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AN INEQUALITY FOR THE SPECTRAL RADIUS
OF MARKOV PROCESSES
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1. Introduction.

Let A be a second-order uniformly elliptic operator in a bounded domain D.
Consider the eigenvalue problem

(1.1) Au-+2u=0
with mixed boundary conditions :
u=0 on I}
42 Ou 0 I,
éz-l-a(x)u— on I,

where n stands for the outer normal and 0D=1I7UJ, Let 2, be the first eigen-
value. When A is symmetric, J. Barta proved that

1.3) inf{—Au/u} <A, Zsup{—Au/u},

where u is any positive C>-function satisfying the same boundary conditions (1.2)
(see [1]).

When A is nonsymmetric, M.H. Protter and H.F. Weinberger [7] proved
the left hand of (1.3) for any function u satisfying

u>0 on DwaD

d
%—.La(x)uzo on [3.

Let a(x) be positive. Then there exists a diffusion process with the gener-
ator A whose domain is the collection of C*functions satisfying (1.2).

For a Markov process, we can define the spectral radius 4, by

1.4)

L5 2o=lim—<-log| T\,

where {T,} is the associated semigroup and ||T,|=sup T,1(x).

Our main purpose is to prove the inequality (1.3) for the spectral radius of
a Markov process satisfying some conditions. We will show that the spectral
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radius is equal to the first eigenvalue if the first eigenfunction exists. Thus as
a corollary we can see that the inequality (1.3) holds for a nonsymmetric diffusion
process. For the proof, the existence of a stationary measure will play a funda-
mental role.

2. Notations.

Let (P, X,) be a right continuous strong Markov process on a state space
S which is a locally compact separable Hausdorff space. Then the resolvent
operator G, of (X,) is defined by

@.1) Gau(x)——-EIU:e‘“su(Xs)ds] ,

where u is a bounded measurable function, and ¢ is the life time of (X,). Let
S be the one point compactification of S, and denote

2.2) S=Su{o}.

In the probabilistic sense, @ is called the death point and related to the life time
o by
X,eS for all t<o and X,=d for all t=¢.

We define the spaces of real-valued functions with the supremum norm as
follows :

(2.3) C(S)={u; u is bounded continuous on S},
C.(S)={ueslC(S); u=0 and u(x)>0 for some xS},
B(S)={u; u is bounded Borel measurable on S},
B.(S)={usB(S); u=0 and u(x)>0 for some x<S}.
We also define the spaces of measures on the topological Borel field as
follows :
(2.4) M(S)={m: m is a bounded Borel measure on S},
II(S)={P; P is a probability measure on S}.
In the most of the paper we assume the following conditions.
(A.1) (X, is a Feller process, that is G, :C(S)—C(S).
(A.2) 1115% G.1(x)=0 (if S is non-compact).
If S is compact, we demand P,(g<oc0)>0 for some x<S.
(A.3) For every non-void open set G in S and xS, P.(og<o0)>0,
where o is the first hitting time for G.
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We set G,u(@)=0 for every ue‘B(S)._ Under the conditions (A.1) and (A.2),
we can regard G, as the operator on C(S). We denote by G¥ the dual operator
of G, on M(S). Note that the condition (A.2) implies that

(2.5) G*m@)=0 for every me M(S).

and the condition (A.3) implies that

(2.6) G.u>0 for every ucsC,(S)
(support(G¥m)=S for every me M(S)).

LEMMA 2.1. For every ue B(S), we have

GZu(x)==E,U:e‘”s”“‘u(Xs)ds]/(n——l) L

Proof. Though this formula is well-known, we give a proof for the con-
venience. Since |G, u|=|u|/a, we can define

Me

v= 2 A"G"u for |1|<a.

3
Il

1

By the resolvent equation, we can easily see

V=AGq_1u .
Therefore we have

nﬁ:)lZ"Gﬁu=2E1[S:e‘”+“u(){s)ds] \

s

Z"ExU:e'”s"'lu(Xs)ds] / (n—1)1.

3. Spectral radius and Barta’s inequality.

At the first we consider the semigroup 7, and the resolvent G, as the
operators on B(S).
Since ||T:||=supses {P:(t<o)} is submultiplicative in ¢, there exists the limit
. 1
3.1) Zozhm—Tloglth(l,

which will be called the spectral radius of the Markov process (X,).

THEOREM 3.1.
(3.2) A=lm|GZ[™" —a

=sup{A; sup E,[e??] <o}
zES
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Proof. We denote the right hands of (3.2) by 4¢ and 4 respectively. Note
that lim,..||G?| Y™ is the spectral radius of G,. Therefore T;=>5%-1(A4+a)""'G%
is a continuous operator on B(S) for any A<As;. From Lemma 2.1, the norm is

given by
IT2l=sup T31(x)=sup{E [e**]—1}/A.
zES zES

Thus we have Az=A1p.
If <4, we have

e*Y| T, |=e** sup P,(t<o)<sup E [e??]<co.
x x

This implies A=4, and so Az=A4,.
If 2<4,, we have ||T;|<exp(—At) for large t. Since
621 et Tl dt/ =11,
we can easily obtain A=<1;. Thus the theorem is proved.

COROLLARY 3.2. The following conditions are equivalent :

(i) 2,>0,

(ii) T <1 for some t>0,
(ill) 1GI<l/a for some a>0,
(iv) sup; E o] <oo.

Remark 1. The expression Ay is due to A. Friedman. He proved that Ar
is the principal eigenvalue, when (X;) is a smooth diffusion process and S is a
bounded domain in R™ with C%boundary (see [3]). Note that the equality (3.2)
does not hold for a semigroup on C(S) in general.

THEOREM 3.3. For any us B.(S), we have
3.3) ASsup{u/Gaul —a.
Suppose that u is uniformly positive on S. Then we have
(3.4) inf{u/Goul —a=2,.

Proof. Set A=sup{u/G.u}. Then we have u=<2"GZu. Thus for some x€S,

we have
0<u() "= 2| GV ™ u)rm,

which proves (3.3). Set A=inf{u/G.u}. If 2=0, then (3.4) is trivial. If 1>0,
then we have

0<(@nf u)-A*"GP1=A"G*uZu.
Therefore we obtain

0<(inf w)'™- 2| GRM = uli'™,
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which proves (3.4).

Remark 2. By Theorem 3.3, we have shown that the right hand side of
the Barta’s inequality (1.3) holds for every Markov process. In particular (3.4)
implies

1/5213 E:[o]l=2,.

However, for the proof of (3.4) for every positive function u, we need the con-
ditions (A.1)-(A.3) for the Markov process.

LEMMA 3.4. Let the conditions (A.1) and (A.3) be satisfied. In order that
Ay be positive, it is necessary and sufficient that

(3.5) lim f.;lp G.lx)<1l/a

(or Py (a<c0)>0 for some x€S 1f S is compact)

Proof. From Corollary 3.2 the necessity is obvious. For the sufficiency, we
must prove sup G,1<1/a. Suppose that |G.|=1/e. Since G,1 is continuous,
there exists a point y=S such that G.l(y)=1/a by (3.5). Let k=
(lim Supz.3G.l(x)+a™)/2 and G={x; G.1(x)<k}. By the strong Markov prop-
erty, we have

a'=G,l(y)Sa 'P,(0g=00)+k Py(0s<0),

which contradicts to the assumption (A.3). If S is compact, the above condition
implies that G={x; G.l(x)<a™*—e} is a nonvoid open set for some e>0. If
IGel=a"?, then we have for some y

a =G l(y)=a P (0s=0)+(a"'—e)Py (o< 0),

which completes the proof.

LEMMA 3.5. If A, is positive, then we have
(3.6) sup E.[exp(Ayo)]=+c0.
Under the conditions (A.1) and (A.3), we have
3.7 A< +oo.

Proof. Define

Ti={ dtexpQoT..

Then we have
I731=(sup Eo(e?*)=1)/2.

Suppose that sup E.[exp(4,0)] be finite. Then T';, is a bounded operator. Since
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Tirpre=257-18""T%, T2 is bounded for 0<e<1/||T,,. However this means
sup E [exp((A4,-+¢)o)]<+4oco, which is a contradiction. Let (A.1) and (A.3) be
satisfied. Let u be a continuous function with compact support. From (2.6) and
Theorem 3.3, we obtain (3.7).

By Lemma 3.4 and 3.5 we know that 4, is a finite positive number under
the conditions (A. 1)—(13:. 3). Then the Green operator G=G, is continuous
operator on B(S) (or C(S)). In the following, we use G instead of G,.

THEOREM 3.6. Assume that the conditions (A.1)-(A.3) be satisfied. Then
there exists a probability measure P on S such that

(3.8 P=2,G*P,
where G* 1s the dual operator of G.
Proof. For me M(S), we define
K,zm=§2) A"G* .
If 2<2,, we have

(3.9 Kym=m+4-AG*K;m
and
(3.10) K;m(§)=gEx[e“]dm(x) .

From Lemma 3.5, we can take the sequences {x,} and {4,} such that 2,7 4,
and

(3.11) an=F;,lexp(A,0)]—=+c0 as n—oo.
Let m, be the Dirac measure d(x,), and put
Por=K; ma/a,.
From (3.9) and (3.10), we have P,=/I(5) and
(3.12) Po=2,G*Py+my/a,.

Since 11(S) is compact in the weak*-topology, we can take a subsequence of {Py}
which converges to some element P of II(S). From (3.11) and (3.12) P must
satisfy (3.8). By (2.5) P is a probability measure on S. The theorem is proved.

Remark 3. For the existence of the above P, the condition (3.5) is not
sufficient. To see this, consider the semigroup e *!T,, where (T,) is a conser-
vative semigroup. Then 2,=% and from (3.8) P must be a finite invariant measure.
However it does not exist in general.
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In the remainder of this paper, we always assume the conditions (A.1)-(A.3),
and P denotes the above probability measure.

THEOREM 3.7. We have
(3.13) inf {u/Gu} <A, <sup {u/Gu} for every usCy(S).

Proof. Set A=inf{u/Gu}. Since u=2AGu, we have
ZOSGu dP={u aPz2{Gu aP.
By (2.6), we obtain 4,=1. Similarly we can get the right hand inequality.

Remark 4. Since A=—G™1, (3.13) is identical to (1.3). For the left hand
inequality, we have
(3.14) sup_inf(u/Gu)=2,.
uEC +(§)

To see this, let u=FE,[e??] for A<, Then we have u=2AGu-+1, and so
u=2AGu, which proves (3.14).

Now we study the connection between 4, and the first eigenvalue.

DEFINITION. A bounded continuous complex valued function u is called an
eigenfunction if it is nontrivial and satisfies

(3.15) u=AGu,

where 4 is some complex number which we call an eigenvalue.

THEOREM 3.8.
(i) If there exists a nonnegative eigenfunction, then the eigenvalue s 2,
(ii) Suppose that 2, is an eigenvalue. Then problem (3.15) has a unique normal-
1zed nonnegative eigenfunction. The eigenvalue 2, has the smallest real part of

all eigenvalues and is simple.

Proof. (i) is clear from (3.13). Let 4 be a complex number and T;
=S:dt exp(A)T;. By the definition of 4, T, is bounded if Re(2)<4, Therefore,

if A2 is an eigenvalue then we have Re())=4,. Let u=2,Gu. Since 4, is real,
we can assume that u is a real function. Let u*=max(u, 0). We can assume
that u* is nontrivial. Then we have

AGur=2,Gu=u.

Thus we get 3,Gu*=u*. On the other hand, by virtue of Theorem 3.6, we
have
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SxocmdP:Sde,

which implies ,Gu*=u* by (2.6). From (2.6), u* is positive on S and so
u*=u. If v is another eigenfunction, we set

w=uSv dP—vSu dP.
Then w is also an eigenfunction and w=0 by the above argument and we have
gw dP=0,

which implies w=0. The uniqueness is proved.
Recall that if A, is not simple, there exists a natural number n=2 such that

(2,G—=D"u=0 and A,G—D""'u=+0,

where I is the identity operator. Set v=(1,G—I)""*u and w=A,G—I)""*u.
Then v is an eigenfunction. On the other hand, we have

Sv dP=(2,Guw dP—Sw dP=0,
which is a contradiction. The theorem is proved.

Remark 5. The existence of the positive eigenfunction can be found in
M. A. Krasnosel’skii [6] for the smooth diffusion process in a bounded domain
with smooth boundary. The uniqueness and the simplicity of the first eigen-
function are also proved in it by a different manner.
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