M. KIMURA
KODAI MATH. J.
8 (1985), 90—98

COMPLEX SUBMANIFOLDS OF CERTAIN
NON-KAEHLER MANIFOLDS

By MakoTo KIMURA

§ 0. Introduction.

Complex submanifolds of Kaehlerian manifolds have been studied extensively
by many differential geometers (see, for example, the bibliography of Ogiue’s
paper [5]), but complex submanifolds of non-Kaehlerian Hermitian manifold have
not been explored to any great extent.

On the other hand, E. Calabi and B. Eckmann [2] proved that the product
of two odd-dimensional spheres which admits a Hermitian structure is called
Calabi—Eckmann manifold. A Calabi—Eckmann manifold has two structures,
namely the product Riemannian structure and the complex structure that is
mentioned above. Thus submanifolds of Calabi—Eckmann manifold have two-
sided property. One is that they are submanifolds of a product manifold and
another is that they are submanifolds of a complex manifold.

In §1, we study first of all, submanifolds of Riemannian product manifolds
using the same method by G.D. Ludden and M. Okumura [3].

In §2, we study properties of complex submanifolds of a Riemannian product
of two Sasakian manifolds and prove that any compact complex submanifold of
certain non-Kaehlerian, Hermitian manifold, which is a generalization of Calabi—
Eckmann manifold is minimal.

The author would like to express his hearty gratitude to Professor M. Oku-
mura for his valuable suggestions, and he wishes to express his deep gratitude
to Professor S. Tanno who took care for the publication of this paper on KODAI
MATHEMATICAL JOURNAL.

§1. Submanifold of Riemannian product manifolds.

Let M,, M, be respectively differentiable manifolds of dimensions # and m,
and we consider the product manifold M,x M, We denote by P, (i=1, 2) the
projection mappings of the tangent space of M;xXM, to that of M, (=1, 2),
where the tangent space to M, (resp. M,) is identified with that of M, X (point)
(resp. (point)XM,). Then we have

PI_I—PZZI’ FIZZPI) Fzzzpz, P1P2:P2ﬁ1:0,
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where I denotes the identity transformation of the tangent space of M, % M,.
We put P=P,—P,. Then it follows that

P*=], trP=m—n,

where tr P denotes the trace P. We call P an almost product structure on
M, x M, (cf. [3]).

If the manifolds M,, M, are both Riemannian manifolds, we define a Rie-
mannian metric of M, XM, by

é(X, Y)’—‘gfl(f_’xX, ply)‘f’gz(PzX, pzy) ’

where g, and g, are respectively the Riemannian metrics of M, and M, Then

it follows that _ _
F(PX, V)=g(X, PY), VyP=0,

where V denotes the operator of covariant differentiation with respect to the
Riemannian connection of 2.

Let M™ be a submanifold of codimension p in MPXMp+?-™ and suppose
12 M—M,x M, the immersion. For a tangent vector field X to M and ortho-
normal normal vectors N, (a=1, -, p) to M, the transforms Pi.X and PN,
(a=1, ---, p) by P can be written as follows;

(1.1 Pi X=ixPX+381u*(X)N,,
(1.2) PNa:Z.*Ua+Eg=llaﬂNﬁ (ﬁ:]-; Ty p)y

where P defines a symmetric linear transformation of the tangent bundle T(M)
of M, while u®, U, and 2,5 define l-forms, vector fields and functions on a
neighborhood of a point of M respectively. Moreover, we easily see that
gUq, X)=u*(X), where g is the induced Riemannian metric on M.

We denote by V the operator of covariant differentiation with respect to the
Riemannian connection of g. Then Gauss and Weingarten equations are given by

VixixY =iy YV +0(X, Y)

=13xVxY +28.18(Ay X, V)N,
ViexNa=—15Ay, X+ V4N, ,

=—13 Ay X+ 25 -1545(X)Ng ,

where ¢ and A are respectively the second fundamental form and the correspond-
ing second fundamental tensor, while V*, s,z the normal connection and the
third fundamental tensor respectively. They satisfy

oX, Y)=0(1, X), sap(X)=—s5.(X).
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§2. Complex submanifold of certain non-Kaehler manifolds.

Let M=M?"+ Y4, E 7, Z) be a Sasakian manifold of dimension 2n-+1. The
structure tensors (g, &, 7, g) satisfy (cf. [1])

§(¢X, gV)=2(X, V)=7(X)7(Y), 7(X)=g(X, &),
Vxé=6X, (Uxd)Y=7()X—g(X, Y)E.

Let M2m+ix Mir+2p-2m-1 he the Riemannian product manifold of Sasakian
manifolds, and let 3,=(8!, 71, &1, 21) (resp. X.=($3, 74, &}, Z4)) be the Sasakian
structure on M, (resp. M,). Then actions of ¢, (i=1, 2) on M,;XM, are defined
by ¢,= g)th where P, (resp. P,) is the projection of tangent space of M,xM,
to that of M, (resp. M,), where the tangent space to M, (resp. M,) is identified
with that of M, X (point) (resp. (point) X M,). Similarly, &, and 7. are defined by
P&, =&, PE,=0 (i, j=1, 2, i+j) and n,(X)—yl(PX) on M,xM,.

For any tangent vector X of M,;x M, we define

(2'1) ]Xzﬁng—ﬁz(X)él‘*‘gng‘i‘ﬁl(X)éz-

Then J defines a complex structure on M;xXM, (cf. [4]). Moreover it is easily
checked that Riemannian product metric g on M, X M, is a non-Kaehler Hermitian
metric on the complex manifold.

Let M?" be a complex submanifold of codimension 2p of M,xM, with the
Hermitian structure which is defined as above, and 7 : M—M, X M, be the immer-
sion.

ExaMPLE. Let PXC) (i=1, 2) be complex projective spaces with homogene-
ous coordinates (z¢, ---, z%) and constant holomorphic sectional curvature 4. Let
M be a complex hypersurface of PA(C)XPZ(C) defined by > ,2322=0 and (M, T?)
be the torus bundle over M such that the following diagram is commutative;

(M, T?) — S2r+1x §2n+t

l l

M — P(C)xPy(C).

Then (M, T?) is the complex hypersurfaces of S27*'xS*"*!  Moreover, M is
diffeomorphic to U(n+1)/U(n—1)xT* (Kaehler C-space) and (M, T?) is diffeo-
morphic to U(n+1)/U(n—1) (Complex Stiefel manifold).

We take orthonormal normal vectors Ny, -+, Np to M in such a way that
Nog=JNse-1 (g=1, ==+, p). Suppose that the vector fields £, (=1, 2) are not
always tangent to M. Then there exists such a point x= M that the normal
parts of &, (=1, 2) do not vanish, because &,=J&,. At this point, we can choose
the unit normal frame to M in such a way that, N, (=1, 2) are the normal
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directions of &, (=1, 2) and extend them to local fields. Hence &, can be written
as a sum of the tangential components and the normal components in the fol-
lowing way,

(2.2) E=i&,+rN, (1=1,2).

Then &, and » define vector fields and a function on A/ respectively. Let X be
a tangent vector field on M. Then we immediately get

7,0 X)=8E,, 1:.X)=g(, X),
(2.3) 7,(N)=8E, Ny=r (j=1,2, 0=r=l),
2.4) 7, N0)=0 (=1, 2, k=1, -+, 2p, 15k),

where g is the induced Riemannian metric on M. The transforms &,7.X and
é;N. =1, 2, a=1, 2, ---, 2p) of X and N, by ¢, can be written as

G1x X =150 X+ 222,0%(X)N,
Botx X =150 X+ 322, w (X )N,
F1Na=—1xV o+ Zi11tas N3 ,
FoNo=—isW o+ 5 1wasN; ,

(2.5)

(2.6)

where ¢,’s define skew-symmetric linear transformations of the tangent bundle
of M, while v*, w?*, Va, Wa, ttap and v,z define 1-forms, vector fields and func-
tions on a neighborhood of a point of M respectively. We easily see that g,
and v, are skew-symmetric with respect to @ and 8 and that

gWVea, X)=v4(X), gW. X)=wX) (a=1, -, 2p).

Since JN;=N, and JN,=—N, hold, using (2.1), (2.3) and (2.6), we have

2.7 Vi+Wi—r&=0, V,+W,+r&=0,

2.8) MoV, =1

2.9) M1, 31, p=s, g2, 5=0 (=3, 4, -, 2p).
Similarly, from jNy,_1=N,, and JN,;=—N,,-: (¢=2, 3, -+, p), we have
(2.10) Vioa-1tWaa-1=Visa+Wia=0,

ﬂza—1,2a+vza-l,2a:1 )
(2.11)
ﬂza-l,r+yza—1,7:ﬂ2;9,;'+V2;?,;':O (7’7_':261, 2‘8—1> .

_ Let P be the almost product structure defined in §1. Since P&, =& and
P,§,=&; holds, P&;=¢&, and Pé,=—¢&,. From this, using (1.1), (1.2) and (2.2),
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we get
P& =&—rU,, P&=—&—rU,,
(2.12) u')=r(1=2,1), u*E)=—r(1+2,.),
(2.13) uG)=—rla, uPE)=—rlp (a#l, f#2).

From the definition of P, we have
2.14) P§=§=§.P, P§,=—F,=5.P.
Applying P to JN,=N, and JN,=—N,, using (2.1), we have
U=V=W,y+rE, Uy=—V +W,—r§;,
A i=— o 1Yo 172, Ao a=p, 0= V10— 17,
A a=—Us,atVe,as Ao =M1, 5—VY18, (a#1, B#2),
because of (2.14). From these equations and (2.7)~(2.9), we obtain
U,==-2V,, U,=—2W,,
(2.15) Ao, o=21,,—1, A, 1=2v,,+1,
2.16) 21=0, A o=2t,. (a#2),
21,:=0, ,a=2vy. (a#1).
In the same way, we have, for N, (=3, 4, -+, 2p)
Upy=—ViogesFWager, Usges=Voe—Wsy  (¢=2, 3, -, D),
Asg, B==Maq-1, 5~ V2q-1,p» A2q-1, 8= M2q, 8 Vg, 8 (=1, 2, --,2p).
These equations, (2.10) and (2.11) imply that
Usq=—2V3q-1, Usqr=—2Wy,
Aoq2a=2M2q-1,2¢— 1, Aoq-1,9q-1=2V2q,2¢-1711,
Aoq, 5=220-1,8» Azg-1.7=2Vaq71
Asq,2¢-1=0 (B#2q9, 1#2¢—1).

On the other hand, since 5,@20 (7=1, 2, k=1, 2) hold, using (2.2), (2.5) and
(2.6), we have
¢IEJ‘:7'VJ , 9= W,

(2‘ 17) va(Ej):rﬂa,] ’ wa(‘fj):rl)a,J (a:L 2) Ty 217) .

Since M, and M. are Sasakian manifolds, one obtains that
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Vebi=¢.X, Vib,=6.X.
Then, using Gauss, Weingarten equations and (2.5), we have
V&= X+rA X, Vxb=¢.X+rAX,
(2.18) gradr=V,— A5, =W,— A&,
Va=Acb1+7S1a  (a#]),
Wo=Adbo+71Ssa  (a#2),

(2.19)

where S, are dual vectors of 1-forms s.5(X). Hence
(2.20) div &;=r trace A,, div&,=rtrace 4,.

Here, for simplicity, we have written A, instead of Ay,  for a frame N, N,
-+, Nyp for N, M. In the same way, for any XeT(M), we have

(VXSEJ‘)N&:ﬁJ(Na)P;X_g(PJX’ Na)éj (]:1: 2) (1:1, 2: ) 217) .

Since P,=(I+P)/2 and P,=(I—P)/2, making use of Gauss, Weingarten equations
and (2.2)~(2.6), we get

VxVi=—/2)(X+PX)+1/2)ut(X)é1+¢1 A1 X4 2721(51, o XDV o= 1, « AaX)
ViV a=1/2u*(X)e1+ 1 Aa X+ Z1(5ap(X)V g—pras As X)  (@#1).
VaxW,=—(/20(X—=PX)—(1/2)u*(X)&:+ P As X+ Z0L1(S5, (X)W a— 3, Aa X)
VixWo=—(1/2)u*(X)é:+ P Aa X+ 222:1(sag(X)Wg—v,5ApX)  (a#2).
From above, using (2.12) and (2.13), we obtain
(2.21) div Vi=—rn—(r/2) trace P+(r/2)(1—2; ;)
+ 221051, «(Va)— s, o trace Ay),
div Va=—(/2) A1, o+ 2321(5as(V 5)—ttap trace Ag)  (a#1)
div Wy=—rn+(r/2) trace P+ (r/2)(1+2;.5)
+2024(85, a(W o) —vs, o« trace Ao),
(2.22) div Wa=(r/2)As, 0+ 2 521(Sap(W g)—ves trace Ag)  (a+#2).
Now we prove the following,

THEOREM. Let M,XM, be the Riemanman product of Sasakian manifolds,
and M be its compact complex submanifold with respect to the complex structure
that s defined by (2.1). Then
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(1) & (i=1,2) are tangent to M,
(2) M s a mimimal submanifold of M;X Ms.

Proof. First of all, we calculate divr&, and div r&;. Making use of (2.17)~
(2.20), we get
div 7&,=(&r)+r? trace A,

=g(gradr, &)+r*trace A,
=g(Vi— A&, &)+r?trace A,
=rpy,.—g(Ai&s, &)+r? trace A,
=rpy,—g(W1—7rSs,y, &)+7? trace A.
=rp, o+ Se, (€)% trace A,
In the same way, we have
div 7&,=7v,, 1+ s1,2(r&:)+7? trace 4, .
Hence, making use of (2.7), (2.10), (2.15), (2.16), (2.21) and (2.22), we have
0=div V,+div W,—div &,
=—rn—(r/2) trace P1+(r/2)(1—4;,1)
4+ 2022451, (Vo) — 1, o« trace Ag)
L (7/2) A5, 17 2221(51, « (W o) —v1, o trace Ag)
— 7, 2—Ss, 1 (&) —7r? trace A,
=—rn—(r/2) trace P—(r/2)(2;, 1+, ;) —trace A, .
Consequently, we get
(2.23) trace A,=—r(n+(trace P)/2+ (2,14 25,.)/2) .
Similarly, we have
0=div V,+div W,+div r&,
=—(r/2)A1, 2+ 2221(S2, o(V o) — o, « trace A,)
—rn+(r/2) trace P+r(142,..)/2
F 3022 1(Sp, (W) —vs. o trace Ag)
F7ve,1+81,2(rEy)+1 trace A,
=trace A,—rn-+(r/2) trace P+r(Ay,1+2s.2)/2 .
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Hence we obtain

(2.24)

trace A,=r(n—(1/2) trace P—(A,.1+25.5)/2) .

By quite the same computation, using (2.10) and (2.11), we have

and

0=diV ng_l"l—div T/qu_l
—:—(7’/2) /zl,?q—-l'Jl'zip:I(sﬁq—l,a(I//r>_,U‘zq~1,a trace Aa)
+(7’/2) 22,2q—1+22p=1(32q—1,a(I/Va)-‘VZq—l,a trace Aa)

:(7’/2)0\2,2q—1—)~1,2q—1)"trace Azq_T’(qu—l,z(él)_32q—1. 1(5)),

0=div Vyy+div IV,

=(r/2)(2s, 2q_)~1, 2q)-trace /12q—1_7'(52q, 2(51)’“5&1, 1(E9)) .

Consequently, we get

(2.25)
(2.26)

trace Azq—x =r((4,, 2q_)~2, 2q)/2_ Saq,1(82)+ Sagq, 2(£1)),

trace AZq:r((22,2q—l_ ‘I,2q—1>/2'—52q~1,2(§l)+32q—1,1(£2>)

(q=2,3, -+, 2p).

Then from (2.20), (2.23) and (2.24), we obtain

div &,—div &,=r(trace A,—trace A,)=2r%n .

Since M is compact, by Green’s theorem, we have

0:5 (div &,—div @)*1:24 e
M M

where *1 is a volume element on M. From this, »*=0 on M, that is §,€7T,M
(7=1, 2). Hence by (2.23)~(2.26), trace A,=0 (a=1, 2, ---, 2p). Consequently,
M is a minimal submanifold.

(1]
£z1]
£3l
[4]
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