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NON-INTEGRABILITY OF HENON-HEILES SYSTEM
AND A THEOREM OF ZIGLIN

By HIiDEKAZU ITO

1. Introduction.

This paper concerns the integrability of Hamiltonian systems with two
degrees of freedom

(L.1) G=H, , pi=—H, (k=1,2),

where the dot indicates the differentiation with respect to time variable ;. We
assume that the Hamiltonian H is of the form

1
(L.2) H=H(g, p)=~5|pI*+V(g); [pI"=pi+pi,

where V(g) is a polynomial of ¢, and ¢,. We consider this system in the com-
plex domain. A single-valued function F(g, p) is called an integral of (1.1) if it
is constant along any solution curve (g(t), p(#)) of (1.1). This implies that
(d/dt)F(q(t), p(t))=0, which leads to the identity

/o

(1.3) (Fy H, —F, H, )=0.

k=1
In particular, the Hamiltonian H is an integral. In this paper, the system (1.1)
is said to be integrable if there exists an entire integral F which is functionally
independent of H.

From the viewpoint of dynamical systems, our interest is in the behavior of
real solutions for real analytic Hamiltonian systems. However, in the majority
of integrable problems of Hamiltonian mechanics, the known integrals can be
extended to the complex domain. Therefore, it is natural to discuss the inte-
grability of complex Hamiltonian systems in the above sense, that is, the
existence of additional entire integrals other than the Hamiltonian. Moreover, a
new aspect appears from considering solutions in complex time plane. It is the
branching of solutions as functions of time variable ¢. In general, the solutions
branch in finite or infinite manner by analytic continuation. In this paper, we
discuss the integrability of (1.1) in connection with the branching of solutions.
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As for other various aspects of integrable systems, we refer to Kozlov [12].

In recent years, a direct method for testing the integrability has been
developed [1, 3, 4, 6-8]. This method consists of requiring that the general
solutions have the Painlevé property, i.e. have no movable singularities other
than poles. It was first adopted by Kowalevski [10, 11] in the famous study of
the motion of heavy solid body about a fixed point. Among recent researches,
there have been many works dealing with the integrability of Hénon-Heiles
Hamiltonian

1 1 1
(1.4) H= 51 PPV, Vig= ~2—<aq%+bq§)+cq%q2+§dq% ,

where a, b, ¢, d are real constants. The original Hénon-Heiles Hamiltonian [9]
corresponds to a=b=c=1 and d=—1. This direct method has been used to find
parameter values q, b, ¢, d for which the system with (1.4) is integrable (see
[1, 3, 7]). However, this method is practical rather than rigorous. On the other
hand, Ziglin [16] has established rigorously a necessary condition for the inte-
grability of Hamiltonian systems. Moreover, using his method Ziglin [17] has
proved the non-integrability of the original Hénon-Heiles system. His method is
based on considering a particular solution of (1.1) and its monodromy group
whose definition will be given in Section 2.

The aim of this paper is to give a criterion for claiming rigorously the
non-integrability of (1.1) with (1.2), especially with (1.4). Our arguments are
based on a theorem of Ziglin [16, 17], and in the next section we review
Ziglin’s theorem. For the sake of completeness, we shall give its elementary
proof in our setting. The main theorem (Theorem 2) is stated in Section 3.
For using Ziglin’s approach, it is needed to have a particular solution given in
terms of elliptic functions of complex time. We consider a family of such
periodic orbits. The main theorem gives a necessary condition for the inte-
grability in connection with the behavior of their characteristic multipliers. It
presents a typical situation where the integrability implies non-branching of
solutions of variational equations. For the connection between integrability and
non-branching of solutions, see [1, 3, 7, 16].

Our result can be applicable for Hamiltonians with non-homogeneous potentials
rather than homogeneous ones. In Section 4, our result is applied to Hénon-Heiles
Hamiltonians (1.4). In particular, for the case a=b we prove that the system is
integrable only if ¢/d=0, 1/6, 1/2 or 1 (Theorem 3). The cases ¢/d=0, 1/6 and
1 are well known integrable cases [3, 7]. In the case ¢/d=1/2, the system is
seemed to be non-integrable [3], but we cannot have proved this rigorously.

Acknowledgement. 1 would like to express my sincere gratitude to Professor
Y. Hirasawa for his valuable comments and suggestions, and to Dr. H Yoshida
for stimulating discussions and useful suggestions during the preparation of this

paper.
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2. The reduced equation in normal variations and Ziglin’s theorem.

The aim of this section is to give preliminary discussions for stating our
main theorem, and to review Ziglin’s theorem [16].

Let us consider a particular solution z(¢#)=(¢(f), p(¢)) of (1.1) which is not an
equilibrium point. We consider z(f) to be a complete analytic function of ¢,
namely to be maximally analytically continued with respect to £. Then the phase
curve I'={z(t)} is a Riemann surface with local coordinate ¢. The variational
equation of (1.1) along I is given by

@.1) E=JH,.(z())X.

Here {="%¢,, &, 71, 92), J is the symplectic matrix

0 I
()
—I 0

where I is the identity matrix of degree two, and H,, is the Hessian matrix of

H(g, p) given by
sz::(qu Hqﬁ) .
HIHZ HZ’P

Let us now denote M=C* The variational equation (2.1) is defined on the
tangent subbundle 7,M, which is obtained by restricting the base space of TM
to I" and whose coordinate system is given by (& #). Our aim is to give an
elementary proof of Ziglin’s theorem in our setting. In the following, for any
function F(g, p) on M, F, denotes the gradient vector of F, i.e., F,=%F, Fp),
and <, » denotes <w, w’>=2>)_,w;w; for vectors w, w'C* with entries w,, w;
(=1, -+, 4) respectively.

At first, we note that a l-form dH is a time-dependent integral of (2.1).
Indeed we have

L AHC, =0, O=CHLTH, O+, JHLH=0,

where the argument of H, and H,, is z({). Therefore, dH is a non-constant
time-dependent integral of (2.1). Next, according to Ziglin [16], we prove that
more generally any integral of (1.1) induces a time-dependent integral of the
variational equation (2.1). To this end, we consider the general system (1.1}
without assuming (1.2).

Let F(g, p) be an analytic function in a neighborhood of I Suppose that at
some point z(f)el all the derivatives of F up to and including (n—1)-th order
vanish, while at least one of its derivatives of n-th order is different from zero.
This implies that the integer n is the smallest positive integer such that

(2.2) DTF(z(t))=0, lr|=n
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for some multi-index r=(r,, 7,, 71, 74), where

Dr:(*a?]—l)% ‘a% (?9% )" (%) ES O

Generally this integer n depends on the point z(f)e/. However, we have the
following lemma, whose assertion is used in [16] without proof.

LemMma 1. If F(q, p) s an integral of (1.1) which 1s analytic in a neighbor-
hood of I, then the smallest positive integer n in (2.2) is independent of z@#)e["

Proof. Let us consider the identity (1.3), which is written as
{F,, JH,>=0.

Without loss of generality, we assume that F(z(f))=0. By differentiating this
identity with respect to z, we obtain

<Fzzy ]Hz>+<]szy Fz>:0 .

This leads to a linear equation for F,

d

dt
The uniqueness of this equation implies that, if F,(z(¢,))=0 for some ¢,€C, we
have F,(z(1))=0 for any t€C. Therefore the assertion is proved when n=I1.
Furthermore we can prove this inductively when n is an arbitrary integer.
Indeed, let us assume that D"F(z)=0 along [ for any |r|=n. Then, similarly
as above, we have a linear homogeneous equation for a vector with entries
D'F(z) satisfying |r|=n+1. Hence we have proved that for any z<[l, either
D"F(z)=0 for any » with [r|=n-+1, or D"F(z)#0 for some r with |[r|=n-+1.
This completes the proof. Q.E.D.

Fz:_t(]sz(z(t)))Fz .

For any (=%&, & 91, 9.)€C(=T,n»M), let us introduce a differential
operator

2 0 d
D=3 (55 +155,)=(6 57)

where 0/0z="%0/0q,, 0/0q., 0/0p,, 0/0p,). From the above lemma, we can define
a single-valued function @(, t) on TrM by

@.3) D, )=D2F(z(1)),

where n is the smallest positive integer satisfying (2.2). This is a homogeneous
polynomial of degree n in {. For this function @(, ), we have

LEMMA 2. Let F(q, p) be an integral of (1.1) which is analytic in a neigh-
borhood of I Then @, t) is a time-dependent integral of the variational equation
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(2.1) such that
(2.4) O )=0C+Cn, 1),  Ln=E&nJH.(2(t)

for any scalar £,C.

Remark. The Hamiltonian vector field JH, along I, i.e., JH,(z(t)), satisfies
the linear equation (2.1). Therefore, if {(t) is a solution of (2.1), then {()+
EnJH,(2(1)) is also a solution of (2.1) for any scalar &,. This implies that the
variational equation (2.1) is to be considered on the normal bundle T ,pM/TI =
(TT)*. The identity (2.4) implies that @(¢, t) can be considered as a function
on TpM/TI.

Proof. To see that @, t) is a time-dependent integral of (2.1), we prove
that

d
70w, 5=0

for any solution {={(z) of (2.1). If we introduce a differential operator
0 0
D=(JH, 5o ) H(JHG 5 ),
this reads as
(2.5) D.@(t), )=D,DEF(z(1)=0,
where {={(t). Here we obtain the identity
0 0
DD DD=({ 5 (JH.0, 55). €).
Since this does not contain the differentiation 0/0z,
(D:D;—D/D)DEF(z)  (k=0, -, n—1)

is a polynomial of { all of whose coefficients contain the derivatives D"F(z) with
|7|=Fk but do not contain those with |r|=k+1, where z&M is arbitrary.
Therefore we can see inductively that

(2.6) D.,DEF(z)—DED,F(z)

contains the derivatives of F up to (n—1)-th order but do not contain those of
n-th order. Since the positive integer »n is the smallest one satisfying (2.2),
this implies that (2.6) vanishes on the solution curve I. Here, if F is an integral
of (1.1), then we have the identity D,F(z)=<JH,, F,>=0. Hence we have
proved (2.5).

Next, to prove (2.4) we introduce a differential operator

DH=<]H2, 5"9.
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We note that
OLA+Cn, )=D2., Fz(t) =D+, D )" F(z(2)) .
Here we obtain the identity
D.Du=DuD:=(, (JH. ),
which defines the first order differential operator. Hence it follows that for
any ze M

(De+EnDp)"F(z)= é( Z >E’,§D£‘kD’;,F(z)+ .

where the remainder terms contain the derivatives of F(z) up to (n—1)-th order
only. Similarly as above, this implies that the remainder terms vanish on the
solution curve I. Then, noting that DyF(z) vanishes identically, we have

(D460 D )" F(2(t)=DEI(z(1)) ,
which leads to (2.4). This completes the proof. Q. E. D.

Now we consider the Hamiltonian system (1.1) together with (1.2). The
system is written as

2.7 ge=pr, pr=—V,  (k=L2).

In this paper, the particular solution z(¢#) is essentially restricted to a special
class such as ¢;(t)=p,(t)=0. Then we have

PROPOSITION 1. Let I'={z@t)=(q®), p(t)} be a particular solution of (1.1) with
(1.2) which is not an equilibrium pont and satisfies q,(t)=p,(t)=0. Then the
variational equation (2.1) 1s written as

(2.82) £+ Hy o (2()E,=0,
(2.8b) ot Hypo(2(8)E:=0,

with 1]1=é'1, nzzéz. Moreover, equation (2.8b) admuts a time-dependent integral
dH(C’ t):dH(gm 772; t)

Proof. From the form (1.2) of H, it follows that H,,=I and H,,=H,,==0.
Moreover, since ¢;=p,;=0 along [, it follows from (2.7) that

. d .
pl': —_ _d—thl(Z(t»: _Vqlqz(z(t)>q2:0 .

This implies that [,.,(z(t))=0. To see this, it suffices to consider the system
(2.7) locally and we can assume that the solution z(¢) is analytic in a domain of
t-plane. Indeed, if ¢,=0 in the domain, then p,=0 and I is an equilibrium
point, which contradicts the assumption. Therefore there exists a neighborhood



126 HIDEKAZU ITO

of ¢t in which ¢,#0. Hence we have
Hy 0,(z2()=V 4,4,(0, g2(£))=0

in the neighborhood of ¢. Since V,,,(0, ¢») is a polynomial of g, alone, it follows
that V,4,(0, ¢.)=0 identically. Thus we have proved that H,,(0, ¢.)=0. There-
fore we obtain (2.8a) and (2.8b) easily. It follows from ¢,=p,=0 that dH(, ?)
=dH(&,, s, 1). Q.E.D.

Remark. In our main theorem (Theorem 2), we consider a family of partic-
ular solutions of (1.1) with (1.2) such that they are projected into a fixed complex
line in g¢-space under the mapping (¢, p)—¢ (see [A.2] in Section 3). Here a
complex line in g¢-space is defined by pg:+p:0.=0 for some (g, )= C* {0}.
Then

(#1“‘1 )szz), g:= (#2x1+ﬂ1x2);

2.9 TV +y NI —i—p

\/#2, (/113)1 #23’2), pzzm(ﬂzﬁyl‘f‘#lj}z)

defines a canonical transformation which takes the complex line into x;=0 in
x-space. Therefore, Proposition 1 can be applied to this situation.

The &, in (2.4) can be considered as the tangential coordinate with respect
to I. Let I be the particular solution given in Proposition 1, and we will use
&, in place of &,. Then the corresponding normal coordinates are given by
(61, %1, 9») which are determined by

(2.10) {=&.e;+n.f, +é2]Hz(Z(t))+772Hz(Z(t)) ,
where e;,=%(1, 0, 0, 0), f,=%(0, 0, 1, 0. Then we have

PROPOSITION 2. Let I'={z(t)} be a particular solution of (1.1) with (1.2)
satisfying the same assumption as in Proposition 1. Assume that there exists an
analytic integral F(q, p) of (1.1) with (1.2) which induces the time-dependent
integral O, t) of (2.1) defined by (2.3). Then @, t) s independent of &, namely
it is a polynomial of &, 9, and 7. In particular, the integral dH(C, 1) is given by

2.11) dH(E, )= {Hg,(z(t)} "+ {Hp,(z(0))} "1 .

Proof. In (2.4), put {=ie,+n.f1+7.H.(z(1) and &,=&,, then we can see
that @(, 1) is independent of &. Hence @(, ) is a homogeneous polynomial of
&1, 1 and #),. Moreover, (2.11) is obtained easily. Q.E.D.

Since dH(L, t) is an integral of (2.8b), we can solve (2.8b) for ), explicitly
and then also for the tangential coordinate 52

Equation (2.8a) is called the reduced equation in normal variations (or simply
reduced equation). In Ziglin [16, 177, it is essential to consider the monodromy
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group of the reduced equation, which is defined as follows.

Consider loops (closed paths) in /" having a common base point z,. Since I’
is parametrized by the time variable t=C, a loop in I corresponds to a path in
t-plane. In what follows, the analytic continuation along a loop in I" is con-
sidered as the analytic continuation along the path in t-plane. Let {p(t), ¢(#)}
be a fundamental system of solutions of the reduced equation (2.8a2). If ¢(f) and
() denote the analytic continuation of ¢(#) and ¢(t) along a loop yC I respec-
tively, then {a(t), §(#)} also defines a fundamental system of solutions of (2.8a).
Therefore there exists a 2X2 constant matrix C(y) such that

(¢), $W)=(p(t), POC() .

Here we note that equation (2.8a) is a Hamiltonian system with the Hamiltonian
HEy, 71, )=1/2)(3+Hg,q,(2(0)ED). Since C(7) is defined by the analytic continu-
ation of the solution of (2.8a), it is symplectic, namely in this case C(y)=SL(2, C)
(i.e., det C(r)=1). If we fix the base point z, and the fundamental system
{p@®), ¢()}, then this matrix C(y) depends only on the homotopy class [y7] of 7.
Hence the correspondence p: [7]—C(y) defines a group homomorphism p : z,([;, z,)
—SL(2, C), where =,(I, z,) is the fundamental group of /. The image G=
ozl z,)) is called the monodromy group of the reduced equation (2.8a), and its
element is called the monodromy matrix. The following example gives the
situation to be considered in Sections 3 and 4.

ExAMPLE. Assume that the function Q(f)=H,, (z(?) in (2.8a) is a non-
constant (non-trivial) elliptic function of ¢ possessing only one singular point (pole)
in a period parallelogram £. Then the phase curve I is identified as the real 2-
dimensional punctured torus. Let (w,, w,) be a pair of basic periods of Q(t)
which determines the period parallelogram 2. Then equation (2.8a) is so-called
Hill’s equation [13] with respect to each period w; and ®,. Then there exists
a constant matrix g, and g, satisfying

(plt+ws), PUHo)=(¢), P)g: (k=1 2).

The monodromy group is generated by these two matrices (linear transformations)
g, and g,. This matrix g, (k=1, 2) is also called the monodromy matrix with
respect to the period w, (k=1, 2). It is to be noted that the commutator gi=
818287 g5 gives the monodromy matrix corresponding to the loop around the
singular point.

Let us denote the monodromy group by G. The following lemma plays a
fundamental role in Ziglin [16].

LEMMA 3. Let I'={z@®)=(q@®), p(1))} be a particular solution of (1.1) with
(1.2) which s not an equilibrium point and satisfies q,(t)=p,#)=0. If the system
(1.1) has an ntegral which 1s analytic in a neighborhood of I' and functionally
independent of H, then there exists a homogeneous polynomial of & and %, such
that it is invariant under the action of the monodromy group G.
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Proof. Let F(qg, p) be an integral of (1.1) which is functionally independent
of H(g, p), and let D&, 9, 75, 1) be an integral of (2.1) induced by F(g, p).
Since dH of the form (2.11) is an integral of (2.8b), we can eliminate #), by
using the relation dH({, t)=const. Therefore @ is reduced to a polynomial of
&, and %,. This is an integral of (2.8a). However, this may be a constant
function in general. Therefore, we need to take a suitable polynomial of H and
F in place of F in the above discussions. Then we can obtain an integral of
(2.8a) which is a non-constant polynomial of & and %,. This is possible because
F is functionally independent of H. We omit the details (see [16]). In partic-
ular, this polynomial is invariant under the analytic continuation of the solutions
of (2.8a) along a loop in I" Let ¥(&,, 51, H=2r+12¢r(DEFn! be the integral of
(2.8a). Here we note that the coefficients ¢,,(f) are single-valued functions on
the Riemann surface I. If we fix the base point z,=[ of the loop with its
coordinate #,, then ¥(&,, 9, t,) gives a polynomial of &, %, which is invariant
under the action of the monodromy group G. Since any geG is a linear
transformation, each homogeneous part of ¥(&;, %, t,) is invariant under the
action of the monodromy group G, and therefore gives the desired polynomial.
This completes the proof. Q. E. D.

To state Ziglin’s theorem, we need the following definition.

DEFINITION. A transformation g,=G is said to be non-resonant if any
eigenvalue 4 of g, satisfies that 4"+1 for any nonzero integer n.

Now, Ziglin’s theorem is stated in our situation as follows:

THEOREM 1. (Ziglin [16]). Suppose that there exists a particular solution
I'=1{z(t)} of (1.1) with (1.2) which 1s not an equilibrium pont and satisfies q,(t)
=p,(t)=0. Assume that the system (1.1) has an integral which 15 analytic in a
neighborhood of I' and functionally independent of H. Then, if there exists a
non-resonant transformation g, in the monodromy group G, any transformation in
G commutes or permutes the eigenspaces of g,.

COROLLARY. Let g, and g, be elements of G. If g, 1s non-resonant, then
the commutator g«=g:8.81'g3" 1S equal either to the identity or to gi. Similarly,
if g. 1S non-resonant, then either gy 1S the identity or gx=gz"

Remark. Let E, and E, denote the eigenspaces of g,. Then, “commute”
means that g transforms FE, into E, and E, into E,. On the other hand,
“permute ” means that g transforms E,; into E, and E, into E,.

Proof of Theorem 1. Assume that there exists a non-resonant transforma-
tion g,=G. Let ¥(£, 5) be the homogeneous polynomial in Lemma 3, where we
use &, 7 in place of &, »,. Then there exists a symplectic base of C?such that

(2 0)
go= .
0 g
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Let T, 7)=r+1=nPr:E*n', where ¢, €C. Then the invariance of ¥ under G
leads to

k+§N¢klékvl:k+tz=zv¢k’(lkﬂl)5k77l-

Here Ap=1 because det g,=1, and 4, 4 are not roots of unity because g, is
non-resonant. Therefore this implies that ¥'(§, )=¢(E7)° for some positive
integer s (2s=N). If we set
)
g:
c d

for any g=G, we have by the invariance of ¥ under g that
(aé+cn)’(bs+dn)*=(En)’.

Then it follows that ab=cd=0. Since det g=1, we have ad—bc=1. Therefore
we obtain the following two cases: (i) b=c=0 and ad=1, or (ii) a=d=0 and
be=—1. These cases satisfy the above equation, where s is an even integer
for the case (ii). The transformation g commutes the eigenspaces of g, in the
case (i), and on the other hand in the case (ii) g permutes those of g, This
completes the proof. Q. E. D.

Proof of Corollary. If g, is non-resonant, let g,=g; and g=g, in the above
proof of Theorem 1. Then we can prove that g«=1/ (identity) in the case (i),
and gx=g? in the case (ii). The proof is similar when g, is non-resonant. This
completes the proof. Q. E. D.

3. Main Theorem.

We are now in a position to state our main theorem. Let us consider the
complex Hamiltonian system (1.1) with (1.2) under the following assumptions :

[A.1] There exists a family of non-trivial doubly periodic orbits I3 (i.e.,
elliptic functions of complex time) of (1.1), which depend analytically on
a parameter h varying on (A, Ai).

[A.2] For any he(h,, hy), I} is projected into a fixed complex line in ¢-space
under the mapping (g, p)—q.

Here the complex line is defined by g+ p.¢,=0. Then, since ¢,=p, from
(2.7), it follows that pyp:+p.p,=0. Therefore, carrying out the canonical trans-
formation (2.9), it transforms into x;=y,=0. Let z,(¢) denote the coordinate of
I',. By Proposition 1, we obtain a family of reduced equations

CRY) E+Qn0E=0; Qu(t)=Hz,z,(22())

with n1=él. Under the assumptions [A.1] and [A.2], the coefficients @Q,(f) are
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elliptic functions of . Suppose that Q.(¢) is non-constant, and let (w,(h), w,(h))
be a pair of basic periods which determines a period parallelogram. We assume

[A.3] For any he(h,, hy), the coefficient Q,(f) in (3.1) has only one singular
point (pole) in the period parallelogram. The eigenvalues of the mono-
dromy matrix around it are independent of A.

Let g.(h), g.(h) denote the monodromy matrices corresponding to the period
w;(h) and w.(h) respectively, and let g.«(h) be the monodromy matrix around the
singular point. Then our main theorem is stated as follows:

THEOREM 2. Let the Hamiltonian system (1.1) with (1.2) satisfy [A.1], [A.2]
and [A.3]. Assume that the system (1.1) has an integral which is analytic in a
neighborhood of the family {I'w} and functionally independent of H. Then either
g«(h) is the identity for any he(hy, hy), or the traces of both g,(h) and g,(h) are
constant functions in he(h,, hy).

Remarks. (1) Let 4, ¢ be eigenvalues of g, (k=1, 2). Then, since 4p=1,
the invariance of the trace of g, is equivalent to that of eigenvalues of g.
(ii) This theorem shows that integrability implies non-branching of solutions of
the reduced equations when the eigenvalues of both g,(h) and g.(h) are not con-
stant.
(iii) In the above, h is considered as a real parameter. However, the same as-
sertion as in Theorem 2 holds also when £ is considered as a complex parameter.

Proof. Assume that the trace of g,(h) varies with h. Then there exists
a dense subset S of (A, h;) such that g,(h) is non-resonant for any h<S. By
the corollary to Theorem 1, it follows that gy(h)=I (identity) or g«(h)=gih)
for any heS. Suppose that g*(ﬁ)qtl holds for some £ &(hy, hy). Then, since
the components of gy(h) are analytic functions of he(h,, h;) because of [A.l],
g«(h)=I holds in a neighborhood of h. Hence we have gx(h)=g3i(h) for any
heS’, where S’ is the intersection of the neighborhood of A with S. Since the
trace of g,(h) varies with A, this implies that the trace of g.(h) also varies with
h. This contradicts the assumption [A.3]. Hence we have gx«(h)=I for any
he(hy, hy). 1f we assume that the trace of g,(h) varies with h, we have the
same conclusion by the similar way. This completes the proof. Q.E.D.

Generally speaking, the assumptions [A.1], [A.2] and [A.3] are satisfied if
the potential V(g;, ¢») is a third- or fourth-degree polynomial. As an example,
we apply Theorem 2 to the Hénon-Heiles system in the next section, where the
parameter h corresponds to the energy value of [}.

4. Application to Hénon-Heiles system.

In this section, we apply Theorem 2 to the Hénon-Heiles system. Our main
purpose is to prove the following result.

THEOREM 3. Assume that a=b (#0) in the Hénon-Heiles Hamiltonian (1.4).
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Then the system (1.1) has an entire integral which 1s functionally independent of
H only if ¢/d=0, 1/6, 1 or 1/2.

We prove this theorem in several steps. We begin without assuming a=b
in (1.4). The assumption a=b will be essential only for the final step (v).

(i) Families of doubly periodic orbits.
Let us consider the Hénon-Heiles Hamiltonian (1.4) without assuming a=b.
The corresponding Hamiltonian system is given by

(4.1a) G=p1, Pr1=—ag1—2¢q.q:,
(4.1b) Go2=p2, P2=—bg.—cqi—dgs.

By setting ¢,=p,=0, this system is reduced to (4.1b) with ¢,=0. Since the
Hamiltonian H is an integral, the phase curve of this system is given by

1
5PV, g)=h,

where h is the energy parameter. This leads to

4gs

T =+/2(h—V(0, ¢.)).

Let {a;, as, as} ={a,, a,, a;} be a set of roots of the equation V(0, ¢g.)=h. Then
it follows that

q2 dq2 . ¢ _ﬁ
S“z\/(Qz_az)(‘h'—a;‘)(QZ'_al)_SO\/ 3 at.

Here, setting ¢.=a;+(a;—a,)§* we have

S” dge 2 Ag‘f dg ,
ay V(ge—a)(@s—a)(ge—ay)  Var—a,Jo/(1—E5)(1—k*E?)’

where
a;—a,
a,—a;

SE 23 _\/d(ai—a’z)_tzf
o/ (1=8)(1— k%% 6 o

This implies that & is Jacobi’s elliptic function sn(z, k), where % is called the
modulus of sn(z, k). Since ¢g,=a;+(a;—a,)&? we have thus families of doubly
periodic orbits I(a,, a;) on H '(h) whose g-coordinates are given as follows:

b=

Hence we have

a(t, =0, gt, h=a;+(a;—a,)sn’c,

T:ﬂt’ ﬁ:\/a’(aif—s—al) ’ k= < .

a;—a;

4.2) Ii(a,, aj):
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In the above, the roots a,, @,, a; are chosen arbitrary from a,, a,, @; in such a
way as a;+a;, and they are expressed as

= §bd—(2 cos%—l),

b/ . 0
(4.3) a2=—ﬂ(\/331n ~3—+cos§+1),

b — . 0 4
as——éz(«/.%sm—g—~cos§———l),

where

124®

b8
Here we note that, as 4 varies from 0 to 5%/6d?% 6 varies from = to 0. These
families {[ (@, a;)} satisfy [A.1] and [A.2].

The elliptic function sn’c has a pair of basic periods 2K, 2K-+2/K’) with
respect to z=pt, and it has only one pole of order 2 at t=2K--iK’ in the period
parallelogram. Here K=K(k) is the complete elliptic integral of the first kind
and K'=K(k’) (k’=+/1—Fk?% is the complementary complete elliptic integral of
first kind.

In particular when a=»b, there exists families of doubly periodic orbits other
than I (a,, a;). We assume that ¢+#0, d/c+#2, 3 in addition to a=b. If we
search for solutions moving on a complex line

h—1.

cos 0=

G=4qz2, D1=pps,
then by the compatibility condition for (4.1a) and (4.1b) we must have

.4 pmeyf2- L.
The canonical transformation (2.9) with p,/pu,=p takes (1.4) into
_~_1_ 2 2 _9_ 2 2 1 ct+d S__(r_ 2 2_C 3
H= 2(y1+yz)—l—2(x1+xz)+\/1+—#2{ 3 Hxy (c—d)xix,+ 3 xz}
:l 2
=5 lyI*+Ux),

and the corresponding Hamiltonian system is given by
J'Ck:yk, yk:—Ul'k (kzl, 2).

Similarly as above, by setting x,=v,=0 we obtain the desired orbits A.(a,, a;)
on H'(h) such that the x-coordinates are given as follows:

x(t, h)=0, x,¢ h)=a;+(a;—a,)sn’c,

e=pt, ﬁﬂ/dai—s_—a‘), =t

a;—ay

4.5) Anlas, ay): {
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Here {ai, a,, a;} ={a,, a,, a;} is a set of roots of the equation U(0, x,)=h, and
they are expressed as (4.3) with replacing b and d by a and e respectively, and
h is assumed to vary from 0 to a3/6e® where
o 2c 2

c

(4.6)

(ii) The reduced equations in normal variations.

We consider the reduced equations in normal variations along the solutions
stated above. In the following, let us use the time variable z=p¢ in place of t.
Then the reduced equations (3.1) are written as

4.7 {+Q(z, h)6:=0,
where

Qz, h)=8"%{a+2cq,(t, h)} for I(a, a;),
(4.8)

e _2(c—d)
Qe, W=p{o—Jintt N} for ey ),

and &/ indicates d?&,/dz% For our purpose, we take [ (as, as) and Ap(as, as).
Then we have

2 tan%

v ?—i—tan%

and so we can represent Q(z, h) as function of ¢ and x, which will be denoted
by Q(z, k). Here, as h varies from 0 to b*/6d* (or a®/6e*), r varies from 1 to
0. Indeed, the reduced equations along I (a,, as) and A(a,, as) are expressed
as follows:

[ §7+Q, £)6=0;

k=ki=

4.9) G )
| Qtz, B)=2UvT=5F & +47(1 41—~/ I—£F ") —12rxsn’(z, £),
where
Z:__Z__]_Z_(Ei_, :% for Fh(aZy as) )
(4.10)

. d 1/d
=2 r=5(ml)  for i @

Remark. For families other than Iu(a., a;) and Ai(a,, a;), we obtain the
corresponding reduced equations of the form (4.9) with changes of (4.10). They
are not needed to prove Theorem 3 and so we omit them.

(iii) Eigenvalues of the commutator gi(h).
In the reduced equations (4.9), the coefficient Q(z, ) has a pair of basic
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periods (2K(x), 2K(k)+2:K’(k)) which determines a period parallelogram. Q(z, &)
has only one pole of order 2 at z=2K-+:K’ in the period parallelogram. Let
g:(k) and g.(x) denote the monodromy matrices corresponding to the period 2K(x)
and 2K(x)+2:K'(x) respectively. Then the monodromy group G(x) is generated
by g.(x) and gi(x). Here, since the correspondence of x to ~ is one-to-one, we
used the notation such as g,(x) in place of gi(h), etc.

It is important that the eigenvalues of the commutator

gx(K)=g.1(k) g-(£)gT" (k) gz (k)

are given explicitly because t=2K+iK’ is a regular singular point for (4.9) (see
[5]). Indeed, if we consider the Laurent expansion of Q(z, £) at t=2K+iK’,
the coefficient of (r—2K—:K’)"? is —12rkx'=—12y. Therefore the indicial
equation of (4.9) at 2K+iK’ is

o(c—1)—12y=0.
Hence we have

PROPOSITION 3. The eigenvalues 2 of the monodromy matrix g«(x) for (4.9)
are wndependent of & and given by

(4.11) A=exp(2rio); 0=%(1i\/1+48r) .
Thus all the conditions of Theorem 2 have been proved to be satisfied.

(iv) Dependence of tr g,(x) on .

If the potential V(¢g) is a homogeneous polynomial, the eigenvalues of g;(k)
and g.(x) can be expressed explicitly in general (see [14, 15]). On the other
hand, if V(g) is non-homogeneous, we cannot know the explicit representations
of the eigenvalues of g,(x) nor g.(x). However, we have only to know the
variance of the eigenvalues of g;(r) or g(k) with £. Indeed we can give a
sufficient condition for tr g,(#) to vary with . It is (d%/d&®)tr g:(k)]=0#0 in
the following proposition.

PROPOSITION 4. Let tr g(x) denote the trace of the monodromy matrix g,(x)
for (4.9). Then we have

@12) 11 gu®)lei=2005@aVT), —otr g0 =0,

—x%sin2z A s 97? 15 9
oL \N1—df "4 " )

).

d? 1
(@13) e ) =, 977 (7 —5) (x=0),

T
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Proof. For the convenience of discussions, let us carry out a change of
time-scale from ¢ to u by r=2K(x)u. Then instead of (4.9), we consider the
linear equation

d*

du?

4.14) +P(u, ©)§:=0; P(u, £)=4K*®)Q(z, x),

where Q(z, £) is given in (4.9). The coefficient P(u, £) has a period 1 in u.
The monodromy matrix g,(¢) is given by that of (4.14) corresponding to the
period 1.

Now we note that there exists a fundamental system of solutions {¢(u, &),
&(u, k)} of (4.14) such that

0, 0=1, $(0, H=0,
(4.15) {SD i #0,

@0, =0, ¢(0, H=1

for any k[0, 1]. Here and in what follows the dot indicates the differentiation
with respect to u. Then we have

o, £) ¢, k)
g:(r)= )
o1, £) ¢, k)

(4.16) tr gi(®)=0(l, £)+¢(, £).

Since P(u, ) is analytic in £ at £=0, the solutions ¢ and ¢ are also analytic in
£ at £=0. Let ¢(u, ), ¢(u, £) and P(u, £) have the following Taylor expansions
at £=0:

o(u, £)=o(u)+e(W)r+e(u)e*+ -,

Ou, £)=¢o(u)+Pi(w)e+dy(u)s>+ -,
P(u, £)=Py(u)+P,(w)r+Py(u)e®+ --- .

Here the expansions of the form

— 2 —1—_ e 2_|_
'\/l £+ 1 2,‘6 8&? B

sn(z, lc)zsin(nu)—{-%lc sin(ru)cos®(ru)+ -,

=f—(1+%x+ )

K(x) 5 6

hold [2], and then we have
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Py(u)=4r2,
(4.17) Py(u)=6r%r cos(2ru),

Pz(u):nz{igs—x—%r—f—Br cos (2 u) - %r cos(4nu)}.

Equation (4.14) implies

GotP(go=0,  GntPo()pnt 3 Pr()gn-4=0,
(4.18)

GotPo()py=0, n+Po(W)pnt 3 Pelu)fn-4=0

for n=1, 2, ---.
In the following, our purpose is to solve (4.18) for ¢,(u) and ¢,(u) for n=
0, 1, 2 under the initial conditions (4.15), namely

2 0)=1, ¢(0)=0, &0)=0, ¢ 0)=1,
0n(0)=¢0)=¢(0)=¢,(0)=0  (n=1,2, ).

At first it follows from (4.18) with n=0 that

pW=cos(VP), gil)=—sin(/Pa)  (B0),

(4.19)
eouw)=1, ¢u)=u (Po=0).

Here we note that P,=4z*, and then we have
(4.20) tr g1(8) | emo=o(1)+u(1)=2 cos 2z v/ X).

Next, by the method of variation of constants we can solve (4.18) for n=
1, 2, --- inductively as follows:

t.21) pa)={gsv—1) 5 Puv)pn-s0)dv,
@.22) 9al)={ " gul0—1) & Pu)n-s 01

Then for n=1 we have

P +)=| P o)l — 1) = gu)pul— )} dv
=—¢0(u)S:P1(v)dv .
Hence because of (4.17) we have

4.23) 2 e 0 =i+ D=0 PL0)av=0.
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Similarly, for n=2 the formulas (4.21) and (4.22) give

o)+ = PR, u)+POIR, whdv,
where
R, w)=p;w)pv—u)—¢;0)pv—u) (=0, 1).

Here we have

Ry, u)=—¢(u),
Rulw, 0= P)po(s—0) (oo )pu(o—1)— gu(palv—)} s .

Then, since (d?/dx®)tr gl(/c)|,‘=0=2(¢2(1)+¢.2(1)), we obtain (4.13) by a direct cal-
culation using (4.17) and (4.19). This calculation is elementary and so we omit
the details. Thus we have proved (4.12) and (4.13). Q. E. D.

(v) Proof of Theorem 3.

If (d%/di®)tr gi(k)|,=o#0, then the integrability implies A=1 in Proposition 3.
This gives a criterion for claiming the non-integrability of Hénon-Heiles system.
As an example we prove Theorem 3.

Proof. Consider the families of doubly periodic orbits I, =1}%(a,, as) and
Ap=An(as, as). It follows from a=b that X=2r—1 in (4.10). Then, from Prop-
osition 4 it follows that

{—157r23in(2m/2‘r“—‘ DY @r—1@2r->5) ( L1 5)

8x/2r—1 7 @r—5) 2'8
dz 1
gx—z'trgl(ﬁ”mo:l 0 (?‘=—2‘),
2257* 5
7128 (7‘§)'

Assume that the system is integrable. We note that if y<1/2, this quantity
does not vanish and then A=(1/2)(1++/1+48y) must be an integer. Let us take
the family {I,}. Then, if ¢/d<1/2 it follows that +/1+48¢c/d is a positive odd
integer. This implies that ¢/d=1/6 or 0. Next we take the family {4,}. Then,
if (1/2)(d/e—1)<1/2 it follows that +~/1+24(d/c—1) is a positive odd integer.
This implies that ¢/d=1 or 3/4 if ¢/d>1/2. Here, the case c¢/d=3/4 is not
integrable one. Indeed, if y=3/4 then we have (d%/d«®tr g,(x)]e=s#0 and
(1/2)(1++/1+48y) is not integer. Thus we have proved that ¢/d=0, 1/6, 1 or
1/2 if the system is integrable. Q.E.D.

Remark. 1f ¢/d is 0 or 1, the system is integrable. The case ¢/d=1/6 is
also known as integrable one. On the other hand, the case ¢/d=1/2 i seemed
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to be
case.
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non-integrable [3]. Our method cannot prove the non-integrability of this
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