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CHARACTERIZATIONS OF SPACES OF HOLOMORPHIC

FUNCTIONS IN THE BALL

BY FRANK BEATROUS, JR. AND JACOB BURBEA

Abstract

Let / be holomorphic in the unit ball of Cn. Several equivalent criteria
for / to belong to the Hardy space H? as well as the weighted Bergman
space A\, 0<p<co, q>0, of the ball are established. In the one variable
case, some of the above conditions reduce to those of Yamashita, character-
izing Hardy spaces of the unit disk. In addition, various identities for the
norm of /, in terms of a certain integrated counting function and certain
Lusin characteristics, are obtained.

§ 1. Introduction.

The purpose of this paper is to give alternate characterizations of certain
spaces of holomorphic functions in the unit ball B of Cn. In particular, it will
be shown that for 0<p<oo, a holomorphic function / on B is in the Hardy
space HV{B) if and only if

(1.1) (

where dυ denotes radial derivative

In fact, this result will be obtained as a limiting case of a more general result
on weighted Bergman spaces (Theorem 5.2). In the one variable case, condition
(1.1) reduces to the condition of Yamashita [6] characterizing Hardy spaces of
the unit disk.

In addition to the results alluded to above we also give characterizations of
weighted Bergman and Hardy spaces in terms of an integrated counting function
and in terms of certain Lusin conditions [2]. The present results extend pre-
vious results of Piranian and Rudin [3] and, more recently, of Yamashita [6]
for the Hardy spaces of the unit disk. We also establish certain norm identities
(Theorems 3.1 and 3.3) of the Hardy-Stein-Spencer type (see [1, p. 42] for the
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unit disk) in the unit ball B.
Section 2 contains the notation and the preliminaries of this paper. In sec-

tion 3 we establish the above mentioned identities of the Hardy-Stein-Spencer
type in B (Theorems 3.1 and 3.3). Section 4 is devoted to a discussion on the
Lusin property in the ball. An alternative expression for this property is
described in Theorem 4.3. The main result of this paper is in section 5 (Theo-
rem 5.2 and Corollary 5.3).

§ 2. Preliminaries.

Throughout this paper, n will be a fixed integer, and Cn will be the vector
space of ordered n-tuples z=(zu •••, zn) of complex numbers, with inner product
and norm, given by

<z,ζ>=±zJζ1, \\z\\=<.z, zY>\

For r>0, B(r)=Bn(r)={z^Cn: | |z| |<r} denotes the ball of radius r, centered at
the origin, in Cn. The unit ball B=Bn in Cn is then jB=5n(l). The letter v
will stand for the Lebesgue measure of Cn while σ is the surface measure on
the boundary dB of By normalized so that σ(dB)—l. The class of all holomorphic
functions on B will be denoted by O(B).

For q>0, we define

(2.1) dvq(z)=

which is a probability measure on B. By an elementary calculation in polar
coordinates one shows that the limit as #->0+ of dvq is

(2.2) dvo(z)=dσ(z)

For 0<£<oo and for feθ(B), we define

(2.3) Mp(r, /) = [
JoB

(2.4) 11/llpΞ

and « ϊ lip

B\f{z)\Hυq{z))

With these definitions we have

(2.6) ||/||S.,= B{1 φ jV^-'d-rψ-'M^r, f)dr,

where B{n, q) is the usual beta-function. Thus, by continuity,
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(2.7) ll/ll,= ll/ll,..Ξlim||/||Piβ.

We may now define the weighted Bergman space

Ap(B)={ftΞθ(B):\\f\\PιQ«χ>} (0<£<oo, ^ 0 ) .

Thus it follows that AP(B) is the ordinary p-Hardy space HP(B) and AV{B) is
the ordinary p-Bergman space AP(B).

For z=Oi, •••, zn)^Cn, we write

for the partial complex derivatives, and

for the complex-gradient. Moreover, the radial-derivative is defined as

It follows, in particular, that if n = l and / is holomorphic at z^C, then dvf(z)

Let 0<ί<cχ) and let f<=O(B). Then

If, in addition, fp/2 is well-defined (i.e. either p is an even integer or / is free
of zeros), then dvd,\f\p=\dvf

p/2\\ On the other hand, the function

(2.8) /ίW=-|lkl|-Ί/Wlp/2-Ί3v/WI

is well-defined (possibly infinite) and non-negative. This definition agrees with
that of Yamashita [6] when n—l, and

For 0</)<co, we define

(2.9) dμp(ω) = ^(

where m is the Lebesgue area measure. Since p>0, μp is a rotationally in-
variant non-negative measure on C and belongs to L\0C(C). Its Cauchy-transform
is given by

/2p(ζ) = lim[ {ζ-ωY'dμ^ω) (ζe=C).
R^oo

By expanding the integrand in geometric series in the disk | ω \ < | ζ | and in the
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annulus \ζ\<\ω\<R, and integrating term by term, we obtain

(2.10) /2,(0)=0; /2p(O=ίlCIV4ζ (ζeC-{0}).

The unit disk Bx in C is denoted by Δ while Δ r denotes the disk Bx{r) of
radius r, r>0. For f^O(B) and ζ^dB, we define the s//c# function
by ft(X)=f(XQ, 2 E A . SimilarlyL for fς=O(B) and ΛGΞΔ, the ώ'to^n f x
is defined by f x(z)—f{λz), z^B. The apparent similar notation for these two
different notions should cause no confusion.

Let ω e C and O ^ r ^ l . For / G ( 5 ( Δ ) , we let n / r , ω) be the number of zeros
of the function f(-)—ω in Δr. If, on the other hand, / G O ( B ) , B~Bn, we let

(2.11) n/(r,ω) = f n / ζ(r, ω)dσ(Q,
JoB

where fζ, ζ^dB, is the slice function of /. We now use the integration by
slices identity (see, for example, [4, p. 15]),

(2.12) f ( ) ( ) \
JdB JdB

to prove:

PROPOSITION 2.1. Let ω e C , 0 ^ r < l , and let ft=O(B). Then

Proof. For ζ^dB, we consider the slice function fζ(λ)=f(λζ), λ^A. Thus
λfί(λ)=dvfύλ)=dvf(λζ). Moreover, by definition

N Γ ,r 1

nf(r, ω)~\ dσ{Q ——

The result now follows from (2.12).
Let 0</)<oo, 0 ^ r < l and / e θ ( β ) . We define

(2.13)

It follows from (2.9)-(2.10) and Proposition 2.1 that

(2.14) Nv{r, ^ ^

We denote by {eu •••, ̂ n} and V^Vin) the standard orthonormal basis and
the group of all unitary transformations, respectively, of Cn. Since σ is
^U-invariant, we have (see [4, p. 15])
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(2.15)

where ζ is an arbitrary point of dB. In particular, ζ may be chosen to be
ζ—ek (&=1, •••, n). Another related identity is as follows: Let / be a function
of one complex variable. Then, an application of Fubini's theorem (see [4, p.
15]) shows that

(2.16) ( /«*, O)dσ(z) = ̂ ^-\ a-\ω\2)n-2f(ω)dm(ω)
JdB 7ΐ J Δ

for any ζ^dB=dBn. This identity is also correct when n = l . The latter can
be seen as a consequence of (2.1)-(2.2) or by letting n-»l and using ΓHδspital
rule.

When n = l we have the following triple identity due to Hardy, Stein and
Spencer (see [1, p. 42]):

PROPOSITION 2.2. Let 0<ρ<oo, 0 < r < l and / G O ( Δ ) . Then

r, ω)dμp(ω).

For q^O and Orgίrgl, we introduce the non-negative functions of t:

(2.17) Iq(t)=Ii(t:n)=π-?—-\1p*n-\l-p*ridp (g>0)
ij\n, q) jί

and

(2.18) Jq(t)=Ut:n)= β{^ ^y^Kl-pΎ^logjdp (q>0),

and, by continuity
h(t) = l, Ut)=0.

Thus
7 ρ(0)=l, 7 ί ( l)=/ ϊ ( l)=0 (ί>0)

and

(2.19) Jq(0)= Γ
L %

To prove the last relation, we write ψ(s) for Γ'(s)/Γ(s), s>0. Then, by [5,
p. 262],

-2B(n, ί)/β(0)=jy-1(l-p)«-1log pdp
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1
= h m — {B(n + ε, q) — B{n> q))

ε-»0 £

= B(n, q){ψ(n)-ψ(n+q)\=-B(n,

and (2.19) follows.
We now define

(2.20) Kq(t)=Kq(t: n ) = - {(log ί)/β(ί)+Λ(0}

Thus, by (2.17M2.18),

(2.21) Kq(t)= B{^ ^ - \ l - p ^ ' 1 log j-dp.

The following proposition is obtained by applying ΓHδspitaΓs rule to the
above definitions.

PROPOSITION 2.3. Let ς^O. Then

Γ(n)Γ(q+ί) '

limfl t)-la+1)f(t)-2a qΓ^n+q)
limu t) Jg{t)-Z Γ { n ) Γ { q + 2 )

and

Γ(n)Γ(q+2) *

§3. Hardy-Stein-Spencer Type Inequalities on the Ball.

The following theorem constitutes an extension of the identities of Hardy,
Stein and Spencer in Proposition 2.2 to the ball B—Bn.

THEOREM 3.1. Let f<Ξθ(B), 0<^<oo and 0 < r < l . Then

TZ JB(r)

Np(r, f)

Proof. For a fixed ζ^dB we consider the slice function fζ(λ)=f(λζ),
Thus fr<=Q(A) and

We now apply Proposition 2.2 to the function /ζ and express the result in terms
of /. This gives
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p ~ ^ I f(peiθ01 p~21 dvf(peiθ012dθ

, ώ)dμp(ω).

Letting ζ now vary, we integrate the last identities with respect to σ, and use
the integration by slices identity (2.12) and Fubini's theorem. The theorem
follows now at once by using (2.3), (2.8)-(2.11) and (2.13)-(2.14).

As a consequence of this theorem we obtain the following result. For α>0,
we use the standard notation of log+α to stand for max (log α, 0) and XA for the
characteristic function of a set A.

COROLLARY 3.2. Let feo(B), 0<£<oo and 0 < r < l . Then

f)dp

Proof. Integrating the first identity of Theorem 3.1 and using Fubini's
theorem, we obtain

Mξ(r, / ) —

Now,

and thus

— \ ί'^αiεll.ΌΛCO.roCO"*
Jo

= l o ε + ι R
This gives the first identity of the corollary. The second identity is an im-
mediate consequence of the second identity of Theorem 3.1. As for the third
identity, we integrate the third identity of Theorem 3.1. This gives

, / ) - I /(0) I *=p\y»-ip-*»dp \dB

 dvj^ 1 f(pQ I *dσ(Q
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and the third identity of the corollary follows. This concludes the proof.
The last corollary, coupled with the notation of (2.1)-(2.7) and (2.17)-(2.21)

yields the following result which is of interest on its own right.

THEOREM 3.3. Let feΞAξ(B) with 0<p<oo and q^O. Then

-Wp(/o, f)Iq(p)dp

In particular, when q=0, i.e. when f<=Hp(B) = Aξ(B), then

{/i(» | | | |- (-»lg

Of f)dp

Proof. The particular case of ^=0 is an immediate consequence of Corollary
3.2 and (2.3)-(2.4). The more general case of <?^0 is obtained from Corollary 3.2,
(2.6), (2.17)-(2.21) and Fubini's theorem, and by noting that

n-ia-rr-1\og+

]fT]dr = B(n, q)Kq(\\z\\)

and that, for ^^Ikll, z^B,

Jo ' Jo

The proof is now complete.

§4. The Lusin Property in the Ball.

For ζ^dB we denote by Da(ζ), a>0, the region

When αsΞl, Da(Q is the empty set while for α > l , Da(ζ) is the customary



44 FRANK BEATROUS, JR. AND JACOB BURBEA

Korάnyi approach region (see [4, p. 72]) and is a subdomain of B. Moreover,
Da{Q is monotonically increasing to B as α->oo. Evidently,

(4.1) U(Da(ζ))=Da(UQ

Let α > l , 0<£<cχ) and 9^0. For fϊΞθ{B) and-ζe9B, we define

(4.2) Lp(ζ : ? ; / ; « )

and

(4.3) -£*(/:<?,

We say that / has the (p, q)-Lusin property with respect to a if Xp(f :q, a)<oo.
The 'U-invariance of this property can be read off from the following proposi-
tion :

PROPOSITION 4.1. Let a>l, 0<£<oo and q^. Then for f^O(B) we have:

-CP(f : q, α)

where ζ0 is an arbitrary point of dB. Moreover, for any ζedf? and any
we have

Lp(Uζ:q;f;a)=Lp(ζ:q;f°U;a).

Proof. The first identity is an immediate consequence of the definition (4.3)
and the identity (2.15). As for the second identity, we first prove that

(4.4) 3v/(t/ω)=3,(/ t/)(ω)

for any ω^B and any U^HJ. Indeed, for ISj^n and z—Uω^B the chain-rule
gives

and thus

It follows that

dvf(Uω)=<7f(Uω), TM>=<JJl{f*U){fi>), Uω>

= <7(/o£7)(ω), ω>=dv(foU)W

and (4.4) is proved. Now, from (4.4) and (2.8) we deduce that

It follows from (4.1)-(4.2) that for any ζ^dB and any t7e<U,
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Lp(Uζ:q;f; « ) = J ^ C)) {/£(*)} 2 (1-Ikl l 8 ) g + 1 " n dv(z)

= ( {f*(Uω)}2a-\\Uω\\y+1-ndv(Uω)
JDa(ζ)

Z>α(ζ)

This concludes the proof.
For any α > l and zef?, we define

(4.5)

and

(4.6)

We note that

(4.7)

and, of course,

In particular,

Qa(z) = \ζ^dB: |1

XDaO(z)=XQaω

U(Qa(z)) = Q

ωa(Uz)=ωa(z)

For 2G5, we choose a U^HJ with i/e2r=||^||ei, and thus ωα(z)=α>α(||2r||0i). It
follows that ωa is a non-negative radially-symmetric function on B. Accordingly,
we have

(4.8) Fβ(r)Ξo>βfe)=α

This quantity is essentially proportional to (1—r2)71. In fact, we shall prove:

PROPOSITION 4.2. For a>l, the function Ga(r: n ) s F e ( r ) r 8 ( n - 1 ) ( l - r 8 ) - n zn-
creases from 0 to a finite positive limit Ga(\\ n) as r increases from \a—2\/a to
1. Moreover.

and/

G β ( l : n) = ̂ ^ ( -

/n particular, Ga(X:n)^π"1[_a{a—l)/2']n~1 for every n^l.

Proof. By (4.8),

Fa(r)=\ XQa(rei)(Qdσ{Q.
J oB
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Here ^Qa(re1)(O=g«eu ζ » where g is a function of one complex variable λ
satisfying g(λ)=l if \l-rλ\<a(l-r2)/2 and g(λ)=0 otherwise. It follows that
Fa(r)>0 for \a-2\/a<r<l and F « ( | α - 2 | / α ) = 0 . Moreover, an application of
the identity (2.16) to the present function g gives

'.<D=^=M (1-1
where

(\a-2\/a<r<l).

We note that the set Ea(r) is empty for r^\a—2\/a. Also, the case of w=l
is simpler and may also be obtained by letting n->l in the expression for Fa(r).
The change of variable

1 λ_ 1 a 1-r2

r ω 2 r

constitutes a conformal mapping of Ea(r) onto the region given by

It follows that

(

—£ <r^\ (|α-2|/α<r<l).

\ω\-2ndm(ω)

and hence

As r increases, both the integrand and the domain of integration £*(r) of the
last integral increase. It follows from the monotone convergence theorem that
the limit of Ga{r:n), as r->l, exists and equals

The proposition now follows by a routine calculation of the last integral.
The following theorem gives another characterization of the Lusin property.

THEOREM 4.3. Let a>l, 0<p<™,

any f^O(B) we have

a(r0)[

^O and \a-2\/a<ro<l. Then for

f \q, a)
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where Ga(r) = Ga(r :n) and Λ(r)= {Z<ΞΞB : | | z | | > r } , \a-2\/a^r^l.

Proof. By (4.2)-(4.3), Fubini's theorem and (4.5)-(4.7)

( *)} 2 ( 1 - lk||2rJ"»dv(z),
J B

and thus, by (4.8),

Xpif .q, α ) = ( {/?(«)} M - l l z D - ' - ί αdklDdφ).

The theorem now follows from Proposition 4.2 and by observing that ,Fα(||2||)=0
for \\z\\^\a-2\/a.

Let α > l , 0 < ^ < O D and let ftΞθ(B). We say that / has the p-Lusin prop-
erty with respect to a if / has the (/>, O)-Lusin property with respect to a.
When w=l, this definition reduces to that of Piranian and Rudin [3] for p—2,
and to that of Yamashita [6] for any 0<£<°o.

§ 5. Criteria for the Space Aξ(B).

We shall now prove the main results mentioned in the introduction of this
paper. Before proceeding, however, we shall prepare the following lemma:

LEMMA 5.1. Let 0<p<co, q^O and let f^O(B). Then

[
and

J/-W^, f)Iq{p)dp<™

for every 0^r<l .

Proof. For any 0 ^ r < l , the dilation fr is in Λξ(B). It follows from Theo-
rem 3.3 that

™>πn(\\fr\\p

P,q-f(0)\p)/2Γ(n)

However, by (2.8),
(Λ)?(z)

Similarly, by Proposition 2.1 and (2.13)
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Np{p,fr)=Np{rp,f).

Thus, by the change of variables ω=rz and t=rp,

B(r)

It follows that

(5.1)

and

(5.2)

for every 0 < r < l . We now show that

(5.3) f {f*(z)}*\\z\\-M-»dv(z)<o=
JB(S)

for every 0 < s < l . It is sufficient to show this for 1/2^ s < l . In this case, we
let r = ( l + s ) / 2 and thus l / 2 ^ s < r . Then, since by (2.21) Kq is a positive and
decreasing function on (0, 1), we obtain from (5.1)

B(r)

B(S)

This proves (5.3). In a similar manner, since by (2.17) Iq is a positive and
decreasing function on (0, 1), we obtain from (5.2) that

(5.4)

for every 0 < s < l . Let now z^B{r), 0 < r < l . Then, by (2.21),



CHARACTERIZATIONS OF SPACES OF HOLOMORPHIC FUNCTIONS 49*

or

This, together with (5.1) and (5.3) gives the first assertion of the lemma. The
second assertion follows in a similar fashion. Indeed, by (2.17),

- V rf2n-l(-l_f2\q-lr]f

B{n,q))p % U t } d ΐ

< Έ 7 τ [
"" B(n, q) it

and thus

Again, this with (5.2) and (5.4) establishes the second assertion of the lemma,
and the proof is complete.

THEOREM 5.2. Let 0<p<oo, q^O and f^O(B). Then the following state-
ments are equivalent:

( i ) \\f\\p,q<00, t-e. f is in the class Λξ(B)

(ii) [ p p
Jo

(iii) ( \β{
J B

(iv) Xp(f;q, α)<oo for every a>\, i.e. f has the (p, q)-Lusιn property with
respect to every a > 1

(v) Xp(f;q, a)<oo for some a>l, i.e. f has the (p, q)-Lusιn property with
respect to some a>l.

Proof We shall show that (i)«=Kii), (i

ii): By Theorem 3.3, (i) is equivalent to

(5.5)

On the other hand, by Proposition 2.3 there exist an roe(O, 1) and constants
Cj=cj{r0)>0 (/=l, 2) such that

(5.6) Cl{l-

Moreover, by Lemma 5.1,

(5.7) ζp-'N.ip, f)Iq(p)dp<
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and thus

\r°Np(p,f)dp<oo.
Jo

In particular,

(5.8) [°Np(ρ, f)a-pΎdp^\r°Np(p, f)dp<co.
Jo Jo

Using (5.6)-(5.8) we find that (5.5) is equivalent to (ii), and the assertion follows.

(i)φ=Kiii): As before, by Theorem 3.3, ( i ) is equivalent to

(5.9) {/ί(z)}Ίkl|-f("-1>Aϊ(lkll)dw(z)<oo,
J B

and by Proposition 2.3 there exist roe(O, 1) and ty=c/ro)>O (/=1, 2) such that

(5.10) d( l

Again, by Lemma 5.1,

(5.11) ( 1
JB(rQ)

and thus

^Bir){ft(z)}2dv(z)<oom

In particular,

(5.12) ( {f{)}\\\r)

Therefore, by (5.10)-(5.12), (5.9) is equivalent to (iii), and the assertion follows.

(hϊ)=Hiv): This follows from Theorem 4.3, (2.21) and Lemma 5.1.
(iv)=Kv): This is a triviality.
(vH(i i i ) : This follows from Theorem 4.3, (2.21) and Lemma 5.1.

Letting q=0 in this theorem gives the following result which was alluded
to in the introduction.

COROLLARY 5.3. Let 0<p<oo and f^O(B). Then the following statements
•are equivalent:

( i ) I l / U ^ 0 0 , i.e. f is in the class HP(B);

(ii) \ p (
J 0

(iii) [ {/?(
J B

(iv) -Cp(f' - 0, α)<oo for every a>l, i.e. f has the p-Lusin property with respect
to every a > 1
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(v) -Cp(f : 0, a)<oo for some α > l , i.e. f has the p-Lusin property with respect
to some a>l.

When n = l , the equivalence of statements (i), (iii), (iv) and (v) of this
corollary was proved, by using different methods, in Piranian and Rudin [3] for
the case of p—2 and in Yamashita [6] for the more general case of 0<p<co.

It should also be noted that statement (iii) of Theorem 5.2 may be replaced

by \ {/?fe)}Ίkll2*d-lklΓ)g+1^(z)<oo for any fe^-(n-l). Indeed, for any such
J B

k the integrand is locally integrable on B by virtue of (5.3). Thus the con-
vergence of divergence of this integral is determined by the behaviour of the
integrand near dB. In the particular, #=0 and k—2, gives, by using (2.8),
condition (1.1) of the introduction, which is equivalent to statement (iii) of
Corollary 5.3.
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