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COMPLEX SUBMANIFOLDS OF CERTAIN

NON-KAEHLER MANIFOLDS
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§ 0. Introduction.

Complex submanifolds of Kaehlerian manifolds have been studied extensively
by many differential geometers (see, for example, the bibliography of Ogiue's
paper [5]), but complex submanifolds of non-Kaehlerian Hermitian manifold have
not been explored to any great extent.

On the other hand, E. Calabi and B. Eckmann [2] proved that the product
of two odd-dimensional spheres which admits a Hermitian structure is called
Calabi—Eckmann manifold. A Calabi—Eckmann manifold has two structures,
namely the product Riemannian structure and the complex structure that is
mentioned above. Thus submanifolds of Calabi—Eckmann manifold have two-
sided property. One is that they are submanifolds of a product manifold and
another is that they are submanifolds of a complex manifold.

In § 1, we study first of all, submanifolds of Riemannian product manifolds
using the same method by G. D. Ludden and M. Okumura [3].

In § 2, we study properties of complex submanifolds of a Riemannian product
of two Sasakian manifolds and prove that any compact complex submanifold of
certain non-Kaehlerian, Hermitian manifold, which is a generalization of Calabi—
Eckmann manifold is minimal.

The author would like to express his hearty gratitude to Professor M. Oku-
mura for his valuable suggestions, and he wishes to express his deep gratitude
to Professor S. Tanno who took care for the publication of this paper on KODAI
MATHEMATICAL JOURNAL.

§ 1. Submanifold of Riemannian product manifolds.

Let Mi, M2 be respectively differentiate manifolds of dimensions n and m,
and we consider the product manifold MλxM2. We denote by P% (i—l, 2) the
projection mappings of the tangent space of MλxM2 to that of M% (z=l, 2),
where the tangent space to Mλ (resp. M2) is identified with that of Mi X (point)
(resp. (point) xM2). Then we have

—I, P\2—Pi, P22=P'2, P1P2—P2P1—0,
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where / denotes the identity transformation of the tangent space of MiXM2.
We put P=P1-P2. Then it follows that

P2=I, tr P=m-n,

where tr P denotes the trace P. We call P an almost product structure on
MλxM2 (cf. [3]).

If the manifolds Mlf M2 are both Riemannian manifolds, we define a Rie-
mannian metric of MλxM2 by

where gλ and g2 are respectively the Riemannian metrics of Mi and M2. Then
it follows that

g(PX,Y)=g(X,PY), VXP=O,

where 7 denotes the operator of covariant differentiation with respect to the
Riemannian connection of g.

Let Mn be a submanifold of codimension p in M f x M 2

n + p " m and suppose
ι\ M-^M1XM2 the immersion. For a tangent vector field X to M and ortho-
normal normal vectors Na {a—I, -•-, p) to M, the transforms Pi*X and PNa

(a=l, •••, p) by P can be written as follows;

(1.1) Pi*X=

(1.2) PNa=πUa + ΣίUλaβNβ (β=l, - , p),

where P defines a symmetric linear transformation of the tangent bundle T(M)
of M, while ua, Ua and λaβ define 1-forms, vector fields and functions on a
neighborhood of a point of M respectively. Moreover, we easily see that
g(Ua, X) — ua(X), where g is the induced Riemannian metric on M.

We denote by V the operator of covariant differentiation with respect to the
Riemannian connection of g. Then Gauss and Weingarten equations are given by

, Y)

NaX, Y)Na,

where σ and A are respectively the second fundamental form and the correspond-
ing second fundamental tensor, while V\ saβ the normal connection and the
third fundamental tensor respectively. They satisfy

σ(X, Y) = σ(Y, X),
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§ 2. Complex submanifold of certain non-Kaehler manifolds.

Let M=M2n+1(φ, f, η, g) be a Sasakian manifold of dimension 2n + l. The
structure tensors (φ, f, fh g) satisfy (cf. [1])

φξ=O, τ}(φX)=0,

g(φX, φY) = g(X, Y)~η{X)η{Y) ,

Let jvj2m+iχj5j2n+2i>-2m-i b e ^ Riemannίan product manifold of Sasakian
manifolds, and let 2Ί=(0ί, {̂, fί, gί) (resp. Σ2=(φί, yί> ξί, gί)) be_the Sasakian
structure on Mx (resp. M2). Then actions of φ% (z = l, 2) on MxxM2 are defined
by φ%—φf

iPx where A (resp. P2) is the projection of tangent space of MxxM2

to that of Mi (resp. M2), where the tangent space to Mj. (resp. M2) is identified
with that of MαX (point) (resp. (point) XM2). Similarly, ξt and rj% are defined by
Λlχ=lί , Λfi=0 (f, j = l, 2, /̂ =y) a_nd ηj{X)=ηί(P%X) on AίiXJt?,.

For any tangent vector X of MλxM2, we define

(2.1) /^=?l-Y-52(^)l l + ?2X+?l(X)f»

Then / defines a complex structure on MιXM2 (cf. [4]). Moreover it is easily
checked that Riemannian product metric g on MλxM2 is a non-Kaehler Hermitian
metric on the complex manifold.

Let M2n be a complex submanifold of codimension 2p of MxxM2 with the
Hermitian structure which is defined as above, and i: M^MxxM2 be the immer-
sion.

EXAMPLE. Let PA(C) (i=l, 2) be complex projective spaces with homogene-
ous coordinates (zl, •••, zι

n) and constant holomorphic sectional curvature 4. Let
M be a complex hypersurface of Pϊ(C)xP%(C) defined by Σ J U Φ 5 = 0 and (M, T2)
be the torus bundle over M such that the following diagram is commutative

(M, T 2 ) — > S 2 n + 1 x S 2 n + 1

M —*

Then (M, T2) is the complex hypersurfaces of S2n+1xS2n+1. Moreover, M i s
diffeomorphic to U(n + l)/U(n-l)xT2 (Kaehler C-space) and (M, T2) is diffeo-
morphic to U(n+1)/U(n — 1) (Complex Stiefel manifold).

We take orthonormal normal vectors Nlf •••, N2p to M in such a way that
N2q—JN2q-i (g—l, - ,p). Suppose that the vector fields ξt (/=1, 2) are not
always tangent to M. Then there exists such a point X E M that the normal
parts of | t (/=1, 2) do not vanish, because f 2=/fi. At this point, we can choose
the unit normal frame to M in such a way that, Nx (i=l, 2) are the normal
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directions of ξt (z = l, 2) and extend them to local fields. Hence ς t can be written
as a sum of the tangential components and the normal components in the fol-
lowing way,

(2.2) ξj^Hξj+rNj (7 = 1,2).

Then ξj and r define vector fields and a function on M respectively. Let X be
a tangent vector field on M. Then we immediately get

(2.3) VJ

(2.4) vj(Nk)=0 0 = 1, 2, * = 1, •••, 2/>, ; * * ) ,

where g is the induced Riemannian metric on M. The transforms όβ*X and
0\jVα 0 = l> 2, α = l , 2, •••, 2/0 of Z and Na by ̂  can be written as

φit*X=t*φiX+Σllp-iva(X)Na

(2.5)

where 0/s define skew-symmetric linear transformations of the tangent bundle
of M, while va, wa, Va, Wa, μaβ and vaβ define l-forms, vector fields and func-
tions on a neighborhood of a point of M respectively. We easily see that μaβ
and vaβ are skew-symmetric with respect to a and β and that

g(Va, X)=v«(X), g{Wa, X) = w*(X) ( α = l , •••, 2p).

Since JN^N2 and JN2=-N! hold, using (2.1), (2.3) and (2.6), we have

(2.7) V1+W1-rξi=0, 72+^+^=0 ,

(2.8) j H i . 2 + v i , 2 + r 2 = l ,

(2.9) A£i^+w^=i«2^+y2. i 3=0 (,5-3, 4, •••, 2 ί ) .

Similar ly, f rom JN2q-1=N2q a n d JN2q=—N2q-1 (q—2, 3, •••, />), w e h a v e

(2.10) V2a

^ 2 a l , 2 a r 2 a l , 2 a >

(2.11)
μ2a-i,r+V2a-i,r:=μ2β,r

JrV2β,r=0 (γΦ2a, 2/5 — 1).

Let P be the almost product structure defined in § 1. Since Pi l i=l ί and
P2f2=f2 holds, Pf 1 =f 1 and Pξ2=-ξ2. From this, using (1.1), (1.2) and (2.2),
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we get

(2.12) M 1 (f i)=r(l-^. 1 ), u\ξ2)=

(2.13) u^ξ^-rλ,,^ uP(ξ2)=-rλ2ιβ (aΦl, βΦ2).

From the definition of P, we have

(2.14) Pφiz=z φi—ΦiP > Pφz—~—<f>2—Φ2P'

Applying P to JNι—N2 and JN2=—NU using (2.1), we have

U1=V2-W2+rξlf ί/,= - 7 1 + W r i - r f £ ,

l, βΦ2),

because of (2.14). From these equations and (2.7)~(2.9), we obtain

ί/^-2^, ί/^-2^,

(2.15) ^2,2=2^1,2-1, ^i.i=2v2,i+l,

Λ.l = 0, ^2,α=2^i,α ( « ^ 2) ,
(2.16)

1̂,2 = 0, ^ί,a—2v2>a (Ctφϊ) .

In t h e s a m e w a y , w e h a v e , for Nk ( & = 3 , 4, •••, 2p)

U2q^-V2q.1+W2q-1, U2q^ = V2q-W2q {q^2, 3, - . p),
%2q,β—μ2q-l,β — V2q-l,β> %2q-l, β = "~ [*2q, β + ^2g, ,8 ( ^ = 1, 2, * * * ,

These equations, (2.10) and (2.11) imply that

ς, βτ=6fί2q-l> β

On the other hand, since φjξk=O U—h 2, k — \, 2) hold, using (2.2), (2.5) and
(2.6), we have

φ1ξi=rV), φ£s=rW]t

(2.17) v a ( f J )=r^ a , J , w'iξ^rva.j ( α = l , 2, - , 2/»).

Since Mi and M» are Sasakian manifolds, one obtains that
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Then, using Gauss, Weingarten equations and (2.5), we have

(2.18)

Va=Aaξi+rSlta ( α * l ) ,
(2.19)

Wa=Aaξ2+rS2>a (aΦ2),

where Saβ are dual vectors of 1-forms saβ(X). Hence

(2.20) div ξi=r trace Ax, div £ 2 = r trace A2.

Here, for simplicity, we have written ^4α instead of ANa for a frame Nlf N2,
•••, iV2p for NXM. In the same way, for any X^T(M), we have

&zφj)Na = UNa)FjX-g(PjX, M , (; = 1, 2, α = l , 2, •••, 2/)).

Since P1—{I+P)/2 and P2—{I—P)/2, making use of Gauss, Weingarten equations
and (2.2)~(2.6), we get

(aΦl).

β β β (aΦ2).

From above, using (2.12) and (2.13), we obtain

(2.21) div V^-rn-ir/2) trace P+(r/2)(l-λ1 ,)

JrΈΆ1(s1,a(Va)-μ1>atrace Aa),

div Va^-(r/2) λlιa + i:2βUsaβ(Vβ)-μaβ trace Aβ) (aφΐ)

div W2=-rn+(r/2) trace P+(r/2)(l+42)

+ Σ8βWs2.«(TΓα)-^,β trace >lβ),

(2.22) div ^α=(r/2)^2lα + Σ ^ i C s α ^ ^ ) - ^ / , trace ^ J (aΦ2).

Now we prove the following,

THEOREM. Let M1xM2 be the Riemannian product of Sasaktan manifolds,
and M be its compact complex submanifold with respect to the complex structure
that is defined by (2.1). Then
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( 1 ) I , (2 = 1 , 2 ) a r e t a n g e n t t o M, _____
( 2 ) M is a minimal submanifold of MλxM2.

Proof. First of all, we calculate άivrξt and divrf2. Making use of (2.17)-
(2.20), we get

div r f 2 =(f 2 r )+r 2 trace A2

r, f 2 )+r 2 trace A2

=g(V1-A1ξl9ξi)+rt trace A2

=m,2-g{A£2, ξi)+r2 trace A2

=rμ1,2-g{W1-rS2Λ, ξχ)+r2 trace .4,

=rμlt2+s2,1(rξ1)
J

Γr
2 trace A2.

In the same way, we have

div rξ1—rv2Λ

JrSlt2{rζ2)
Jrr2 trace Ax.

Hence, making use of (2.7), (2.10), (2.15), (2.16), (2.21) and (2.22), we have

= -rn~(r/2) trace P+(r/2){\-λ1Λ)

+ Έ2aUsi,*(Va)-μ1>a t r a c e d )

+(r/2)λ2,1+ΣιΆi(s1,a(Wa)~^i>a trace Aa)

—rμlt2—s2)i(rfi)—r2 trace Λ

— —rn—{χl2) trace F—(r/2)Wi,i+^2j2)—trace ^42.

Consequently, we get

(2.23) trace Λ=-Kw+(traceP)/2+(Λ, 1+^2.2)/2).

Similarly, we have

0=div F 2 +div W2+div rξλ

= -(r/2)λlί2+Σ2aUs2,a(Va)-μ2>a trace Aa)

-rn+(r/2) trace P+r(l+λ2,2)/2

+ Σ2aUs2,a(Wa)-v2>a trace Λ J

+rv 2 ) 1 +Si, 2 ( r | 2 )+r 2 trace Ai

=trace Λ - r n + ( r / 2 ) trace P+r(λltl+λ2ί2)/2 .
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Hence we obtain

(2.24) trace Λ=r(n-( l/2) trace P-(λltl+λ2t2)/2).

By quite the same computation, using (2.10) and (2.11), we have

=—(r/2) λlίZq-i+ΣϊV)=i(s2q-1,a(yn)--μ2q-1,a trace Λa)

+(r/2)λ2,2q-1+ΣlUs2q-i,a(}Va)-v^1,a trace i4α)

and

Consequently, we get

(2.25) trace ^ - i ^ ^

(2.26) trace Λβ=r((Λ.2g-i-^.2 ί-i)/2-s2 β-1,2(f g

(?=2,3, - , 2 / > ) .

Then from (2.20), (2.23) and (2.24), we obtain

div ξi~-div ί ^ K t r a c e A±—trace Λ2)=2r2?z.

Since M is compact, by Green's theorem, we have

0 = ( (div? 1 -divf 2 )*l=2nί r 2 *l ,

where *1 is a volume element on M. From this, r 2 = 0 on M, that is ξj(ΞTxM
(/=1, 2). Hence by (2.23)^(2.26), trace ^ α = 0 (α = l, 2, •••, 2/>). Consequently,
M is a minimal submanifold.
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