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1. Introduction.

Let A be a second-order uniformly elliptic operator in a bounded domain D.
Consider the eigenvalue problem

(1.1) Λu+λu=0

with mixed boundary conditions:

u=0 on Γx

<1 2) du
-~—]

Γa{x)u—0 on Γ2,

where n stands for the outer normal and 3D=Γ1uΓ2. Let 20 be the first eigen-
value. When A is symmetric, J. Barta proved that

(1.3) inf {-Au/u} ^λo^$up{-

where u is any positive C2-function satisfying the same boundary conditions (1.2)
(see [1]).

When A is nonsymmetric, M.H. Protter and H.F. Weinberger [7] proved
the left hand of (1.3) for any function u satisfying

dn

u>0 on D\jdD

on Γ 2 .

Let a{x) be positive. Then there exists a diffusion process with the gener-
ator A whose domain is the collection of C2-functions satisfying (1.2).

For a Markov process, we can define the spectral radius λQ by

(1.5) Λ-lim-4-logllTJ,

where {Tt} is the associated semigroup and ||Tί|| = suρ Ttl(x).
X

Our main purpose is to prove the inequality (1.3) for the spectral radius of
a Markov process satisfying some conditions. We will show that the spectral
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radius is equal to the first eigenvalue if the first eigenfunction exists. Thus as
a corollary we can see that the inequality (1.3) holds for a nonsymmetric diffusion
process. For the proof, the existence of a stationary measure will play a funda-
mental role.

2. Notations.

Let (Px, Xt) be a right continuous strong Markov process on a state space
S which is a locally compact separable Hausdorff space. Then the resolvent
operator Ga of (Xt) is defined by

(2.1)

where u is a bounded measurable function, and σ is the life time of (Xt). Let
S be the one point compactification of S, and denote

(2.2) S=Su{d}.

In the probabilistic sense, 3 is called the death point and related to the life time
σ by

Xt^S for all t<σ and Xt=d for all t^σ.

We define the spaces of real-valued functions with the supremum norm as
follows:

(2.3) C(S)={u; u is bounded continuous on S},

C + ( 5 ) = { M G C ( S ) ; U^O and u(x)>0 for some XEΞS},

B(S)={u; u is bounded Borel measurable on 5},

B+(S)={U<ΞB(S); U^O and u(x)>0 for some

We also define the spaces of measures on the topological Borel field as
follows:

(2.4) M(S)={m; m is a bounded Borel measure on 5},

Π{S)—{P', P is a probability measure on S\.

In the most of the paper we assume the following conditions.

(A. 1) (Xt) is a Feller process, that is Ga : C(S)-+C(S).

(A. 2) lim Gα l(x)=0 (if S is non-compact).
x-+d

If S is compact, we demand Pα r(σ<co)>0 for some X G 5 .

(A.3) For every non-void open set G in S and x e S , Px(σG<cχ))>0,

where σG is the first hitting time for G.
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We set Gau(d)—0 for every U*ΞB(S). Under the conditions (A.I) and (A.2),
we can regard Ga as the operator on C(S). We denote by G* the dual operator
of Ga on M(S). Note that the condition (A. 2) implies that

(2.5) G*m(d)=0 for every

and the condition (A. 3) implies that

(2.6) Gau>0 for every M E C + ( 5 )

(support(G*ra)=S for every raeM(S)).

LEMMA 2.1. For every u^B(S), we have

^/{n-l)!.

Proof, Though this formula is well-known, we give a proof for the con-
venience. Since ||Gαw||rg||w||/α, we can define

v=-^XnGn

au for \λ\<a.
n=i

By the resolvent equation, we can easily see

Therefore we have

Σ λnG»u=λ
71 = 1

3. Spectral radius and Barta's inequality.

At the first we consider the semigroup Tt and the resolvent Ga as the
operators on B{S).

Since \\Tt\\~supx^s{Pχ(.t<σ)} is submultiplicative in t, there exists the limit

-3.1) ^o=lim—flog| |T t | | ,

which will be called the spectral radius of the Markov process (Xt).

THEOREM 3.1.

(3.2) ; 0 = l i m | | G S | | - 1 / n - α

{Λ; supEx\_eλσ~\<^}.
x(ΞS
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Proof. We denote the right hands of (3.2) by λG and λF respectively. Note
that limn_oo||G2||-1/7i is the spectral radius of Ga. Therefore T^=Σn=iU+α) n " 1 G2
is a continuous operator on B(S) for any λ<λG. From Lemma 2.1, the norm is
given by

| | | | p p {
X^S X<ΞS

Thus we have λG^λF.
If λ<λF, we have

0**117*11=*" supP

This implies λ^λ0 and so λF^λ0.
If Λ<Λ0, we have | |7 t | |^exp(—^) for large t Since

Jo

we can easily obtain λf^λG. Thus the theorem is proved.

COROLLARY 3.2. The following conditions are equivalent:

( i ) *o>0,
(ii) | | 7 e | | < l for some t>0,
(Hi) | | G Λ | | < l / α for some a>0,
(iv) supxEx

Remark 1. The expression λF is due to A. Friedman. He proved that λF

is the principal eigenvalue, when (Xt) is a smooth diffusion process and S is a
bounded domain in Rn with C2-boundary (see [3]). Note that the equality (3.2)
does not hold for a semigroup on C(S) in general.

THEOREM 3.3. For any u<=B+(S), we have

(3.3) Λ^sup {u/Gau} -a.

Suppose that u is uniformly positive on S. Then we have

(3.4) inf {u/Gau}-a^λ0.

Proof. Set λ=suτp{u/Gau\. Then we have u^λnG%u. Thus for some
we have

0<u(xy/n^λ\\G2\\1/n\\u\\1/n,

which proves (3.3). Set λ='mf {u/Gau}. If λ=0, then (3.4) is trivial. If
then we have

0<(inf u)-λn

Therefore we obtain
0<(inf M)1/n
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which proves (3.4).

Remark 2. By Theorem 3.3, we have shown that the right hand side of
the Barta's inequality (1.3) holds for every Markov process. In particular (3.4)
implies

However, for the proof of (3.4) for every positive function u, we need the con-
ditions (A. 1)-(A. 3) for the Markov process.

LEMMA 3.4. Let the conditions (A. 1) and (A. 3) be satisfied. In order that
20 be positive, it is necessary and sufficient that

(3.5) l imsupG a l( j t)<l/a
x->d

(or Px(σ<oo)>Q for some x^S if S is compact)

Proof. From Corollary 3.2 the necessity is obvious. For the sufficiency, we
must prove sup G Λ l < l / α . Suppose that | | G Λ | | = l / α . Since Gal is continuous,
there exists a point y^S such that GΛl(;y) —1/α by (3.5). Let k —
(lim supx^dGal(x)+a'1)/2 and G—{%; Gal(x)<k}. By the strong Markov prop-
erty, we have

Py(σG<oo),

which contradicts to the assumption (A. 3). If 5 is compact, the above condition
implies that G~{x; Gal{x)<a~1—ε} is a nonvoid open set for some ε>0. If
\\Ga\\-a~1, then we have for some y

which completes the proof.

LEMMA 3.5. // λ0 is positive, then we have

(3.6) sup £ar[expWo^)] = + o o .
X

Under the conditions (A. 1) and (A. 3), we have

(3.7) Λ< + co.

Proof. Define

Tλ =^\ dtexp(λt)Tt.
Jo

Then we have
| |Γ,|| = (sup £,(*'*)--1)/*.

X

Suppose that sup £ x[expUoσ)] be finite. Then Tx is a bounded operator. Since
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T ^ + ^ Σ S - i β 1 1 " 1 ^ , Tλo+ε is bounded for 0 < ε < l / | | 7 \ | | . However this means
sup£*[exp((Λ0+ε)σ)]<+oo, which is a contradiction. Let (A.I) and (A.3) be
satisfied. Let u be a continuous function with compact support. From (2.6) and
Theorem 3.3, we obtain (3.7).

By Lemma 3.4 and 3.5 we know that λ0 is a finite positive number under
the conditions (A. 1)-(A. 3). Then the Green operator G=G0 is continuous
operator on B(S) (or C(S)). In the following, we use G instead of Ga.

THEOREM 3.6. Assume that the conditions (A. 1)-(A. 3) be satisfied. Then
there exists a probability measure P on S such that

(3.8) P=λ»G*Py

where G* is the dual operator of G.

Proof. For m^M(S), we define

If λ<λ0, we have

(3.9) Kλm=m+λG*Kλm

and

(3.10)

From Lemma 3.5, we can take the sequences {xn} and {λn} such that λnϊ/<>
and

(3.11) an=EXn[exp(λnσ)']->+oo as n-+oo.

Let mn be the Dirac measure δ(xn), and put

Pn—Kλnmjan.

From (3.9) and (3.10), we have Pn^Π{S) and

(3.12) Pn=λnG*Pn+mn/an.

Since Π(S) is compact in the weak*-topology, we can take a subsequence of {Pn}
which converges to some element P of Π(S). From (3.11) and (3.12) P must
satisfy (3.8). By (2.5) P is a probability measure on S. The theorem is proved.

Remark 3. For the existence of the above P, the condition (3.5) is not
sufficient. To see this, consider the semigroup e~ktTt, where (Tt) is a conser-
vative semigroup. Then λo—k and from (3.8) P must be a finite invariant measure.
However it does not exist in general.
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In the remainder of this paper, we always assume the conditions (A. 1)-(A. 3),
and P denotes the above probability measure.

THEOREM 3.7. We have

(3.13) mf{u/Gu} ^λo^sup{u/Gu} for every M E C + ( 5 ) .

Proof. Set λ—'mf{u/Gu\. Since u^λGu, we have

u dP.

By (2.6), we obtain λo^λ. Similarly we can get the right hand inequality.

Remark 4. Since A = —G" 1, (3.13) is identical to (1.3). For the left hand
inequality, we have

(3.14) sup inf(w/Gω)=Λ0.
e c ( S )

To see this, let u—Ex\_eλσ~\ for λ<λ0. Then we have u=λGu + l, and so
u^λGu, which proves (3.14).

Now we study the connection between λ0 and the first eigenvalue.

DEFINITION. A bounded continuous complex valued function u is called an
eigenfunction if it is nontrivial and satisfies

(3.15) ιι=λGu,

where λ is some complex number which we call an eigenvalue.

THEOREM 3.8.

(i) // there exists a nonnegative eigenfunction, then the eigenvalue is λ0.
(ii) Suppose that λ0 is an eigenvalue. Then problem (3.15) has a unique normal-
ized nonnegative eigenfunction. The eigenvalue λ0 has the smallest real part of
all eigenvalues and is simple.

Proof, (i) is clear from (3.13). Let 2 be a complex number and Tλ

t. By the definition of λ0, Tλ is bounded if Re(λ)<λ0. Therefore,[
Jo

if λ is an eigenvalue then we have Re(λ)^λ0. Let u=λ0Gu. Since λ0 is real,
we can assume that u is a real function. Let w+=max(w, 0). We can assume
that u+ is nontrivial. Then we have

Thus we get λQGu+^u+. On the other hand, by virtue of Theorem 3.6, we
have
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which implies λ0Gu+=u+ by (2.6). From (2.6), u+ is positive on S and so

u+—u. If v is another eigenfunction, we set

w<j=u\v dP—v\u dP.

Then w is also an eigenfunction and w^O by the above argument and we have

dP=0,

which implies w—0. The uniqueness is proved.

Recall that if λ0 is not simple, there exists a natural number ni>2 such that

U 0 G-J) n M=0 and (λoG-D^uΦO,

where / is the identity operator. Set v=(λ0G—I)n~1u and w=(λ0G—I)n~2u.
Then v is an eigenfunction. On the other hand, we have

\v dP=\λ0Gw dP-\w dP=Q,

which is a contradiction. The theorem is proved.

Remark 5. The existence of the positive eigenfunction can be found in
M.A. KrasnoseΓskii [6] for the smooth diffusion process in a bounded domain
with smooth boundary. The uniqueness and the simplicity of the first eigen-
function are also proved in it by a different manner.
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