M—{M, /, < ,» be a ^-dimensional connected complete
non-Kdhler, nearly Kdhler manifold. If M is holomorphically δ (>2/5)-pinched,
then M is isometric to a ^-dimensional sphere of constant curvature 5/30.

Proof. By the hypothesis and (2.10), (2.24), (3.23) and (4.1), we have

K(x, y)^j(3δ-2)l+^

60 ^ 40 120 '

for x, y^Mp with ||x|| = ||3;||==l, <*, y>=(x, Jy>=0, for all pt=M. Thus the
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theorem follows immediately from Theorem 4.2. Q. E.D.

Next, we shall deal with general cases where the dimension of M is not
necessarily equal to 6. In connection with the results obtained by Bishop and
Goldberg ([3], [4], [5]), we have the following

THEOREM 4.4. Let M=(M, J, < , » be an n {—2m)-dimensιonal connected
compact non-Kahler, nearly Kdhler manifold with constant scalar curvature. If
M satisfies the condition

(4.8) K(x, y)+K(x, Jy) + B{x, y)>0 ,

for x, y^Mp with xΦO, yφQ, <x, y^ — ix, Jy^—Q, for all p^M, then the Rica
tensor Rγ of M is parallel and the first Chern form of M vanishes.

Proof. Since M is compact and the scalar curvature S of M is constant, by
the result due to Tachibana [16], the first Chern form γ is a harmonic 2-form.

For each point p^M, we may choose an orthonormal basis {ei} — {eay eά}
which diagonalizes the symmetric linear endomorphism 5(R*Y — Rι of Mp. By
the choice of {βt}, we get

(4.9) γ{et, e,)=0 for ejφ±e-t.

For the 2-form γ, we put

(4.10) F(r)=ΣRtjrikTjk-i Σ Rhtjkrhiϊjk,
%,j, k Z h,ι,j, k

where γιj—γ(et, e}). By (4.9), (4.10) reduces to

(4.11)

By (2.25) and (4.11), we get

(4.12) F(τO=2Σ iR«s

or

F ( r ) = 2 Σ {(Raι

By (4.12), we have finally

(4.13) F00=Σ{(#.

Since γ is a harmonic 2-form and F(γ)^0, according to Yano and Bochner [22],
it follows that F(γ)=0 and γ is parallel. Thus, by (4.12) and (4.13), we get

(4.14) r««-7 /)ί=0, and \\WeJ)eβ\\2(r*ά+ΐββ)2=Q >
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for

Since M is non-Kahlerian, it follows that

(4.15) WeaJ)eβΦθ for some a<β.

Thus, by (4.14) and (4.15), we have

(4.16) γ=0 (i.e. J?!=5/?f).

Therefore, by (2.19) and (4.16), we have

and hence

7 Λ 1 = 0 . Q.E.D.

Furthermore, we have the following

THEOREM 4.5. Let M=(M, J, < , » be an n (=2m)-dimensional connected
compact non-Kahler, nearly K'άhler manifold with constant scalar curvature. If
M satisfies the condition T(ρ, σ) (p>0), and is holomorphically δ (>2/(jθ+3))-
pinched, then M is an Einstein space and the first Chern form of M vanishes.

Proof. By the hypothesis and (2.10), (2.11), (2.24), we get

(4.17) K(x, 30^(1/4X33-2+3^)/

for x, y^Mp with ||χ|| = ||3/||=l, <*, y> = (x, Jy>=0, for all p^M. Thus, by
(2.11), (2.25) and (4.17), we get

K(x, y)+K{x, Jy)+B(x, y)

=2{K(x, y)+K(x, Jy)-\\W*J)y\\2}

^ {(3+^)3-2}/>0,

and hence M satisfies the condition (4.8) in Theorem 4.4. Thus, from Theorem
4.4, it follows that

7/?!=0 and R^SRf.

Thus, taking account of (2.4), (2.5) and (4.14), we may easily see that M is an
Einstein space. Q.E.D.

In [17], Takamatsu and the second named author have proved the following
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PROPOSITION 4.6. There does not exist any dimensional, except ^-dimensional,
-Kahler, nearly Kahler manifold of constant holomorphic sectional curvature.

From Propositions 4.1 and 4.6, it follows immediately that a non-Kahler,
nearly Kahler manifold of constant holomorphic sectional curvature is a 6-dimen-
sional space of positive constant curvature, and satisfies the condition T(l, 1).
In the rest of this section, we shall prove a result (Theorem 4.10) related to
Proposition 4.6. We assume that M—(M,/, <,» is an n (=2m)-dimensional
connected non-Kahler, Einstein nearly Kahler manifold with vanishing first
Chern form, and furthermore satisfies the condition T(p, σ) with 5jo>4σ and is
holomorphically δ(>2/(p+3))-pinched. First, we estimate the values of the
functions fλ (λ=l, 3, 4) on S(M).

LEMMA 4.7. For each point {p, x)^S(M), we have

Up, x)^j{(5p-4σ)(n+2)δ-8p}H(x).

Proof. Let {£*} = {£«,£«} (x=e1) be an orthonormal basis of Mp which
diagonalizes the matrix «(Ve£/)x, (Ve;/)%» (l̂ Ξz, j^n). Then, by the hypothesis
for Mand (2.10), (2.11), (2.16), (3.13), (3.23) and (4.17), we get

flip, x)=ΣRχxJ*«yetJ)x, WeJ)x>

i. Q.E.D.

LEMMA 4.8. For each point (p, x)(=S(M), we have

UP, x)ύδl(~H(x)).

Proof. Let {<?*} — {<?«, eά} (x=e1) be an orthonormal basis of Mp as in the
proof of Lemma 4.7. Then, by (2.10), (2.11), (3.13) and (4.17), we get

UP, *)=:

Q.E.D.
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LEMMA 4.9. For each point (p, x)<=S(M), we have

Proof. By (2.10), (2.20), (3.13) and (3.23), we get

Up, x)=-1| H(x)

^-^—δlHix). Q.E.D.

Next, we estimate the value ^ g3ω2. By (2.10), (2.11), (3.16), (3.20), (3.21)

and (3.22), we have Sp

(4.18) [ gsω2^σί\\ Σ(R^,k)2ω2-\ H'ωλ^°M ||gradϋ#||2α>2.JSp Usp k JSp J ΪΌJSp

We are now in a position to prove the following

THEOREM 4.10. Let M—(M, J, < ,» be an n (^6)-dimensional connected com-
pact non-Kahler, nearly Kdhler manifold with constant scalar curvature. If M
satisfies the condition T{p, σ) with 5p>Aσ, 3^^4(7—1, and is holomorphically
δ-pinched (δ>2/(p+3) and δ^(4σ+3p)/(l5p-12σ+4:)), then M is isometric to a
^-dimensional sphere of constant curvature.

Proof. First of all, we note

4*7+3,0 = 4(3^-4σ+l)

15^-12(7+4 15,0-12(7+4

and

4(7+3,0 5(n+2)(7+24^-8(7
( } 15,0-12(7+4 (n+2)(15,o-12<7+4)

^ (n-6)(3σ-2p) ^
= (n+2)(15/o-12(7+4) =

Next, from the hypothesis for M and Theorem 4.5, it follows that M is an
Einstein space with vanishing first Chern form. Furthermore, by (3.19), (4.18),
(4.19) and Lemmas 4.7^4.9, we have

(4 20) o ^ U , * "
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32S2/

25n2(n+2) : •{(15p-12σ+4)(n+2)δ+8σ-24:p-5(n+2)σ}V2VoKM)

Thus, from (4.20) and Proposition 3.2, it follows that M i s a space of constant
holomorphic sectional curvature. Therefore, the theorem follows immediately
from Propositions 4.1 and 4.6. Q. E.D.

§ 5. An example.

We shall recall some elementary facts about Riemannian 3-symmetric spaces
(cf. [8], [21]). Let (G/K, / , < , ) ) be a compact Riemannian 3-symmetric space
such that the Riemannian metric <, > is determined by a biinvariant Riemannian
metric on G and J is the canonical almost complex structure. Then it is known
that (G/K, /, <,» is a nearly Kahler manifold ([8]). We denote by g and ! the
Lie algebras of G and K respectively. Then we have the following direct sum
decomposition ([8]) :

(5.1) β = ϊ + m , Ad(X)m=m,

where m is the orthogonal complement of ! in g. We may identify the sub-
space m with the tangent space (G/K)eK of G/K at the origin eK<=G/K. Under
this identification, we have the following formulas ([8], [20]):

(5.2) WχJ)y=-JLχ, ylm, x, ) ^ ,

(5.3) K(x, 3 0 = j l l [ * , 3>]m||2+l|[χ, yW,

x j e t n with ||χ|| = ||3,|| = l , <*, 3,>=0.

In particular, we consider the β-dimensional compact Riemannian 3-symmetric
space (Sp(2)/(U(l)xSp(l)), /, < , » in which the Riemannian metric < , > is induced
from the inner product

(x, y) = — Real part of (Trace xy), x,

We put G=Sp{2) and K=U{l)xSp(l). Let Hbe the algebra of quaternions,
i.e.,

a0, alf a2, as<=R, e\——l ( l ^ / ^

Then it is well known that the Lie algebra §p(2) of Sp(2) is given by

We put
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1 ΓO e.(5 4) x - l Γ ° lλ
( 5 4 ) X l " V T L - l OJ' yi~y/2\e,. 0

_ Γ - e 2 01 _Γβ 3 0]
X 2 ~L 0 OJ' ^ ' " L o θ j '

0 e,-\ __1_Γ° eΛ
e2 OJ' y*~VJlet θ\

1

1oJ'

O 0

Then we see that {xt, yt (l^z'^3), Si, s2, ίi, ί2} is an orthonormal basis of
g=§})(2) and the Lie algebra ϊ of K (resp. the subspace tn of g in the decom-
position (5.1)) is linearly spanned by {su s2, tu t2} (resp. {xlf yτ (l^/^3)}) over
R (cf. [15]).

The canonical almost complex structure / is given by

(5.5) Jχ^=y^,

By (5.2), we get

(5.6) II(

for x j G H i with ||χ|| = | |3;| |=l, <χ, 3;> = <x, Jy>=0. By (5.6), we see that
(Sp(2)/(U(l)xSp(D), J, < ,» is a non-Kahler, nearly Kahler manifold.

By (5.3), (5.4) and (5.5), by direct computation, we get

(5.7)

for any unit vector x = a1x1+b1y1+a2X2+b2y2+a3xz+bsy3^m. By (5.7), we have
easily

(5.8) J-^//(*)^4.

Thus, by (5.6) and (5.8), we see that (Sp(2)/(U(ϊ)xSp(X)), J, < , » is holomorph-
ically 1/10-pinched and satisfies the condition T(l/4, 5/2).

Let x be any unit vector in m and y any unit vector in m which is orthog-
onal to x. Then we may put

(5.9) y = ajx+bz,

where z is a unit vector in m with <x, z}—0, (Jx, z>=0, and a, b^R with
a2+b2=l. By (5.3), taking account of (5.2), (5.6) and (5.9), we have
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(5.10) K{x, y)=j\\blx, zlmΓ+Watx, /*],+&[*,

Therefore, by (5.7), (5.8) and (5.10), we may easily see that (Sp(2)/(U(l)xSρ(l)),

/, < , » has strictly positive sectional curvature.

We remark that Sp(2)/(U(l)xSp(ϊ)) is diffeomorphic to a complex projective

space of complex dimension 3 ([15]). We also note that K. Furukawa has

obtained the estimation (5.8) in unpublished work.
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