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THE FUNDAMENTAL SOLUTIONS OF THE HEAT
EQUATIONS ON RIEMANNIAN SPACES WITH
CONE-LIKE SINGULAR POINTS

By MASAYOSHI NAGASE

§0. Introduction.

The purpose of this paper is to derive some properties of the fundamental
solution of the initial-value problem

' B \
o (’a} ﬂt)e(t, 0=0, >0
lim 8¢, x)=60(x)
tio

for forms on a Riemannian space with cone-like singular points. Here the
Laplacian 4 is of Neumann or Dirichlet types, or, in certain cases, of unphysical
types with ideal boundary conditions. We can show that the asymptotic expan-
sion of the trace of the fundamental solution can have the log term and therefore
the zeta function can have the simple pole at the origin; these new phenomena
arising from the existence of the singular points will evoke much interest. In
order to investigate them more closely, we will further study the same problem
on the metric cone with the help of the Fourier integral operator theory.

The direction of this investigation has been first raised up by a short but
pioneering paper due to J. Cheeger ([2]). He attempted to extend the spectral
geometric theory to the case where manifolds have singularities. The author’s
study substantially follows in his direction and should be started with carrying
out the above basic research.

Notations and definitions: Before explaining the contents of this paper in
detail, we will collect the general notations and definitions.

First, let Y be 9\ (perhaps, incomplete) oriented Riemannian manifold with

e Y; Y=IntY\UaY and, for the metric completion Y,

<> [ _ v q.. 1Y is a manifold with smooth boundary]
©.2) ay*iy‘} Int ¥ lin some neighborhood of . I

Let A*=AIntY) denote the space of smooth :-forms on Int Y and let Ai=/A}
(Int ) be the subspace of A* consisting of forms of compact support. Let A*Y)
N\

be the subspace of /' consisting of forms which are smooth up to Y. For
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THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 383

i-forms 6,, G, let {4,, 6,>, be the pointwise inner product at ye } defined by

0.3) (PN * 05(3)=C04, G20y %1, .

Here = is the #-operator on Y. Moreover, by definining that the pointwise inner
product of 7; and 7,-forms &, and 0, with 7,7, is equal to 0, the global inner
product of forms #; and @, is defined by

0.4 0,y 00, Br=\ 0.7+ 0=\ <0, 0,41,

Then, L*A*=L124*(Y) denotes the space of /-forms with finite norm:

(0.5) I01=10ly=~<8, 6>,

i.e. square integrable i-forms.
Let d=d, denote the exterior derivative on :-forms and 0=40; be its formal

adjoint; they should be regarded as unbounded linear operators on L2A* by
setting
domd,= {0 A'NL* A |d8= A N\L2A™Y

(0.6)
dom d;={fe AN L2A* [ d0 e A LAY,

Let’s set d.,.=d| s and d.,,=6|+1. Moreover the closures of d,, d; d.,, and
... are denoted by d,, &; d..and 5., Next, let P=P(d, ) be a polynomial

of d, 6, and define
t={0= AY(Y)|For any P, PO L?4*},

0.7) Abps={f= Ay |For any P, (xP0)|5==0.},
Arey={0< Ay |For any P, (PO)]7=01},

and set dabs—‘dabs P d! 4aba rel drel P dl IL 2 5aba;5abs L~5IA7'+1 and 5zcl:5re1,z
—51/1”1 their closures are denoted by daps, drer, 6ass aNd Syer.

Moreover, several Laplacians are defined by

:’4\',7,:56,'igi'+'(.j-L—1;c', -1
=8;de ,+d,. - 101,
(0.8) .

r —R 1 =
’Jabs,lﬁoabx, idabs,i—?—dabs, t-1%abs, -1,

l_l

Jrel,zzorcl, idrel, i“:'drcl, v-10rel -1 -

dy and dj are called the Laplacians of Neumann and Dirichlet types, respectively ;
they are denoted by 4, and 4, in [7] and, from the facts

0.9



384 MASAYOSHI NAGASE

they are self-adjoint operators, Here d* and §* are the Hilbert space adjoints of
d. and §,, respectively. By the way, we may remark that 4., and 4, are, in
general, not self-adjoint; see Example 1.1. From now on, we set (A}, dse.r, Bbe,n,
A_bc,‘l,):(A}ley 67abs,u gabs,u A_a.bs,t) or (Aal—ely JTCl,ly grel,z, A—rel,z), prOVided that no
confusions occur.

Second, we will define the meiric cone. Let N be a compact Riemannian
manifold possibly with smooth boundary ; the metric on N is denoted by g. Set

+—=(0, oo), then the space R*XN together with the Riemannian metric drQdr

+r2g is called the metric cone over N, denoted by C(N). Its metric completion
is denoted by C*(N)={p}\UC(N) and the point p is called the singular point
of C(N). Moreover the truncated cone {(r, £)C(N)|r,<r<ry} is denoted by
Cryory(N).

Third, among general Y’s mentioned above, an ‘(m-+1)-dimensional Rieman-
nian manifold X which satisfies the following condition (0.10) is called an (m--1)-
dimensional Riemannian space with cone-like singular points:

(0.10)  X—Int X equals to {p;},, a set of finite points, called the singular points
of X. Each point p, has a neighborhood U/, in X which is isometric to
a truncated cone Ci*, (NT)={p;} \UCo,.;(NT); the U,’s are disjoint from
each other and the N™’s are m-dimensional compact Riemannian manifolds
possibly with smooth boundary.

In the following, to simplify the notations, we set N™={_J N™ and take 0<u=
J
min u, and, without distinction, denote the subspace which is isometric to C, ,(N)
2

through the above isometry, simply, by C, .(N). For 0<e<u, the complement
of G, (N) in X is denoted by X.. Moreover, we write X=C, .(N)UX..

From now on, X=C, ,(N)\UX, always means an (m-+1)-dimensional Rieman-
nian space with cone-like singular points and Y means a general Riemannian
manifold mentioned above. In general, points of X or Y are denoted by x, xi,
x;, etc. and, in particular, points of C(N)=R*XN or Cy ,(N)=(0, u)XN are
denoted by x=(r, %), x,=(r,, %), etc. Moreover, we assume that, on C, ,(N),
the orientation of X is equal to the orientation which is defined by dr A% 1,
where ¥ is the %-operator on N.

Contents: We summarize the contents of the six sections making up this
paper.

Section 1: We show that the Laplacian 4, , on X is self-adjoint and 4.,
=Ay ., dyer,,=4dp,, except for the case where

(0.11) dim N=m=2F, the space of harmonic k-forms on N satisfying the given
boundary condition “bc” is not equal to {0}, and 1=Fk or k+1.

In the excepted case, by introducing the new condition called “ideal boundary
condition”, we construct the self-adjoint Laplacians. Among them, the operators
which equal to 4y or 4, are, of course, numbered. However, the other operators
are also numbered among them ; they are called unphysical Laplacians.
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Sections 2, 3: To make clear the fundamental solution of (0.1), it is neces-
sary to carry out the functional calculus on C, ,(V), therefore, on C(N). In
Section 2, we will calculate the formal eigenforms on C(N). In Section 3, on
the basis of the results of Section 2, we will get the formal representation for
the kernel of the function of our Laplacian on C(N). We have generalized the
representation {4.17 of [2] to the one for general forms.

Section 4: Let’s assume that the metric completion X is compact. Then
the Rellich-type theorem holds for X. Therefore, from the general theory of
Fredholm, the Hodge decomposition exists and our Laplacians have the spectra
consisting of eigenvalues of finite multiplicity. We will show, moreover, that
the harmonic spaces are naturally identified with the de Rham-type cohomology
groups attached to X,. The results mentioned in this section have already been
announced in [2] Theorems 2.1, 3.1.

Section 5: On the basis of the E.E. Levi’'s method, we will reconstruct the
heat kernel on X from the heat kernel E. on C(N) and the heat kernel Ey on
a complement of some neighborhood of the singular point. E. and Ey are
accessible to us. Actually, Ey is well known. Moreover, FE; -has the formal
representation which can be written according to the result of Section 3, and,
therefore, can be thoroughly investigated through the representation if we want
to do so. Hence the reconstructed one is more accessible than the formal one.
Once the reconstruction is accomplished, we can investigate the asymptotic ex-
pansion of the trace of the heat kernel. Moreover, as its immediate corollaries,
we can derive the fundamental properties of the zeta function for X and the
asymptotic distribution of eigenvalues of our Laplacian.

By the way, the existence of the asymptotic expansion is also announced by
J. Cheeger in [2] Theorem 5.1. He adopted the expression as follows: For

K>m+1,

k4 o1 .
©12) | tr B~ B Syt 09— 2l ainsnnll, 0 flog 16N

Here, tr F;(¢t) is the pointwise trace of our heat kernel. Referring to [2] for the
detailed explanations of notations, the constant term in the right hand side of
(0.12) seems to have some difficulties to understand which occur because of the
use of the index K. We have tried to express the asymptotic expansion more

explicitly by making more clearly the term gvtr e, (1, x, 1, x. ) mentioned in [2];

it is denoted by TryZ(¢;?) in this paper. Besides, in the last line but one in
[2] §5, it is asserted that the zeta function for X can have double poles.
However, according to our result, it has no double poles but can have a simple
pole at the origin of C.

Section 6: As mentioned above, E; can be thoroughly investigated with the
help of the formal representation. However, what we have really derived in
Section 5 are only its fundamental properties, which are in fact good enough for
the purpose of Section 5. By the way, for the purpose of making a further
study of the trace of the heat kernel, that is, of comprehending the meanings of
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the coefficients of its asymptotic expansion, probably it will be useful to more
closely investigate E. only with the help of the formal representation. Actually
it will further offer new informations about the coefficients of the asymptotic
expansion of the trace of Ey, too. In this section, we accordingly intend to
study E, only with the help of the formal representation. Specifically, let
Eq(t, x1, x.;7) denote the heat kernel E. for /-forms and let’s define Z(, x,, x,; %)
by the formula

(013) Eqt, xy, vy, l.):<7’17’z><1+2(i71)ﬂn)/z@ﬁ("1“7'2)2‘722(1‘, Xy, X253 1),

where m=dim N\ and x,=(r,, ¥;), 7=1, 2. Then the pointwise traces have the
following relations :

0.14) Tr E(, (r, X), (r, 2); D=r2" T Z(t, (v, B), (r, ¥); 1)

t .
1Ty 2(7;, LB Q4 80; z> .
Therefore, for our purpose, it suffices to study Tr Z(t, (1, %), (1, %);7), that is, to
characterize each coefficient of its asymptotic expansion by the invariants of a
neighborhood of % in N. Our aim is restricted to the case where /=0 and
F<Int N. Accordingly, let’s set

0.15) tr Z(t, H)=Tr Z¢, (1, %), (1, %);0).

Then, observing further that (0.15) is influenced mainly by the wave kernel for
N, we can apply the Fourier integral operator theory to it. Reviewing that
theory in Subsection 6.1, with the help of the key lemma mentioned in Subsection
6.2, we will try to study (0.15) in Subsection 6.3.

The author is grateful to Professor D. Fujiwara and Professor K. Shiga for
useful conversations during the preparations of this paper.

Finally, the author wants to emphasize once again that our methods depend
heavily on J. Cheeger’s works ([2], [3]).

§1. Self-adjoint Laplacians; ideal boundary condition.

Let X=C, .(N)_ X, be an (m-+1)-dimensional Riemannian space with cone-
like singular points. Then the Laplacian 4,,, on X is, in general, not self-
adjoinnt. In this section, we will make a clear distinction between the two cases,
i.e., the (first) case where it is self-adjoint and the (second) case where it is not
self-adjoint. In the second case, we will produce the self-adjoint Laplacians by
introducing the new conditions called the ideal boundary conditions.

Let us begin by adducing an example which shows that there exists the
second case.

ExampLE 1.1 (see Fig.2.1). Assume that X=C®), dim N=m=2k and
HEAN) is not equal to {0}, where H% (V) is the space consisting of harmonic
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k-forms on N which satisfy the given boundary condition “6¢”. Given a form
we HL(N) with el y=1, let’s set 2,—w, 2,=dr Aw, which we regard as % and
(k+1)-forms on C(N), respectively. Let f, and /, be smooth functions on R*
which satisfy f,(r)=r, fo.(r)=1 for r small, and f,(r)=1.0r}=0 for r large. And
we set

(1.1 0.,=/:n&,,
where /=1, 2, ;==1, 2. Then #, ,=dom Jy ;, 0, .=dom J,. ,., and
e, =fin2,, 660,,=0, 46, ,=-17r2,.
df,.=0, 00, ,—=—f. (N2, 40, ,=—7ilrQ.,.
Therefore, we can easily show that
{d8,1, O210ccvy =<0y, 40, Den, =1,
{dy.5, O vcvy =010 404 5> ¢ oxy==1.

(1.2)

Thus Jd,. » and J,. .+, are not self-adjoint.

By changing this example slightly, we can easily understand that the
Laplacian J,,. on X is not self-adjoint in the case (0.11) mentioned in §0. To
show that it is self-adjoint except for the case (0.11), some preparations are
needed.

For general Y, we have

LEMMA 1.2 ([6] Lemma 3.2).

(13) dubs::d 3 srﬁl;:(j-

Though it will be expected that d,,=d, and é,5,,-=¢., these are, in general,
not valid. In fact we can offer an example which shows that d¥=:d,.; as being
easily understood from (0.9) and (1.3), d,q=d. and &45,=6. are respectively
equivalent to d¥;=48,, and d¥,;=d.,. The example is as follows. In Example
1.1, we found 46,,=06(f1£2,), thus we find f;Q,=dom s, . but. from (1.2), we
know f!Q,edom d}., ..

We now search for the condition under which d%¥.==4d,. is valid. When

(L9 a, Fre=ra 0+ s
holds for any a<= .1y, 3= A5, we say that the ;-L*-Stokes’ theorem for Y holds.

LEMMA 1.3, If the 1-L*-Stokes’ theorem for Y holds, then

(15> drel,z'*idt‘,l) 6&08,'L:6(‘,L .

Proof. As above, it suffices to prove d¥ =4, ,. 0.9 and '1.3) imply that
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d—z"c,fC:Sbc,L is always valid. Thus, it suffices to prove the converse implication.
By a simple regularization argument, we have only to prove d% D0 .. Given
fedom O, it is trivial that (@ A*B)|5=0 for any a=domd,. .. Hence (1.4)
implies d¥, . D0, ..

Hence we get

COROLLARY 1.4. [f the (1—1), ¢-L*-Stokes’ theorems for Y hold, then dy ,
is self-adjoint, and, moveover, dgp; ,=dy . and dyer,=dp ..

Here, let us return to our X. We will classify our study into three cases:

Case A: the case except for Cases B, C,
Case B: dim N=2k, H5(N)+ {0} and =P,
Case C: dim N=2k, J}(N)+ {0} and i=k-1.

In Cases B, C, we often specify a subspace V of J4(N); in the following,
Cases B(V), C(V) denote Cases B, C with V specified.

First we consider Case A. Theorem 2.2 of [4] extends immediately to our
N which may have a smooth boundary. Since X, is compact, this combined with
{9] therefore yields that the (7—1), 7-L®Stokes’ theorems for Y hold. Hence,
from Corollary 1.4, we have

PROPOSITION 1.5. [In Case A, dy. , 15 self-adjornt, and, moreover, daps, = -
(l)ld Arel,z:JD,z-

Next, we consider Cases B, C; in these cases, dim N=2k and HL(N)= {0}.
Then the k-L>-Stokes’ theorem does not hold ; see the example following Lemma
1.2. Hence we need a certain device. According to [4], we will explain it.

Fix a subspace V of #}(N). Let V* denote the orthogonal complement of
Vin HL(N), and let's set drAV={drAwlowc V} and drA V= {dr Aw|loc V*}.
Let V, V*, dr AV and dr A V* denote respectively the subspaces of L2A*(C, (V)
spanned by V, 1+, drAV and dr AV* with coefficients in L*(0, u)). Moreover,
for 8= L?A*(X) let Oy, 6+, O4rpy and 64+ denote the orthogonal projections
of Olc, ,c to V., 7+, drAV and dr A V-, respectively. And we set

1.6) b (V=0 = AL Oy ir0=(dO) ar vt ir=0=(0d D)y o= -+ =0},
(1.7) Aﬁ;,‘l-(‘\' 1={= Aiﬁb‘l(X> i 0!17‘/\VJ"rtO:(aﬁ)V{r:oz(daﬁ)dr,\VL17:0: o =0f,

and doe,v 2=d]| 15, | x5 Ose.v,#==0] 4F1. vy ; their closures are denoted by doe. v a
and 6y, v, 5, TESPECtively.
From the fact that

, 00y 026

04 yr=dr N0, (BdO)y=—-57,
etc. in Case B(1'; which means Case B with V specified, the condition introduced
newly in (1.6} is the one which is concerned only with 6,-+6,:. Similarly, the
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one introduced in (1.7) is concerned only with #4 vy +84t. Let’s examine (1.6)
closely. Let {wy,;}, and {wy+ ;}, be the orthonormal basis of V and V*, respec-
tively. Then we can write

(1.8 Ov=3gv.{r) wy,,, Opi=3 gyL ;r) opL,,
and the new condition of (1.6) can be rewritten as follows :
(1.9) g 0)=0, gT"=0, n=0,1,2 .

Now let’s take #<=dom d,. , and expand 8y, 0y+ as (1.8). Then, §=dom dye. y &
means that each g, , belongs to the Sobolov space Hj(R*) near »=0. Therefore,
if we set

(.10 10w, r>=§31gv,j(r)12
then
(1.11) dom ch,V, = {f&dom ch, Oy n==0(), v | O},

Similarly, if we write, for d< A§FY(X),

(1.12) Oarnv=2 fv.;(r) drAawy.;, Ourpvr=2 fve ;(r) dr Aoy,
then the new condition of (1.7) can be written as follows;

(1.13) fERO)=0, [A0=0, n=0,1,2, .

Thus, by using the norm defined by

(1.14) 10 arpwslr =20 fre 5017
we have
(1.15) dom &y v = {8 dom bye | | Burpy ] r m==0(1), ¥ L O}.
For the general definition and the elementary properties of the norm -] »,

refer to (2.18)—(2.24).

The conditions introduced newly in (1.6), (1.7), (1.9), (1.11), (1.13) and (1.15)
are generally called the ideal boundary conditions.

We have now

LEMMA 1.6. For any a<dom ds,v,» and BEdom oy, v, 4,
(1.16) da, Bpx={a, §f>x .

Proof. Take acdomdy., v, and S=domdy. v . Then it suffices to prove
(1.16) for these «, 5. Since

(1.17) [ dansg={ ansp-{  anss,

) £
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it suffices to search for a sequence {es}, ¢, 0 such that

(1.18) S(Ssyx)a/\*ﬁq().

The way of proof is similar to that of [4] Theorem 2.2. Set

(1.19) a=¢,+dr A, *f=¢,+drho,,

where ¢, w, do not involve dr. Then the ideal boundary conditions yield
(1.20) G vir=0==Pa v l1r=0=0.

According to the Hodge decomposition for N

(1.21) LANN)=d A" NYD I LN DS ATTN)

we decompose ¢, as follows; for » fixed,

(1.22) 0,=@, et ¢, a2+, 5.

Then we have

®*f=
S(e,na/\ P S(s“\'>¢1/\¢z
(1.23) :S(é’N>¢LV/\¢2,>7<V”1—S(s,N)¢1,VL/\¢2,;VJ‘

+S<a, x>¢" &A¢2’Z+S(s) N)¢1,é/\¢z,c~e .

Hence (1.20) and the estimations (2.63) and (2.64) of [4] vield the existence of
the desired sequence {e,}.

LEMMA 1.7, df v 2=6u v .

Proof. Consider first the case “bc”="“abs”. We will prove daps v, »=0%s v, 5.
Since Lemma 1.6 implies daps v »C0%5 v, 2, it suffices to prove the converse
implication. Obviously

(1.24) O%us, V,kc-gzk,k:d-k:(iabs,k

follows from (0.9) and (1.3). Hence, if V=1{0}, then the proof is complete. In
the following, we assume that V= {0}. Take a<=dom 6%,y . Moreover fix
Bedom dus v, 5 arbitrarily. Then (1.24) implies that §*a=da and <a, 68)x=
{da, B>x. Hence, observing (1.17), we have, for almost all {¢} with ¢}0,

(1.25) S anxB—0
(e, N)

when ¢! 0. Now expand «, 8 into the sums (1.19) and, moreover, expand ¢,
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into the sum (1.22). Hence (1.25) equals to (1.23). Moreover, the ideal boundary
condition and the estimations (2.63) and (2.64) of [4] imply that the second,
third and fourth terms of (1.23) tend to 0 when ¢ | 0 for almost all {s} with ¢ 0.
This combined with (1.25) implies that, for almost all {¢} with ¢! 0, we have

(1.26) limg(: BNty =0,

20

By the way, if @ is an element of V with |lo|y==1 and f is a smooth function
whose restrictions to X, and some neighborhood of the singular point are respec-
tively equal to 0 and I, then B=fdrAw belongs to dom dyps,v,.. For such j3,
(1.26) can be rewritten as follows.

(1.27) (@1, vle, X), w(%)yx—0

Hence, by expanding ¢, in terms of an orthonormal basis of V, we can easily
show that eyl ¢, n=l6:vile.n=0(1). That is, acdom dassv. s

In the case where “bc”=%abs”, the lemma is thus proved. For the lemma
in the case where “bc”="“rel”, it suffices to prove d¥.y +Core v . This is
similarly proved.

Now, we define the new Laplacians as follows;

J—bc,V,k:(;bc,l/’,kd_bc,V,k+gbc,k—15br,k—ly
(1.28) - . - - <
Joc, v, ke1= 0G0, k+1dbc, k+1+dbc,V, £0be, v,k
Then [7] Theorem 1.1, (0.9), (1.3), Lemma 1.7, and the facts that dye w, == &
and &y, FE 0y, £ =04, » yield

PROPOSITION 1.8. [In Cases B, C, Jdw v,. s self-adjoint, and, wmoreover,
Jabs,m),izdy,z and JTCZ,Lﬁgc(N),L:JD,l'

The new Laplacians which are identified with neither Jy , nor 7,,, will be

called the unphysical Laplacians.
From now on, to simplify the notations, we set

B dpe s in Case A,
(1.29) d,==

Toev in Cases B(V) or C(V)

§2. Formal eigenforms on the metric cone.

Let NV be an m-dimensional compact Riemannian manifold possibly with smooth
boundary.

The eigenforms of the Laplacian on C(V), namely, the metric cone over N,
are calculated in [2]. However, the results mentioned in [2] are rather hard to
read and understand and have some oversights ; for example, [3.9] of [2]. (This
oversight has already been corrected in the revised version of {3] (1980).) Since
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the functional calculus on our X is based on these results, it will be better to
rearrange them once more. The proofs are perfectly based on the elementary
calculations. Hence we will omit them; refer to [15] Appendix.
Let ¥d, §, 4, be the intrinsic operators on N and #, d, 8, 4 be those on C(N).
Let 8(r, £)=g(r)¢(X)+f(r)dr Aw(X) be an i-form on C(N), where ¢ and w are
: and ({—1)-forms which do not involve dr. Then we have

@2.1) xG=(—1)r™ g dr N¥p ™20 fRe,

2.2) d0=g d¢+dr N(g'¢p—f dw),

2.3) 80=r-2g i+ {— f'—(m—2G—1)r"flo—rf dr Néw,
2.4) 40={—g"—(m—2i)r g’} g+ r*gdp—2r~*g dr N

FA{—f"—m—=20—-))" [ m—2G—1))r*f}dr Aew
Frfdr Ado—2r"f dw .
We have the Hodge decomposition
(2.5) A NY=d 35 (N YDA 3(N)YBS A3 (N)

where (V) is the space consisting of harmonic /-forms on N which satisfy
the given boundary condition “bc”=%“abs” or “rel”. Let {Wec,zcy.5} s 1Wbe 5w, 5} 1
{pe, 5301y, 5}, be those orthonormal basis of d Aj;YN), H3.(N), §Ay*(N) which are
consisting of the eigenforms of J,, namely, the Laplacian together with the
given boundary condition “bc”. Let {gtoc.zar, 515 {ttoe. 2>, (=00} 5 {ttse, ey, 5, be
the sets of corresponding eigenvalues, respectively. Here each set has the order
relation @ fec, sy, ;= toe, 50y, j+1 fOr any j, etc. Besides, according to circumstances,
the objects of “2(z)” and “4(7)” types are gathered and rearranged as follows;
{(@se, 37,5 Moe. 5>, 9}, With the order relation where fse 71y, ;= fhoe, 3wy, j+1 fOr any j.
Similarly the objects of “4()” and “ce(;)” types are gathered and rearranged as
follows ; {(@se, ciis. 5 toe. Gecoy. )}, With the order relation where poe, i), ;= toe, G2y, j+1
for any j.

From now on, unless confusions occur, we will sometimes omit the subscripts
be, (), etc.

We can now expand an :-form 6(r, %) as follows:

2.6) 022}) g&w, N, (%)
Jr; {gau-0, i NAdo&a-1, ADF G-, dr Nog -1, (D}
+Zj) JTic-n, ;0Ar Nega-n, (D .

Here we have omitted the subscript “bc”. Then, from (2.4), 46 can be expanded
as follows :
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I . ’
(2.7) Jﬁ:;{*gc?u'),J‘(m*“Zl)T_Ichm.;+#c7<i>,;V_ngc(i),j}wc?m,;

” “w g 7 e
+2[{*gc~e(i—1>,j~(m—21)7’ Ig[é<z~1),j+ﬂc~e(ifl),]r )gcm—n,]

E
—2r fGa-v. } doga-v, 7+ {-‘fc%(i—l),j_(771——2@‘——1))rﬁlfcié(i—1),;
Fm—=20—1)r " f Zo-n, i Pésa-n. ¥ Sa-n.,
2G0T 8% a0 S AT AOG -1y, 4]

+ B fEmn, = 026D Flon s+ =20 — D) *frcion
-0, 7 ia-n, A A@gGy

Therefore the differential equation 46=2%0 can be reduced to the simultane-
ous differential equations of Euler-types with respect to the coefficients gz, ;(#),
Z&u-n,(r), etc. appeared in (2.6). By solving these differential equations, we
get the following two lemmas.

Set

a@)=1+21—m)/2,

@), k), =V pizc, T alk)?,
(2.8) w(¢e(@);=v(ct(), 1),

a*(ée(@), k), =alk)zv(ce(), k),,

a*(€c@)),=a* (@), 1), ,

etc. If necessary to indicate the given boundary condition “bc”, we will use
such notations as v(bc, éc(?), k),, a*(be, éc(e), k),, etc.

LEMMA 2.1.  An-form 6 which satisfies 40=0 can be written as a (convergent)
sum of forms of the following four types:

@Yéw., ez, (&),

(2-10)5(1‘—1),] d(rai(&(i“m’w&(i—l),]‘(f)) s

@ID&Eun., 7O Jag gy (B a7 (@G—1)), 7 FED I e Aoy, (R),
(2-12)Etu—1),; TG:Q(PD'L_Q)jﬁd?'/\wZ(z'ﬂ),](f) ,

where (2.9)7, (2.11)" and (2.12)~ should be multiplied by logr if v(¢t(@)),=0,
v(ce(i—1)),=1 and v(Z(i—1), 1—2);=0, respectively.

LEMMA 2.2. Set A>0. An i-form 0 which satisfies 40=23%0 can be written
as a {convergent) sum of forms of the following four types:
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2.13)& s, 7 JoGan, (A @& w

<2-14)c’§(1'~1) 3 dre 0] o 1))_,(27'> O a-11.5)
(2-15)(%0‘ -1, 5*<7’a(m—i).[m»(ﬂ(mfi))A,<)‘}’) ;ch?u'—n,_;) s
(.16 1 , w(paOnAl=0 y(ﬁ(me—J—f;)](/:") 0z 6-1, )

where the Bessel function j_.,j(/?r) should be replaced by the Neumann function
N (4r) if v, 15 a non-negative integer.

In (2.15)" and (2.16)", the eigenvalues used for defining v(ce(m—i)), and
v(Ge(m--1--i)), are respectively those of ¥dwgy -1y, and Fwyq-1),, which satisfy
the boundary condition adjoint to ours “bc”. Hence, if we promise to interpose
“adbc” in order to specify that the boundary condition under consideration is
adjoint to the one “bc¢”, we should replace v(ce(m—i)), and v(ée(m+1—17)), by
v(adbe, ce(m—1)), and sladbe, ée(m--1--1)),, respectively. Remark that

viadbe, ce(m—i)),~v(be, ce(i—1)),,
(2.17)
vladbe, ce(m-=1—1)),=v(be, ¢G—1), 1—2),.

From (2.1)~—(2.3) and this fact (2.17), we can rewrite (2.14)—(2.16) as follows.
(2.147" re L G, (Andws -
A Aa@—Dr TP o G- (A7)
ATV G- AN A Awga-n.,

(2.15")" (=DmEo R a-- D o @ a1 (A7)

*E‘X7’”“71)“fiwmiﬂ))j(]?'\)}(’iwc”e(ifn.J

S pa-n Y @ a-m (ANdr A0z a-n.,]
(2.16") (=DM T G, -, (ANdY Awg -, -

These formulas are also useful for various estimations.

Next, we will investigate the square-integrabilities of (2.9)—(2.16) near the
singular point. The results are collected into Figures 2.1, 2.2. We will confine
ourselves to the explanation of the wayv from which we can know whether they
are square-integrable or not.

Let 60(r, 0)=0:(r, H)+drNO:(r, 3) and 5@, B)=15(r, D-LdrAn,r, ¥) be i-
forms, where ¢, and %, do not involve dr. Set

@18) 0, an=| A0 DA, D0, DAL, D),

Js, N

(219) i:H” (s, 1) ;:\/<6; 70}(3,7‘) .
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Here %, is the x-operator on (s, V) with metric s*g.

ing formulas :
(2.20)
(2.21)

(2.22)

Therefore, if 6(», ¥)=g

(2.23)

which shows that,
can know whether <

By applying this way one after another,

1010l eom=r"" 00000 )

1008, o= 10,0 1,

NG(R)+frydr Aw(®), then

by looking at the asymptotic order of [, |

L2AYC, (N)) or not.

395

Then we have the follow-

Mdr NGoll o, =105l rry=r" 7 G

#.0% Hidr.

101, cor=lg1s | rmmgtrdr oty [ e s

g when r [0, we

we get Figures 2.1, 2.2.

) (2) 3 4)
LAY, ) L2A™YC, ) L2AYC, ) For any
‘ Y Ul Y] P=P{d, 9),
.‘ d- a- L P f[zA*(Co g
; (), :
2.9* O O © O
2.9) iff ;<1 iff 2izm & p1,=0 © iff 2i=m & y,==0
2.10)* O © © O
B |
(2.10) X © © ;
@1 O O O O
!
o O O 9 |
(2.11) L vy<2 iff v, iff ;<1 a i
| ‘ (G
(2.12)* O @ O O ‘
) B O ~ R O (<T)a R O I
(2.12) 1ff v <1 @) iff 8%(2/;20:7” lff(é(z;i)oﬁm
Figure 2.1.
O="Yes”. xX=“No”. ©=:“Yes &=0". C, .=C, (V).
M. © uff 2Zism—1 & p,=0. M © iff 2iz2m—+3 & 1,=0.
();: and then ©. (1); 1 and, then ©.
(t); : and, then d-=d-=0. (t).: and, then d-=4d--=0.
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1

o e ® @
e s e I . — = S — RS —_— [
213 O ‘ O © O
@13 . i O © ‘
" | iff v;<1 i 21>m&y *0 iff 21—m&yJ 0
(2,14 ‘ O ‘ © O O
j (2.14)- ” X O iff »,<1 X
— e — - e
i (2.15)* ‘ O O © O
— i _ . - - — .
| il
| o
I AR N 7o S S
! 2.16)* g o | o e ®
| (216;7 o © R 2 D<m  iff 27(71:91)=m
N L & =0 & 1=0

Figure 2.2: We continue to use the notations of Figure 2.1.

By the way, we remark, as a preparation for the following sections, that
2.24) 101 n=rn] 1613312, x=(, ),

where ||, is the pointwise norm defined by (0.3).
Finally we will prepare for the study of the spectral representations of
dye v, in Cases B(V), C(V). The proof depends on the formula (2.23).

LEMMA 2.3.
(1) In Case B,

1213wl n=01), 1d2.13)7u | w.n=0(),
“(2-13)}(@) e, mn=0(1), ||d(2-13);?(k) [ r.ry==0(1).
2) In Case C,

12.16)5% )l o =0(1),  18(2.16)7 s [l . =0(1) ,
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2. 16);?(k> ey =0(1), “5(2-16);?(12) I m=0(1).

Here (2.13);'[(;3) etc. mean T"“i’]ﬂ(ﬂ(i))j(lr)wﬁ(i),J etc.

§3. Functional calculus on the metric cone.

We continue to use the notations of §2. Let 4, be the Laplacian on the
metric cone C(N) defined by (1.29). Since it is self-adjoint, it has the spectral
representation

3.1) J,.:Ssz(,z) .

Hence, for any Borel measurable function f on R, the operator f(4,) is defined
by

(3.2) fdy={ rnap@).

In this section, we will try to describe the formal kernel £, of f(4,) definitely,
It is already described in the case where forms are of co-closed type ([4.1] of
[27), or in the case where /=0 ([6]). Here we will remove these restrictions,
but the way of proof is similar to [6].

Unless confusions occur, v(be, ¢e(7)),, @ue, 55y, s €tC. are abbreviated to v(ée(7)),,
®& @, ete., or more informally, to v, w,, etc. in certain circumstances.

Using the notation x,=(»,, ¥,)€C(N), we set

(33) i, 5 @)= (i) O\ IVt G csaon (2
‘0z, ()R @, {(X)
=kp(xs, Xo; H@)FRp(x1, x05 C20G)),
3.4) kp(xy, x5 dée(@)+dr N cée(D))

. (rlrz)a(i)
T at(ee®);—a(cew)),

t (oo
F@ vz a -1 (A7) o any j-1(Ar2)Ad A
0 j
X

[0 s i Grdfczcon (i 2d2

T’xrzdwfeti) , j(il)®gmc‘z . (Xe)

_ L

a*(ce(n),
X

1

a (b)),
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( >dwc”e(i),j(fl>®d7’z/\wc?<i>,y(fz)
( >r2d7’1/\(uc¢)(l) ]( r1)(8676005(” }(%2>

’L< E ce Z»J >df”1 Aw&m,j(fx)@d}’z /\(oFe(z),J(fz)}

=R ; dce@@), dée()--k;( ; dée@), dr Ace(d))
Lk (; drnée(d), dée@))+k (5 dr Née@), dr Aced)
=k( ; dée@d), dee(i)-dr Nee(@)-k,( 5 dr AceD), dée(i)--dr Ace(r)),

35kl 105 drAZD=S i) | FAY v, i, o (B 2R
driAwiay L ED)Rdrs Awga, (Fs)
=ke(; dr NF@)- R (5 dr NEQD)) .
Moreover, for a given subspace V()T Hi(N), we take {wy, ,}, that is, an
orthonormal basis of V(i), and set
(3.6) ki(xy, o5 V(@)= E(r rz)""" A oo vy (AP D s ciny f(A72)AdA

‘(Uvu'),j(%)@wwz),j(fz) s

B km, x; drAVE)= () [T 0 0, B 0000 Rr )22
-dry /\(UV(L'),]<:€1>®d7’2/\a)¥/(i),j(£2) ,

where v(V(@),=~0-+al)*=|a@)|, AV, i—1),=ali—1)].

These expressions are easy to read, I think, but it is best to give some
remarks. For example, in (3.4), the terms k,( ; dée(?), dée()), -, ks( ; dr NCe(D),
dr Née(7)) denote the first, the second, the third and the fourth terms in the
preceding expression respectively, i.e.,

(ri7)* @

forl 5 deb@), deRG) =2 wim i) o),

t 20
S0 it G o Granda

K
SO f(/zg)f-,v(c?(i))ﬁ 1(/:f1>]><&<i>>]~+1(/7~f'-z))td/7~/
L
a*(ce@),
1 rl"'f'dw(e(z) ]<YI)Q([(O6‘E(!) 7(% )

a~(ce(),
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etc. Moreover the terms k( ; dée(r), dée(d)-+dr Ace(@)) and ky( ; dr Née(), dée@)
+dr Ace(r)) denote “k,( ; déelz), dée(r))k,( ; déeli), dr née(?))” and “k ( ; dr Née(d),
dce@)+ ks ; dr NCe(d), dr NEe(D).

The expressions of these types will appear sometimes in the following
sections, in which we will not give the complete descriptions of them because

they are completely analogous to (3.3)—(3.7).
We can now state the main theorem of this section.

THEOREM 3.1. The formal kernel ky(x,, x.;7) of f(d,) can be written as
Jollows in the distribution sense.
(1) In Case A,

(3.8) ke( s D)=tks(; @)k ; dee(i—1)+dr Aée(i—1))
+kp(; dr NEG—1)).
(2) In Case B(V{(E)),
(3.9 ky( s D)=ky( 5 VIR +kF( 5 VIR )R celk))
+ke(; déell—1)4-dr Néelh—1)) =k (; dr NE(R--1)).
(3) In Case C(V(k)),
(3.10) ke( 5 Dy=ks(; celh+1)+ks( ; dee(k)+dr nce(k))
k75 dr AV R 5 dr NVIRY) R, dr NER)) .
The proof is so long and complicated that we divide it into Steps I—VI.
Step 1. Steps M—V are devoted to the proof of (1). Steps VI, Vi are

respectively devoted to the proofs of (2), (3).
According to the decomposition (2.6), we set

(3.11) L2A% = (g < L2ACN))] 0:-§ i, 10X w. )t
(3.12) L2AB 4 AE g = 2 ACIN D] 0 =D gz, ;A0 01,
7

a0, dr NG -, i},
(3.13) LA e (G e LPANCWN))| 0-':§) Secion, ;dr A@go-1, 5} -
Then we have the orthogonal decomposition
(3.14) LPAYCIN )= L2 AT FR L AT Aty 2 i dn',

The restrictions of 4, to the intersections with dom J, and the three subspaces
of the right hand side of (3.14) are respectively denoted by J.z Ju uGeand
and 4, 4,5;. Since we know from (2.7) that their respective ranges are contained
in the respective subspaces of the right hand side of (3.14), it suffices to study
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their formal kernels, respectively.

Since the proof is based on the elementary properties of Hankel transform,
we will list up some of them concerned to us.

If g(») is a smooth function on R* with compact support, its Hankel trans-
form H,.(g) is defined by

(3.15) H(g) =\ gtr)uaryrdr .
The Hankel inversion formula ([14] Il Page 149) says

(3.16) g =H,(H,g)r),

with y>-—1. Moreover we have the Plancherel formula
3.17) 1ger ar=" 01242,

Thus H, can be extended to the Hilbert space isomorphism
(3.18) LAR*, rdr)= L R™*, 2dA).

Step II. The purpose of this step is to show that the formal kernel of
4, & in Case A is equal to k,( ; é&@@). In this step, we set 4,=4; 5, L:A*=
L2Aw & v,=u(C()),, w;=wju. , for short.

First, remark that, if we set

(3-19>c£c(i),; ‘th:chc(i),J:(Z-l:g)c%(i),] s

then, from Fig. 2.2, 2} belongs to dom 4, near the singular point.
Let’s take g;(mw;e L*A*.  Since (2.23) and (3.17) yield

(3.20) lgaolr={ (g, rdr= || Hre 0 g )220,
we have

(3.21) paWg (e LARY, rdr),

(3.22) g = [~V ) 2 car, s -

Hence the map ?gjijHyj(r‘““gj) induces

(3.23) Iy, o LPA—LARY, 2d2).
Moreover we have

(3.24) (3 g,0) =g, @Deun -

By this formula, we can show that, for g,w,=dom 4,,
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(3.25) (ﬂ,j(d(g]a)j)):Zzﬂy],(gjwj) .

In fact, since there exists a sequence {.(r)w,} ,Cdom J, such that /1,(»)=0 for
r large, and h,w;—gm; dh.w)—d(gw)), 0(hw)—0(gw,), dhw)—>4(gw;) in
the L?-sense when k-»co, it suffices to prove (3.25) for a form g,w;=dom 4, with
gi#)=0 for r large. And this is an immediate consequence of the formula (3.24)
and the property of £F, that is, 427=127.

Further, for a form 6= gm,edom 4,, we have g,w,=dom J, and 46>
> A(gjwj).

Thus, letting L*R™, AdA, [*) be the Hilbert space consisting of /%-valued
square-integrable functions on R* with measure Ad4 and define
(3.26) ﬂ»(&m)@ gw)=1{9, (g0},
for ‘Jjg]cu]eLz/ll, we get
LemMMA 3.2, We have the Hilbert space 1somorphism
3.27) Ho@an s LAATECN) = LAR*, 2dA, %) .
In particular, if 6=dom 4., 5, then

(3.28) Hy G an(dO)=9 5w (8).

In other words, (3.27) and (3.28) provide the spectral representation of
d.; 5. Hence the operation with f(4, z) on 6=3 g,o;=dom f(1,, 7) can be written
as follows;

(3.29) f(‘]l 0(rs, )=y (fRIH G an(@)(r, %)

=3 TR | (e Ol o ik )

= e [ [ IO Gr oL Gr02d2 g s = drn 1)
7 Jo 0

Here the last expression is of the distribution sense.

Thus our purpose of this step was accomplished.

Step III. The purpose of this step is to show that the formal kernel of
f(d,; ¢rnp) in Case A is equal to k,{ ; dr AZG—1).

The proof is similar to Step II. Set

(3~3O)t5(i41>,; “Q;:‘Qir/\z(b-‘l):(z'16)%(’5—1),] .

Then, 2} belongs to L*A™ % near the singular point. Similar to (3.23), the
map Jij(r)dr/\G)Z(i—l),jH »(E(i—l),l-2)]<7’_n(i_1),f]) induces

(3.31) Hyimn,een, @ LAY TS LR, 2dA),



402 MASAYOSHI NAGASE
and further we have
(3.32) Kyner s (0 A Awpa-n, )= (=DM dr Aoca-n, o 25 can
Hence, by the argument similar to Lemma 3.2, we get
LEMMA 3.3, We have the Hilbert space isomorphisin
(3.33) iy, ewy t LEABEINCINY=LAR®, 2dA, 15 .
In particular, 1; #-=dom 1, 4;, then

(3.34) AL, sz><41(9)';/12<5lf;Lf-u'—n, ,,,2)(,9‘; .

Hence our purpose 1s also accomplished by the argument similar to the one
following Lemma 3.2.

Finally remark that, if we insert “b¢” or “adbc¢” into the »(-) in order to
indicate the boundary condition under consideration, we have

s == 4 ~ PR
R '71\,.1—2)*‘J{»(a(lbc,cu(mrivl~zu'

(3.35)
Ret i he, dr NEC—=1))=%"Ye ,(; adbe, TOn-~1—20)).

Step I1. The purpose of this step is to show that the formal kernel of
f(d,; agerarse) 1n Case A is equal to ks ; dée(i—-1)-+dr Ace(i—1)). In this step,
we set 4,0, pqear s LA =L2ABGEENE 1), =g
a3 =a*(ce(i—1)), and w,=wj-n,, for short.

Here we cannot expect (2.14)* and (2.15)" to play the roles similar to (3.19)~
and (3.30)*. Let’s start with constructing the /-forms from (2.14)* and (2.13)",
which are suitable for our purpose.

The following formulas for Bessel functions are well known ([147 III Pages
158, 159);

Ar

S )= %, { oy (Ar)- ] (A0}

(3.36) 1
]>/J(21’) == 7 {fyj— 1(17’)*.]»?-* (A}

By applying (3.36!, (2.14)" can be rewritten as follows (see (2.14")) -

(3.37) L O R e ) o,

2y,

2 e ay g (An)say (At dr Aa,
J

Similarly, (2.15~ multiplied by (—1)™%"Y*" can be rewritten as follows (see
(2.15"%):
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A s T
{3.38) 2—;——7'“(” la7 ], -t (Ar)ta; Joyilart do,
J
: A L (E-1) TN IR I
e '2;""/1]7 {fy,-](ﬁ )"‘_[:,'-71’\/\7 pdr W,
/J N
Hence, if we set
(3.39) Q7= Q0 a-n=aréiu-n,
1 . (___l)m(L-l,“l -
Eha 7(2.14)&'(#1),]:}: . Z(Z;‘ 2.15: TR RN

then

o g Z .1 , . - .
BA0Gin., 2= - PO Lo d e Lo (rdr w,
J

These /-forms play the roles similar to (3.19)' or (3.30)".

403

First, from Fig. 2.2, 27 belongs to dom4, near the singular pomnt. Moreover,
from (2.23) and (3.17), if g,dw;*f;dr Aw,E L? A}, we have
(3.41) j?gj(Y(uﬂrfjdr/\w]ilzrzlujx(r‘“""g](r))zr(lrr}‘\:o(r"“ U, rdr,

(342) igj(’i(l)]':"fjd/'/\(l)], Q;>C(A\7):Hyj;](*‘a;]' ‘l““gJ -yt 7“f',) .

Moreover, similarly to the proof of (3.25), if g,dw,f,dr. w,=dom 4,

(3.43) ‘A gida;-Tdr Nwy), D50 ==3 g, dw, 1 dr, o, 27 .

Leatva 3.4, The map
(3.44) ; (g,dw;~-f,dr ANew;)
P {(—ayr P gy a Gl g D e
induces the Banach space isomorphism
(3.45) L2 6 dedan QO Y= LR, rdr, I2Z0 .

Proof.

{the norm of the »./i.s. of (3.44)}*

Ja

;g{((a;)?-(07)2)5:(7"“(”crj) rdr-+ S (rrofet T Eedy

_Za(l.f_DST(;,m(i)gj)(},‘a (i"”f‘,)l’(ll’}-

};E{(éla(z'—l)z—f-Zy])S (re®grdr+ ZSNT‘"' CVrtrdr
J ¢
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—a= 17 g rdr—{"mnn fyrdrf

:ZJ}«{(Sa(i—1)2+2y1)5:(r“"“g])zrdr—i—gj(r‘“”'"”fj)grdr}

= {the norm of the [. h.s. of (3.44)}2.
{the norm of the r.h.s. of (3.44)}*

=S Gati—1+20) -0 rdr:8] o0 1 rdr)

=<K {the norm of the /. A.s. of (3.44)}2
Finally, if we set, for {(F;(r), Go)} ;= L¥R*, rdr, [}D(?),

a(t)
2= S AFM—Gr),
<3'46) ]a(i—l.:
[0 e P = a6 )

then X (g,dw,~7,dr w)=L*A" and, moreover, its image by the map (3.44) is
{(Fj(r), Gj(r))}]-
On the other hand, the map

(3.47) {(Fyr), G}y {(Hy-(Fy), Hyjrr( G,
induces the Hilbert space isomorphism
(3.48) LR, vdr, XD = LY(R*, AdA, *E1%) .
Hence, by composing the maps (3.45) and (3.48), we get
LEMMA 3.5. We have the Banach space isomorphism
(349)  Hiaiivi-an G @ LAV EEHEASCNY) = LARY, 2d2, PEP).
In particular, 17 6 =dom J,; 45t arnde,

(3.50) HFoadsa-neardea-mdO =22 v a-vearnda-1(0) .

(3.50) is an immediate consequence of (3.42) and (3.43).

We can now accomplish our purpose. Let’s take =3 (gdw,+f;dr \w,c
dom f(d;; afear &) and consider f(4,. ¢5:arni)0(ry, %1). By (3.46), the coefficient
of dwy (%) is

(3.51) (a5 =ar 2 < 7RO (= a5 1, s, i)

@ P T ) de} g, rr-dr,



THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 405
ag—a;) | rrors o Uy )

—“]Vjﬂ(zrl)]vjﬂ(/zrz)} Zdz]fj(rz)rgn—miul)drz .

Hence, those terms of the formal kernel of f(d;. aszrarns) which involve the
do(#)RdwiZ.)s and the dw,%)Rdr:Aw,%.,)’s are obviously &, ; dce(i—1),
dée(i—1)) and ky( ;dée(z—1), drAée(z—1)), respectively. Next, similarly, by
(3.46), the coefficient of dr Aw;(%;) is

352 (ag—ap)| e rs o [0 GrOL,- ()
Do My} 22 g ey
+Hai—a)| o i [Tr0 a0,

— a7 o i(Ar ) ], 41(Ar )} Zdl}fj(”z)”?‘g(i—l)drz :

Hence those terms of the formal kernel of f(di, s&+arncy) Which mvolve the
driAw{F)RQdw{%:)s and the dr Ao (Z)Rdr. Ao %.)s are obviously
ke(; drAcei—1), dée(i—1)) and k ( ; dr Aée(G—1), dr Aée(i—1)), respectively.

Thus the purpose of this step was accomplished.

Step V. The proof of Theorem 3.1 (1) is thus accomplished.

Step VI. Next, we will treat Case B(V(%)). Pay attention to (3.19)*, (3.30)
and (3.40)*. In Case A, (3.19)*, (3.30)* and (3.40)* belong to dom 4, near the
singular point, which played the important roles in the proof of Theorem 3.1 (1).
However, in Case B(V(k)), the situations are slightly different because of the
existence of the ideal boundary condition.

Let QI;;(IZ),]; -Qf';(k)i,; and Qc%(k),] be (3.19)% ). <3~19)Ii?<k>i,,1 and (3-19)5@),;»
respectively. Observing Lemma 2.3 (1) and Fig. 2.2, we know

LeMMA 3.6. In Case B(V(fe)), 25,0 v, Qctakm, 55 G-D4arnG -, s
and L ze-n,, belong to dom 4, near the singular point.

Hence, for proving (3.9), Steps III, IV are still valid and Step II becomes
valid by replacing 27 yt,, by vyt ;-

Thus we may say that the proof of Theorem 3.1 (2) has been completed.

Step VII. Finally we will treat Case C(V(k)). The situations are similar to
Case B(V(k)).

Let Qir/\V(k),p Qir/\vmi,; and Qir/\ak).; be (3~30)5(k>,], (3-30)%1@#,; and
(3.30)71), , respectively. Observing Lemma 2.3 (2) and Fig. 2.2, we get

N
LEMMA 3.7. In Case C(V(k)), ‘Qc~c(k+_1),ﬁ QiGawrarndian.p Qarnvan, s
Qirrvint,; and 2ias,, belong to dom 4, near the singular point.



406 MASAYOSHI NAGASE

Hence, for proving (3.10), Steps II, IV are valid and Step IIl becomes valid

by replacing 25av ., BY Larava,
Thus we may say that the proof of Theorem 3.1 (3) has been completed.

Thus the proof of Theorem 3.1 is complete.

Next we will make some remarks for applying Theorem 3.1 to the study of
F(dy).

First observe ks(; éc(@)). It can be regarded as a family of functions of
v{(ée( z))**\/Pg./I-»La( )2 parametrized by r;, r.. More precisely, by the natural
identification

(3.53) Lzv c’F(C(;\;’));LZ(R%—’ =gy, L2A% c?(‘\,r» ,
with
(3.54) L2 F(N) = T (N B AN ,

the operator k;( ; ¢¢(i)) can be regarded as a linear operator
(3.55) LAR*, rm2dy, LPA5 SN = LART, r™-2dr, LEAS S(N)) .

From this view-point, we can apply the functional calculus for functions of
v(cc(@)). Really this gives the crucial view-point; [6] provides the best example.

By the way, we wish to observe also (3.4)—(3.7) from the view-point similar
to (3.55). However, what is corresponding to (3.53) is complicated. Hence it
will be best to manage to avoid using such complicated ones.

Therefore, let’s replace 15V dw, (%), pyV*rdwlfs), driAwi&), driAolZs)
by w,(%,), w,(%), w%), wi(%,) in (3.3)—(3.7). Here, remark that the subscripts
“c(), celi), etc.” are omitted. Let k,( ; @), ks ; dee()+dr Aée()), -, B5( ; dr
A V(@) be the operators constructed in the above way. Of course, Ef( ; Ce(i))=
ks(; ¢e(@)). They can be regarded as linear operators similar to (3.55). Moreover,
through the Hilbert space isomorphisms

(3.56) LAR®, rm-oidr, dr ALPANN) = LHR, ™ odr, LHAYN)),
U U
S fdrie, ————> 3 fo;
(3.57) LAR*, ™ 2y, Lz/li;gé(N))gLQ(R*, pm-2EED gy L2 AGEN)Y
J W
Egjwc?u),] > Egjﬂce(n erwce(z) 7
with
LAy %(N):g/lHl(N) ,
(3.58)

LAS N)=d A5;(N)

they can be identified with the original ones, that is, (3.3)—(3.7).
Moreover, if we set
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359 F @@= [, G, irid

§:f<22>./yj+l<xn>].,j+1<2rg>zdz}wj<fl>®wj<%> ,

GO0 7 i) S g[S Gr ), - Groadi
RO s )1 G 0,2 R0 (52
with v,=u(c@{)),, 0, =wqaw,, then we have
(361 B deet), deali= 5 B 5 )b ; @),
(B.62) B ; deeli), dr AR ; dr AGeU), deeli) (Pl ) ; i)

~

(3.63) B dr Aee(d), dm@(m:—z—k( @)k 5 @) .

Moreover, since

(3.64) ErCs drna@)=(2)" "5k adbe, con—i)F
and, in Cases B(V(k)), C(V(R)),
(3.65) FrC VD= | Rl ] s 2d2 Ty

D LR, dr, V() LAR®, dr, V(k),

etc., we can assert that, for the study of %,( ;7), it suffices to study the linear
operators

(3.66) R s celi)y=h,(; el « LARY, r™-2dr, L*A%S(N))
—rLXRY, rmndr, LPABEWND),
(3.67) (5 o))« LXRT, rmidy, LAY F(N))
> LXRY, r™=2dr, LPABEN)),
(3.68) (r:72) wg FOO raAr )] cvn(Ar)Ad A« LARY, dr)~LARY, dr).

Finally, we will prove the Rellich-type theorem which is the fundamental
material for constructing the Hodge theory in the next section.
The norm on dom J, is defined by

(3.69) Wl =T +Dblc o, -
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THEOREM 3.8. Given 0<e< oo, the restriction map

{(3.70) dom 4,— L2AYC,, (N))

1S compact.

Proof. The proof is similar to that of [6] Theorem 3.4.
Given 0<r=¢, we have the inequality

r)/
(3.71) |Jy(7’)l§K—I—v<T+_ﬁ, v>—1,

where K=K(e)>0 is independent of v.

Take a form < L2AYC(N)) with supp [0, e]XN and expand it to the
convergent sum (2.6). Then, for v>—1, we have the following inequalities.

. lv al+v
(3.72), |Hu(7’_a(”gc~c(t>,;)|§K‘m"mchNc(w,jwc?(i),j”C(N) s
. Zu a1+v
(3.73),  |H.(r o@D feiiny, )] gKT(T—!—:l):/m | fsa-0.,dr A@za-v. llcxy -
Moreover, let {(G,(r), F;(r))}, be the image of the second sum of the ».h.s. of
(2.6) with respect to the map (3.45). Then, for v>0, we have the following
inequalities.
[H,.(G))] B les dwr .
-1 Jil = 1—1())) \/2; gceu—n,; ce(i-1), 7

3.74), +fea-n,, dr Noga-u. llcon

v+1 e+y
A a

| H»+1<Fj) | gKF(T—}jZ) ' m lgesa-o, j ch”e(i—n, ;

+fi-n., d"/\wc?(i-n,jncm) .

In Case A, consider the inequalities (3.72)»(67“-))], (3.73)v(4-1,4-2, and (3.74)y(c~e<igl),j.
In Case B(V(k)), consider B2y B 12wt B2 wn,; G T3 i-v, k-
and (3-74)»(63@—1))]-- In Case C(V(k)), consider (3-72)u<c~c(k+1>),~’ (3-73)-V(V(k),k—l)j:
(3'73)H(V(k)"‘,k-‘1)j, (3.73),,@(;,),]1_1)] and (3.74>y(c}f(k))j. Then, in any cases if ®is
contained in the unit ball in L2A*C(N)) and consists of forms supported on
[0, e]X XN, then, for any fixed positive a, the map

(3.75) Iy o LEAMCIN)) = LA(R*, 2dA, PRIDEEE)

defined by (3.27), (3.33) and (3.49) (in Cases B(V(k)) or C(V(k), L%, or
Qavy,; should be replaced by 2%y, or Qv , respectively; see Steps
VI, VII) carries & into a family of forms whose restrictions to (0, a) have range
lying in a totally bounded subset of [*PI*DIEDIz

Hence the proof can be completed by the argument similar to that of [6]
Theorem 3.4.
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§4. Hodge theory for X with X compact.

Let us return to our X™"'=_,  (N™)\UX, and construct the Hodge theory
for X.

To avoid awkward repetitions of similar expressions, let’s adopt the follow-
ing notations and definitions.

First classify Case A into

Case A_y: dim N=2k, F}(N)+# {0} and 1=Fk—1,

Case A, : otherwise.
Moreover, denote Case A_; with VCIHLN) specified simply by Case A (V).
Next we set

t(X) ; in Case A,
4D LAI(X):{

At v(X); in Cases B(V), C(V),
4.2 Dz:dUl(X) ’ Dikzaluhﬂ(x') s
and denote the closures of D,, D¥ by D, D¥* respectively. Then

dy,. ; in Case A,
D=

dye.v,,; in Case B(V),

{ Ope,, ; in Cases A, or C(V),
D¥==
Ouse,v,, ; in Case B(V),

but the operators D, of Case C(V) and D7¥ of Case A_(V) haven't appeared
until now. However, we have

(4.4) D.=dy..; in Case C(V),
(4.5) D¥=3,.; in Case A_ (V).

In fact, (4.4) is an immediate consequence of the facts that the ideal boundary
condition on #e A¥(X) is concerned only with 4,4y + @ 4-ny- and moreover
A0 grpy+ 0 arpvt)=0. (4.5) is also similarly derived. Therefore, in any cases,
D¥ is the Hilbert space adjoint of D,, and our Laplacian 4, can be written as
follows :

(4.6) 4,=D¥D;+D, \D¥, . L*A(X) > L*A(X).
Further, if we set
4.7) HYX)={0< L2 A(X)|df=0660=0 as distributions.},
KX )= (X )Ndom d e, ;Ndom Soe, o1 ; in Case .4,
(4.8) St AX =9 XyNdom dye, v, oM Sy, 51 5 in Case B(V),

X)) =H N (X)Ndom d g, yeiNdOm By, v, 5 5 in Case C(V),
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then (4.8) equals to

4.9) HH(X)=H"(X) ~dom D;Ndom D%,

in respective cases.

From now on, we will use mainly the notations AYX), D, D¥, $%(X) and
return to use A(X), ds . etc. when occasion demands.

General properties of 4, and objects around it can be derived by the method
similar to [7]. Hence we omit explaining such general ones and we concentrate
ourselves on constructing the Hodge theory when X is compact.

In the following, the metric completion X of our X is assumed to be compact.

Leania 4.1 Given 23>0, the operator
(4.10) (d-20t - LEAX) L2 AY(X)
s compact.
Proof. (J;=a)7* 2 L*AYX)-»dom J, 1s a continuous operator. Hence, by
Theorem 3.8 and the well-known Rellich theorem for X,, (4.10) is compact.
Thus, given A>0, (4.10) is a compact self-adjoint operator. Therefore, by

the general theory of Riesz-Schauder, we get

PROPOSITION 4.2. The spectrum of 1, consists of eigenvalues of finite mults-
plicity.

Moreover we have
4.11) HH(X)= {0=dom J1,id;6=0},

and, by the general theory of Fredholm, for a given feL?AY(X), there exists
Ae=dom J, satisfying J;60=/ if and only if f is orthogonal to 9¢*(X). Hence, if
we define H, : LA (X)—3*X) to be the orthogonal projection, then, for a given
feL24(X), there exists a unique element #,=dom 4, which satisfies 4;0,=
8-—-H,0 and H;8,=0, by which the Green’s operator G, is defined to be G;6=0,.

THEOREM 4.3 (Hodge decomposition). There exists the unique pair of contin-
uous operators

(4.12) H, G, - L*A"X)->dom J,
such that 1,H,~H,G,=0 and, for any < L*A%X),
(4.13) 0=H,0--D*D.G,0-~D, D¥.G.0.

The uniqueness can be easily verified.
Next we will study the harmonic space €% X). Then :-th L*cohomology
group of X is defined by
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{4.14) i (X)=Ker D,/Range D,_, .

If necessary to indicate the boundary condition or the ideal one, we will use the
notations Hb, 1.(X), HY, 5 »(X) instead of (4.14).

LEMMA 4.4. The natural map o—{w] induces the 1somorphisin
(4.15) tq P FUX)=HLX).
Proof. We have the Hodge decomposition
(4.16) LAY X)=HYX)=Range D¥ *Range I, _, .
And we have
4.17) Ker D,= 9 (X)“Range D, _,.

Thus the proof is complete.

THEOREM 4.5. Sef 8X, =0Xr6X,, Ny (NI 09X,

(1)
[H%Xu» ; z<[’”—’2}1]
(4.18) Hiyy o X)= g
lHL(X“, N i '”2'~ SESH
Hi(X,, aX.) , 1<| ’”;l 1,
(4.19) Hiy (X)) = - +1:
l HiUX,. 60X, : i> ’”—2'— NESE

(2) In Case where m==2k-+1,

[RACEC R LS AF z::/e:[-’”il“]

(420) Hl(lz), abs(X) = 2
l H* (X, Vo) ;o k
) i*<Hk<Xli; '\'u>\fCHk<1Yu; a/)\(u) i l;ky
(421) HIE‘Z?,TU[(X>§
Hk+1<le; alYu) ; Z;:k"‘dl'
(3) In Case where m=2k, if Hi(N)={0}, then
(4.22) H%Z),bc(X>:iH€2>,br', wl(X) s =k, k1,

and, in general, given VCHE(N), we have

HCHHX 5 k= M0,
(4.23) Hisy, o o(X)= z2

H¥Y(X,, N5V =kt
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, IV HCHH X, 0X0); =k,
4.24) H%Z),rcl,V(X>;{

HM (X, 0X,)/0%VY) 5 i=k+1

In each case, the isomorphism is given as follows:

Given [w], that is, an element of the right hand side of each expression,
let’s extend w|y, to @, a form on C; .(N), and denote the form thus defined on
X by @, that is, 2= on C, ,(N) and £=w on X,. Then [2] is defined tobe
the image of [w] with respect to our isomorphism.

Besides, each right hand side of (4.20) and (4.23) is defined by the long
exact sequence

i * 5*

J
4.25) - —> HHX,, Ny —> HHXy) —> H¥N,) —> HF( Xy, Ny) —> -

and the orthogonal decomposition H*(N,)=V@PV*. Moreover, each right hand
side of (4.21) and (4.24) is defined by the long exact sequence

Z'* ]>6
/426> > Hk(Xuy aXu) - Hk(Xu; a/>(u> e Hk(Nuy aNu)
5%

s HkH(X,,,, aXu) N
and the orthogonal decomposition H*(N,, oN,)=VEH V.

Proof of Theorem 4.5. Referring to [4], [16], etc., let’'s gather some prop-
erties of the L:-cohomology groups. Set C=C, ,(N). Let’s define the ;-th relative
L*-cohomology group H%,(X, C) to be the :-th cohomology group of the cochain
complex

({#=dom E* [0c=0}, 5* (X,C):E*) .
Then, we have the L*-version of long exact sequence

@.27) > HGHC) —> Hiy (X, C) —> Hip(X) —> Hip(0)

—> HiHMX, C) —>

We remark that, when we define H%,(C), we leave the boundary condition on
N, out of consideration.
Moreover, we have
H%Z),abs(X; C>EH1(X1¢; A‘/\]u)
(4.28) ' ' in Case A4,
Hi(z)frel(X: C);H1<X1L; aXu)

Higy, ansv(X, O)=H (X, N ] ‘
(4.29) ' _ in Cases B(V), C(V).
Hiy re (X, Oz HY(X,, 0X,)

Since the ideal boundary condition has no effect on our relative L*-cohomology
groups, in view of (0.9) and (1.3), it suffices to prove
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(430) Ker (71, (X, C’)/Range Jz—l, X, EHZ(XW Nu) ’
(4.31) Ker d—c,t, (X, o/Range d_c, =1, (X, 0 EH1<Xu; 0X.).

(4.30) can be shown similarly to [16] Lemma 3.14. As for (4.31), if we take a
manifold X, with X,DInt X,DX,, then the left hand side of (4.31) is naturally
isomorphic to

Ker dy, x, 2,-xp/Range di ity 2,-xp -

And this is naturally isomorphic to the right hand side of (4.31); see [16]
Lemma 3.14. Thus (4.28) and (4.29) have been proved.

Next, consider H%,(C). Precisely writing, H%,(C)=HY,, ,(C) in Case A and
Hiy(C)=His v, v(C) in Cases B(V), C(V). We have

Hio ;1< "HL
(4.32) Hiyy (O = 1
0} P iz ﬂ; ;

We remark that we are taking account of Cases B({0}), C({0}), too, by the
identification

(4.33) Hiyy ve, (C)=H%, 0(C)  in Cases B({0}), C({0}).
(4.32) can be shown similarly to [4] Lemma 3.4. Moreover we have
H%Z), abs(Nu)gHi(ivu) s
(4.34)
H7f2),rel<Nu)ng(Nu, aNu) .

These can be shown by the arguments similar to the proofs of (4.30) and (4.31).
Moreover, in Case B({0}), by (4.32)—(4.34), we have gotten the isomorphism

(4.35) it (NY=H, 5e, 01(C),
W W
o —> [&]

where a(r, ¥)=w(¥). Now, in Case B(V), through (4.35), we get the isomorphism

(4.36) Vi HYy pe,v(C)=Ker d_bc,V, »/Range 5bc. E-1
M N _ _
ﬁf}c(N)%'H]fszc, w(C)=Ker dy., /Range dyc, 1-1.

Besides, in Case C({0}), by (4.32) and (4.33), we know
4.37) Ker dye, j1/Range doc, o0, 1 = {0}
In Case C(V), we can show

Ker dy. r+1/Range dy. v »= {0}, that is,
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(4.38) Ht e, v(C) = {0}
In fact, if we decompose a=Ker dy 4, into

a=¢+dr e,
then a:dgra) with S;wedom dye v ; See (3.12) and Lemma 3.2 of [4]. Moreover,
0

obviously, Srwe dom dye. 4 cv>.s. Thus (4.38) was proved.
0

We can now prove the theorem by applying the five lemma repeatedly to
the diagrams which are made by arranging (4.25), (4.26) and (4.27) suitably.
Here we will give only the diagram corresponding to “bc”=%“abs”.

The subscripts “abs” and “V” are removed in the following.

In the case where z<{ ”—‘;1—], by (4.28), (4.32) and (4.34), we have the fol-

lowing commutative diagram.

M Hlﬁl(ATu,) - Hl(-)(uy -’\ru) - Hl()(u> - H’;(i\vu) - H! H(Xu, A’l\ru> T
(4.39) J}z i | iR ¥
L HENO) - Hia(X, ©) - Hin(X) — Hin(C) > HGHX, € — -

+ \II

m—+1
2
by (4.28), (4.32) and (4.38), we have the following commutative diagram.

In the case where ;> { }% 1, or in the case where m==2k—1 and 1==k-+1,

o HUN ) S HAX G N HUX,) — HA(N) S HE (X, Ny
(4.40) | I

----- s HGHC) - Hi(X, C) > Hip(X) > Hin(C) > HEHX, C) -
Il il
{0} {0}

In the case where m=2k—1, by (4.28), (4.32) and (4.34), we have the fol-
lowing commutative diagram.

e HEYN ) HY(X, N > HHX) = HAN,) > HE(X, N -
(1.41) IE iR I

o H%2~>l(c> - ]7’1?3)()\7; C) > Hiy(X) — H?e)(C) I H}f;l(X, C) >
!
{0}

Finally, in the case where m =2k, by (4.29), (4.36) and (4.38), we have the
following commutative diagram.
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. HYX,, N,) > H¥X,)~> H¥N,) = H* X, N => H*NX,) => H*(N,)
(4.42) J ) Vgaw ]’2 A
L HB(X, C)“"H’Ez>(X)-"H’€z>I(l(ZJ> = HiG (X, C) > HHHX) = HiGH(C) 2,

I
{0}

Finishing our study of the harmonic space, we next aim to study the heat
kernel and the objects around it in the following sections.
In the following, our X is always assumed to have the compact metric

completion X. Moreover, let’s denote the sequence of eigenvalues of 4, by
(4.43) 0=) Z,0S 215255 -+ 1 00

and denote the orthonormal basis of L?A*(X) consisting of eigenforms correspond-
ing to (4.43) by
(4.44) @0, Qi1 Pigy -

If necessary, the subscripts “bc”, “V” are added, for examples, {dy. ., Ao, )
Gpl)c,l,]’} in Case A, or {A—bc,V,u ZbC,V,‘L,]; @bc,V,z,j} in Cases B(V), C(V).

§5. Heat kernel.

The main purpose of this section is to investigate the asymptotic behavior
of the trace of the heat kernel on X”*'=C,, ,(N)UX,;

(5.1) e-ﬂz:]z e a0, ()R f(Xs) .

To do so, it is best to reconstruct the heat kernel on X according to the
method of E.E. Levi from the one on C(N) and the one on a complement of a
neighborhood of the singular point; the last two heat kernels are accessible
to us.

We need the detailed description of the reconstruction as follows.

Let E (¢, xi, x5;7) be the heat kernel for 7/-forms on C(N), which has the
formal expression k.-2(x,, x.;7) according to § 3; here we impose on E¢( ;7) the
boundary condition and (in certain cases) the ideal boundary condition which are
consistent with those of (5.1). Next, let ¢’>0 be sufficiently small and (X%, N¥)
be the copy of (X.., N.), where N.. =C, .(N)NX... Then M is defined to be the
attaching space X.\J,;X%, where I is the natural identification map N. =N¥;
M is endowed with the Riemannian metric which coincides with the given
metric on X... Let Ey(f, xy, x5;7) be the heat kernel for ;-forms on M which
is thus a compact Riemannian manifold possibly with smooth boundary ; here we
impose on Ey( ;7) the boundary condition which is consistent with that of (5.1).

Fix ¢>0 such that 0<e’<e<6e<u.
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Let {Dyx), Pu(x)} be a partition of unity on X such that both elements
depend only on » when x=(r, 2)€Co,o(N), supp Do TC,o, .(N), supp Oy Xs., Po=1
on Cp5(N) and @®y=1 on X,.. Moreover, let ¥(x), ¥y(x) be smooth functions
on X such that both functions depend only on » when x=(@, )=C, .(N), supp ¥
CCoselN), supp ¥y X, To=1 on Cy ;(N) and ¥y=1 on X,..

Now set

(5.2) Et, x,, 223 D=V o(x)Ec(t, 21, %o )Dolts)
+ (XD Eu(t, x1, %25 DO u(xs) .
As usual we look for a double form F(¢, x,, x,;¢) such that the double form

(.3) EQ, 1y, xo; D=EQ, x,, x4 9)

¢ ~
‘_S dtlSXE(t_tl, X1, Xs; DA% Flty, X5, Xo; )
0

satisfies
(5.4) E(+0, xy, xo5 0)=1,
5.5 (24 4.)EC, ), 305 =0,

We will search for F(f, x;, x.;7) with the following two properties (1), (II).

(I) F(, xy, x,;7) is a smooth double-/-form on [0, o0) X XX X which has
support on [0, c0) X{C, :{NNJCs. :«(N))X X and, for fixed ¢ and x,, belongs
to dom 4, with respect to x,.

() Let ¢”<1 be sufficiently near 1 and ¢(x) be a smooth function on X
such that ¢(x)>0, o(r, £)=r "*"/2 on G, .;o(N) and ¢(x)=1 on X,; see
(5.43). Then there exist K >0 and >0 such that, for n=0 or 1,

(5.6) [dmx F(t, x5, %25 10) | < Kep(xy)e 8.

Here, |-| is the pointwise norm at (x;, x,) defined by (0.3).

First of all, we will show that, if F has the properties (I), (II), then
E(t, xi, x.;7) satisfies (5.4) and, for any =LA} X) and t>0, E(t)f belongs to
dom 4,.

Since, from (5.6), we have

1] Pt w05 DA%, 008

<K | Pty w2031 161,

|F(ty, %oy xa3 i)l2*221§K'V01(N)e“5"SE/2r‘5’dr

Sco,e/guw 0

1-g”
= Kvol(N) 2 o
1—e¢



THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 417

the form SXF(t" Xy, Xo; i) A\%5,0(x,) exists. Moreover, by estimating
AIaSXF(ih X3, Xz} 1) Axg,0(x,) similarly, we know that the above form belongs to

C%[0, oo), dom d4,). On the other hand, E. and E, define

(5.7 E¢ 1 dom 4,—C%[0, c0), dom 4,)  on C(N),

(5.8) Ey : dom 4,—C°([0, o), dom 4,) on M.

We examine only (5.7). By using the operator (3.75), we have

(5.9) (EcO)t, (r, B)) =S e t 9 (), %).

Hence, if §<dom 4, on C(N), we have, for arbitrarily fixed a>0,
T+ DEO—E(8)0)cow
§K1ll(l‘f‘]z)(e"tZz_e_sxz)ﬂv(ﬁ)”mm*,zaz,zﬂe;zﬁez?am)
St—=s] Kl (Q+2DH (O 1200, a1, 2142, 12002012022

+2Kln(l+lz)j{v<6)”LZ([(Z,OO),Zd],l‘l@l?@l?@lz) .
This implies (5.7). Since (5.7) and (5.8) induce
(5.10) E : dom 4,—C*([0, ), dom 4,) on X

we know that, for any < L*AY(X), SXE~(t, X1, X3} z')/\*JSSXF(tI, Xy Xy D) NA¥z,00%,)
is a dom 4;-valued continuous function of (¢, {;)=[0, )X [0, o), and, moreover,
S:dtISX]_'N?(t—tl, X1, Xg; z')/\*zang(tl, Xs, X33 1) A*,0(x;) belongs to dom 4, and con-
verges to 0 when ¢} 0. Moreover, by the argument similar to the proof of
(5.10), we have

(6.1D E: LAY X)-CYUR*, dom 4,)NCY[0, o2), L*AXX)),

(5.12) E(40, 2, x5 0)=1.

Then the desired results are immediate consequences of (5.11), (5.12) and the
facts mentioned above.

Now, for constructing such a form F, we need some preparations. FEy is
well known ([17] §5), but all we know about F. now is that it can be written
as a formal sum according to §3. Hence we need to investigate E, more closely.

Let Eq(t, x1, x5; €2(D)), etc. be ke~at{x;, x5 ¢c(7)), etc. which are defined by
(3.3)—(3.7). Moreover, define Z{¢, x;, x,; ¢¢(z)), etc. by the following formulas.

6.13) Ec( 5 @@)=(rry)* e rom¥ s Z (5 q(i))
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(5.14) Eos deée()--dr Née())
i) P it a7 dea(y A dr A R())
) e T LT - dee(h) ) die(D))
--Z(; dée@), dr Ne(@)+Z( ;5 dr NéelD), dce(d))
--Z( ; dr Néer), dr Née(D)}

(5.15) Ect, dr NE@O)=(rre) De Cmm2%8 Z( s dy NEG))
(5.16) EzC; V)= (o) D rem i Z=( - V(i)

(5.17) Ect  dr ANV@)=(rgs)* Pe- T 7= dy AV())
(5.18) Ept, D)= ()t he it Z( gy

Besides, Z( ; %/, etc. are defined in the same way.
Set z==t/(ryr:). Then, by Weber’s second exponential integral ({147 111 Page 200),
we get, for +>—1,

R N R e I O S £1E)
(5.19) .\(.‘ Lar) [ Grdd =y o0 1»( > )

N
(it g ()

Here, I, 1s the modified Bessel function of order v.
Hence we have

- . T ... 1 JENPN N
(5.20) Z( ;= 2:_@ L ;[urc?unj(*é‘z’_’)wc?m,](x1>(<v>'wc?u>,1(xz>;

1 1
[nd 7. D0 D\ L p—H2T [
(5.21) Z( 5 dco'n, déer)) 5. ¢ ; o),
{ 1 N 1 1 N Ahl_
amalin, [‘”““‘“)f"('zf) a(ce(i)), 1"<“"'L’>f“<2r >}
'&Uc?(i),](-fO@Jw&(z).j(-{'z) R

7 4 i PN _...]:,,, —1/2r . ,,,41_,;,»
622 20 d@h dr @)= e B g

1 1
"{[w&u‘)>,—1("2';‘>_]’““TZ(LA’)J'*I(?Z';)}
o :
. dw&uxj(xx)@‘_;g NG, F)

7o " AT (7)) - _L p =112t . _,,_%n
(56.23) Z{ 5 dr, ce, dée(d))= 52 ¢ %} (2,
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. {[;(Femy-»l(*%f)‘lv“we“i”j”( 21~;>]

dr, e .
T NGOG, AN dws . X,
1

1 1
‘3 . - 210 d (1)) == - gV et -
(5.24) Z( 5 dr nNéed), dr Ace(d) 97 ¢ 2] i),

. {a:“(fé(l'))j[»(cNe(mfx(‘?l;)“ a*(c"e(z'))‘,[‘, ey ’\»7”}(‘2177)}

dr, . ar,
. AOG gy, XD .
7 s

(7P ;,L]" ‘::) »

(5.25) Z{ ; dr NE(@))=

= emf;1,(5(“%”](,,21%_)

I . drs .
. " ‘/\(UEQ),J(xl)@ ;— " Wi, J’«-\';») .
1 2

Moreover, in Cases B(V(k)), C(V(k)), we have

~ oo - 1 , 1 s N
(5.26) Z7(; V(/2)):*2—;@_1’27;Iﬁ,fz(‘z‘z_—)wwlw,](xx)c,(f)r ST

o . Lo 1
(.27) 27 drAV(R)=goe ;1“,2(*2;)

dr, x drs
: AWy iy, {EVE 7
1 2

Wy ) 1),

etc. Besides, by [14] 1l Page 172,

(5.28) 111,2(5!%_): JE;(Q o)

By using these formulas, we aim to estimate the pomtwise norm of Eg(t; 1)

For a while we assume v>0.

Observing the integral representation of the modified Bessel function ([14]
III Page 186), we know

A : . (o b e e as
== 7777—7{5 e~ (1-eos /¥ eqg ysd s—sin vr:} g {1-coshy ff-e"’*ds}.
l27z‘z‘ 0 0

Moreover we know, for any ne X,
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(5.30) S“e‘“‘““””cos ys ds—sin sz g Fcosh /27y f
0 0

sin vs

:(Ml)n§:<§g‘>2n»l(8_(l—cos SHZT)WdS

. s 0 \2n-1 o
—SIn vw ~~) e—<1+cosh sy /2t dS
SO aS ( >y2n-1
== n» i —._a m —(1-cos §) /2t COS ys
==y as> (e )~ ds
~
: e/ 0 \2n e
—Smyrw (——) g~ (weoshsyzry 2 g
jO aS ( ) v2n

Actually, since [14. I, Page 9] yields

k
( 1 ) e-(1~COSS)/27
2t

(56.31) (hﬁ%)n(e—(licoss”k):f‘:‘o‘;‘””‘;“!"“*" ) é)(];)
“(—cos S)’*'l<-éas—>n(cos‘s) )
- i k ~(1+cosh s) /2T
(532) (7%V>n(e~(l+cosh s);zr)__: §0§27>ek!‘ é’ ( };)
0

-(cosh s)"“<-~

55 )n(Acosh s,

we have

6 et ~{1-cos 8) /2t a anol —(1-cos §)/2r
s (e ) s=0= b5 (e ) 50

(DY e remnom =0,

("1)"(*;*\5—)271(6‘(1*003 s) /2:) I s:;:<*§s—>2n(e'(HCOSh s>/2:) | 50,

and (5.30) can be verified by induction.
Now, by the formula (5.30) and the inequality ([14] Il Page 186),

5 ! L 1 77<1/4T)y
(533 5[“(2r>1§‘/”/ To+1/2)”
we get the following lemma.
Set
(5.34) {&5h = lae@n,), {u(eel—1)),—1}, léet—1))+11,

p@G=D), :=2)}, LV (R)), —v(V(R)),, v(ce(k))s,
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or, {—u(V(k), k—1), »(V(R)*, k—1),, v(ce(k), k—1);} ;

the last two sets are taken into account when the cases under considerations are
Cases B(V(k)), C(V(k)).

LEMMA 5.1. For any pE N, there exist K>0 and ne N such that, for given U,

1 b 1 ~AD -P, ~1 -n
(5.35) B 5o ey (5 )L S K T e )

5,255, 2T
for t=R*.

Proof. TFirst we show (5.35) when ¥, >0. We estimate the left hand side
f (5.35) in the cases where =1 and =1, respectively.
First, consider the case r=<1. Take K;>0and neNwith I 5,"(1+9,)P<K,.
ﬁ]>o

Then, from (5.30), the left hand side of (5.35) is dominated by

(aas >Z"(e_<14cos 2120y (aas ) (e~ (vreosh s r2ry

o

éKlef"Q"SO ~(1-cos s)/ZTdS__‘_[( ol S '(_g)zn(ef(cosh s)/2r)]ds

(5.36) KI{S

d3+g

§K1K2K3T42n+K1K49_1/‘“.

Second, consider the case r=1. From (5.33), the left hand side of (5.35) is
dominated by

(1/47)%

1» 217 ( ]+1/2)

Jo

(14557

K5 -1 ~ .
‘ 5= [(F;11/2)

(I4P)P < Kyr=5007!

By applying the formula
222
F(22)~mF(Z)r(2+l/2)

as many times as we need, we know that the above is dominated by

KKt Y o S KKK 8, )50,

5,20 o;>0

Here ne N is so large that Z P7"< Kg. Thus, as a result, the left hand side of
(5.35) is dominated by

(5.37) KK K Kyr %1071,
Thus, by (5.36) and (5.37), the estimate (5.35) has been verified when #,,>0.
Next, consider the case (—1<) ¥,,=0. It suffices to estimate the finite sum

(5.38) » 2 -1/2*1( )(l.u].

yJ SyJSO 27.'
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By the recurrence relation ([14] Il Page 173), we have

Hence, by applying the estimate (5.33) to the right hand side of (5.39), (5.38) is
dominated by Ky(r %5177,
Thus the proof is complete.

Take —1<8,<0 with §,>%, for any J,; see (5.34).

LEMMA 5.2. There exist K>0 and ne N such that
(5.40) [Ec(t, 21, %3 0)| S K(rypy) A m /200t ~Fo-1 g=n)p= (ry-r2) /st
for (t, xy, x)E R*XCIN)XC(N) with rir=<1.

Proof. Observing (0.3), (2.18)—(2.24), and using the Sobolev lemma, there
exist /{;>0 and pe N such that

|08 @, (ZD)RWG @, X2 ((ry, $1), (g, Fg))
=(rire) "t 0& o, {E0Q0 w, {E) |« 8. . 40
=) 7 05 @, (FDR05% ay, X)) 2, 29
S K (1) (14-w(¢t(@)) )7,

~ dr, ~
‘ (Zﬂ)c?u»n,j(%)@—‘r— AOG -1, KZe)| oy 5. gy 90
2

=(ry79) " dog -1, ,(F)Rdr A0& -1, Z) | (. 5y, ¢, 59>

=(r vy aw?e(i—n,j<51)®wc~e<i—1m<§z)[ (F1, By

S K (rra) H(H(ce—1)) )%,
etc. Hence, by referring (5.13)—(5.27), the pointwise norm |E¢(t, x4, x.;7)| can
be regarded as dominated by a finite sum of functions of the following type;

-m —(ri-r l ~1/27 1 ~
(5.14) K(rypg) o0 /2g T 2’2’“;—2?e 1e I@(?)(l—kw)p.

Here, we are setting z=t/(r;#;). The {J;}’s are (5.34). Moreover, by Lemma
5.1, for some K,>0 and ne N, (5.41) is dominated by

_ i (7’17’2)‘3OH {(ror)™
K, Eryr oo sgmwras( VTR0 0ty

§2K1K2(7,17,2)(1~m)/2+50(i—ﬁ0~1_’_t~n)e—<r1—r2)2/4z‘
Thus the proof is complete.

Moreover, by the argument similar to the proof of Lemma 5.1, we know
that, for any /e N, there exist K>0 and n< N such that
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| a L N 1- 24Sg/ 4Py =111 - ~(ry-rg) 2/t
(5.42) ;(—87) Eot, xy, xs; z>|§K<r1r2)‘ R (e A T

for (¢, x;, x,) R X C(N)XC(N) with rr,=<1.
Besides, let us take ¢”>0 such that

5.43) —1-28,<e”<1.

(This number ¢” is just the number ¢” which was referred in the property (II).)
Moreover, let ¢(r) be a positive smooth function with @(r)=r-™*+/2 for r,

small. Then, for any ¢,>>0 and any P:P<f£~—r, day 511)» that is, any polynomial
1
of ——é—i—v, d., and d., there exist K>0 and n< N such that
1
(5.44) [PEc(t, xy, 03 0) | S Kp(ro)(14-t mem T2/

for (¢, x1, ;)= R*XC,,,(N)XCN) with r,,<1. Since our P does not involve
dz,, 0z, and we have cut off the neighborhood of the singular point with respect
to x1, (5.44) can be verified by the argument similar to the proof of (5.40).
Further, by the similar argument, we can easily show that, for any 0<e,<e,
0 0 0
and any P—P<79;1~, PP dejy 02y e
and n=n(g,, ¢;, [)e N such that

) of order =/, there exist K=K(e,, &;, [)>0

(5.45) [PEC, x1, X0 0)| SK(1-t)e o tiit

for (¢, x;, )R XC,,  (N)XC, . (N).

Hence E{t, x;, x5 ;7) is smooth on R*XC(N)XC(N). Moreover, as is easily
observed, it satisfies the boundary condition with respect to both x; and x,. We
may remark that it has already been shown that, in the case where the ideal
boundary condition is concerned, E. satisfies also the ideal one.

We will now construct F(¢, x,, x,;¢) which has the properties (I) and (1I),
and verify the remained condition (5.5).

Applying aat -4, to both sides of (5.3) and assuming that (5.5) is valid,
we get

(5.46) F{, xy, x;0)=G{, xy, x5,7)
~Van] 6t x, xi; AP, X x50,
o

where we set

(5.47) 6, vy 525 =( o

Hence, formally, F(¢, x;, x»;¢) is the solution of the integral equation (5.46), and,
as is well known, it can be written as the following sum, namely, the Levi's

4 )E x, x5
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sum.
(5.48) F(t, x,, xg;z'):ZJ) Fit, x1, x2;0)
Fo(t, x4, x4;0)=G(t, x5, x5 1)
(5.49) Fi(t, xy, x5 z’):~S:dt1SXG(t—tl, X1, X35 DN, Folly, xs, %55 17)

’ ¢
Fj+1(t, X1, Xg; Z.>:“Sodt1SXG(t~t1, X1, X35 Z.)/\*Ist(tl; X3, X23 1)
Therefore, for our purposes (involving the purpose of the verification of (5.5)),
it suffices to show that the Levi’s sum (5.48) has the properties (I) and (II).
Now let us apply —(%—lel to the first and the second terms of the right

hand side of (5.2) and let G.(t, x1, x5;7) and Gy, x;, x5;7) be the two terms
thus obtained. Moreover, according to the decomposition of E.( ;7), let us de-
compose Gg( ;7) into Ge( ; G&@)+Ge( 5 déeG—1)+drAéce@—1)+Geo( ; dr AEG))
(in Case A), etc. Then, by (2.7), we have

Gel 5 ce(@)=—( 5(71)“‘2@.6(7’1)72*+(771*21'>7’1ﬁ1w‘6(7’1))Ec( 5 CC@)Do(xs),

Ge( ; dée(i—1)-+dr Née(i—1))

WU L) 200 )
(5.50) F1

‘Eo( 5 déei—1), dée(i—1)+dr Ace(—1))D(x,)
—~(W(m)+2¥’6(h>—£—l + (=207 c(r1))
Eo( s dracei—1), dée(i—1)+dr ANée(t—1)Do(xs),
etc. Hence Gg(t, x5, x5;7) has support on R*XC;, .(N)XCo (N). Similarly,
Gy(t, x1, x5;7) has support on R*XC, .(N)X X;..

Paying attention to the fact that the supports of G, and G, are thus apart
from the diagonal set with respect to x, and x,, we can easily show by (5.45)

and the similar estimate for Ej that, for any &,>>0 and any P=P(%, —ai—,

1 2
dsj 0z %) of order </, there exist K=K(g,, [)>0 and d=0d(s,, {)>0 such that
(5.51) [PG(t, x1, %23 8)| = Ke /!

for (¢, x, )& R XX, X X.,, Hence, we have the following inequalities on
R*X X, X X,
|PFy(t, xy, %2 ; 1) < Ke 0,
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. t 6e
| PF(t, x1, x2; z)|§KK1V01(N)S dtlg T BA LR
0 3

§K]?Ste“’“ldt§]{l?t ¢,
0

Here, we set
N_ — ,l, . m+1 m+1
K=K, vol(N) ol ((Bg)ym+t—gm*tly,

We may take ¢>0 so small that K<1. In general, we have the inequality
~ 1
(5.52) |PE(t, x1, xu; z'>|§KKf]i|—e-5/t

for (¢, x;, )= R* X X, X X,,. Hence, any termwise derivatives of the infinite
series (5.48) converge absolutely on R*X X, XX, and, moreover,

(5.53) |PF(t, x:, %25 1)] SK e,

for f, small.
By the above fact and the fact that F has a compact support with respect

to x,, we know that F has really the property (I). Moreover, by (5.44) and the
similar estimate for Ey, we know that F has the property (II).
Thus, our purpose of reconstructing the heat kernel has just been accom-

plished.
Now, by the uniqueness of the heat kernel ([10] Lemma 1), we have

(5.54) o™y, x)=E(t, xy, x251).

Moreover, we have

(5.55) e~ti(xy, x)=Eolt, 1, X0 )40 on  Cy. 0.(N)XCs. 5(N),
(5.56) e i(x,, x)=Ey(t, 11, %5 )+0e ) on  Ci :{N)XCy, 5:(N).

Here, O(e%%), 6>0, is a term any derivatives of which decrease exponentially
when ¢ | 0. For showing (5.55) and (5.56), it suffices to prove

5.57) [lan] Ba—t, 5, xi AP, x w03 =0(

on respective subspaces. We can assume that F(f,, x5, x,;7) has a support on
B X{(Ce 0= e (N)UCsereq,6:(N)) X X with &,>0, small. Therefore, about (5.57), the
integral over X is practically the integral over C, s.-.((N)\UCs.1ep6:(N). Hence
(5.57) can be verified by observing (5.53), (5.44) and the similar estimate for Ey.

By (5.55), (5.56) and, again, by the uniqueness of the heat kernel, we can
get the following valuable lemma.

Before stating our lemma, let us make some remarks. To avoid complicating
the explanation, we may assume first that our X can be described as
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X=Cyune, (NI Xy, with ¢,>0, sufficiently small. (In other words, we may
formally substitute u-+¢; for u.) Second, we have took a sequence &’ <e<2e<
- <be<u-te&; and constructed the heat kernel E, but there is no necessity to
start our construction with specifying a sequence so definitelv. More freely, we
can construct £ from a sequence

(5.58) & <y << L <ut-e,

with 7z,—7%,, sufficiently small.
Now take &’ <egy<<u. Then we have

LEMMA 5.3. Keeping the distance between the two points x, and x, of C.p o(N)
sujiicrently short, we have

(5.59) e—l3i<;\.]7 xo)=Ec(t, xy, -\'z;Z.)—er(e’a”)
= Ey(t, x;, x5 0)40(").

Proos. If we construct the heat kernel £ from the sequence (5.58), then
(5.55) and (5.56) can be rewritten as follows;

Eolt, ¥y, x5 )01 on C,, , (N)XCpy polN)
Ey(t, x5, X0 )40 on Cp, y (N)KCpppslN) .

(5.60) ¢-'di(x,, m:{
Therefore, by changing (5.58) gradually, (5.59) can be verified.

We can now investigate the trace of (5.1).
First we have

.61) S Tr\”dtl\’ Et—t,, x, x03 D) Ase Fity, 1, 1 6)=00"),
Jog oo Jo
: ~ .
(5.62) S TrS dt Bty 5, xa; AR P, x5 x5 =00,
Jrg, TJo lx

Here Ole~%Y), >0, is a function of ¢ any derivatives of which decrease expo-
nentially when t!0. The left hand sides of (5.61) and (5.62) are the integrals
of the pointwise traces over C, .(N) and X,., respectively. These are easily
verified by (5.53) and (5.42) and the similar estimate for E,, and by the fact
that the integral over X is practically an integral over C...,..(N)JCs. geue(N)
with £,>0, small. We may remark that (5.6) and (5.40) guarantee the integrability
of the left hand side of (5.61).

LEMMA 5.4, Grren ¢'<zy=¢,<u,

(5.63) g JTrertitz, "*‘"g Tr Eclt, x, x5 0)-+0(e™),
W Co.il('\>

GOy . (V)
0,54

(5.64) gy Tr e‘ﬂ'(.\', x):SY Tr Ey(t, x, x; )00,
YT o
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Proof. The integrabilities of both sides of (5.63) are guaranteed by (5.40)
and (5.54). The lemma can be verified similarly to the proof of Lemma 5.3 by
using (5.61) and (5.62).

Hence, first, for investigating the asymptotic behavior of the left hand side

of (5.64) when t !0, it suffices to investigate SY Tr Ey(t, x, x;7). And this is
X

well known ({117, [177 §5). That is, there exist the smooth double forms on 1,

ax)=a;x;17), 7=0,1, 2, -+ with a,,,(x)=0 if ; is odd, and smooth forms on

OM, byx)=bj(x;7), =0, 1, 2, ---, such that, if we set

(5.65) iags,z»_—ﬁY Tr aj/z<x>+gQ Trb,ux).  1=0,1,2

then we have

(5.66) [ Tremdx, x5 afrmen s g,
"XCO =0

Besides, if we set, for r with ¢ =r=u,

(5.67) ;'aj,zzyamdr:g Traptr, D\ Trbur, B,
(r, ¥) Jatr, N)
we have
~ F\mTI
(5.68) 1a,=(2)" b,
. u . . ~ fu B
(5.69) (a5 == a5 S a4, a5 - u i‘a,«z\ rmdr
20 Joo

In the following, we will omit the subscript “”, i.e. we use the notations 57,
a1, etc. instead of ;a$%h, [d ., e€tc.
Now, we know from (5.65)—(5.69) that

u Lt“7ﬂ'r}€g]!fl -7
fl}lf%%”‘dj/z(”"”?’” B V*) N L o
o= m-+1—) e 1—y
(570) Ajr2
~ u .
ARt dyaulog - , =1,
<9

Let us explain (5.68) roughly. Let us define
ts 1 C(N)—C(N)
to be the map (r, ¥)—(sr, £). Then, by (2.1) and (2.4), we have the formulas;
=524k,
(5.71)

(k=M ¥ on -forms.

Therefore, by the uniqueness of the (pointwise) asymptotic expansion of the heat
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kernel, we have
(572) rdj/2:s~m+1 sz—a~j/2y

if ¢,=r=u and ¢, <sr=u. Hence, by setting sr=u, we get (5.68).
By the way, let Tr, »Ex(t;i) be the trace of Ey(t, (r, %), (r, ¥);17) with
respect to the inner product (2.18) with s=». Then we have

(5.73) TronEx(; i)~ Z()) @ yal T (MDA 1} 0.
=

This expansion plays an important role in studying the asymptotic expansion of
(5.63).

Now, we will expand (5.63). To do so, it is necessary to coliect the prop-
erties of Z( ;7). Let us begin with it.

Let Tre ~Z(t; 1) be the trace of Z(t, (r, %), (r, X);7) with respect to the
inner product (2.18) with s=». In particular, set TryZ(t; {)=Tr, ,Z( ;7). Then,
by Theorem 3.1 and (5.13)—(5.28), we have

LEMMA 5.5.
(1) In general,

. t
(5.74) Tr o nZ(t; z):rm‘“TrAvZ<72~; ).
(2) In Case A,

1 . 1 - L
(5.75) TryZ(t; Z)-ETQ ”“{; Iwcc(m](?t*)“f‘Z ; 1»<ce<i—1>>]~<§>

+ ; L(E(i—:),z—z),(%)} .
(3) In Case B(V(k)),

(5.76) TraZ(t: i)zflf e‘”“{dim V(k)ll/z(—217)+dim V(k)ﬁmz(%)
~|—§} Iy(cyk))j(%{)“l—z ; If(fak—mj(%)

+§ 1»(5(kf1),k—2)]<'21?>} .
4y In Case C(V(k)),
1

N , , 1
577 TraZ(@; Z):*é}*e"”Zt{; 1v<c?<k+1>>]< o )+2 EJ) [»<£E<k)>j<f)

“+dim V(k)f-m(%)erim ViR (%)

_E Lo, k*1>j<217)} )
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By (5.18), (5.59), (5.73) and (5.74), we have

(5.78) TrNZ(%- )= Trn Eult; )40

~y rdj/2t—(m+1)/2+j/2’ l‘lO.
=0

Therefore we have

(5.79) TraZ(t; i)~ i ol AN I t10
J=0
with
Td .
(5.80) Aj1e= &1 7,%?’

429

We may remark that the a,..’s are independent of ». On the other hand, by
applying the method similar to the proof of (5.35) when z=1 to (5.75)—(5.77),

we can show that

(5.81) TraZ(t; i)~Kt™, 17 oo,

where y,<0. The asymptotic orders of the derivatives of TryZ(t;7) when ¢t 1 oo

is, of course, lower than (5.81).
Now, we will return to the study of (5.63). By (5.18), we have

(5.82) S Tr Eo(t, x, x; z'):S pR-GRDTT Z(8, (v, %), (v, X); 1)
Co,e, (W)

(N)
0,8y

:Selrﬂ“(m“)'l‘rm”Z(t; z’)dr:SEIr*l TrNZ<%; z)d?’

1] 0

:%—S:"/ Lo TryZ(c; e
&1

Hence, if we set

TrvZ(t; z')—nila]/zt'(”+‘>/2+f/2; t=1
~ =0
(5.83) 2 )= !
TryZ(: 7)— > aj/21v<m+1>/z+y/z; 1>1,
=0
then (5.82) equals to

i m 3 .
(5.84) =3 amg zﬂ—<m+1>/2+mdf+%amﬂ),zg‘ cidr
tie

2
1

1= 5 . Levsd 5
-+ SOT Z(r,z)dz‘—?&) i 2 ; Ddr

; 1
- /2 2
— Oyl el _ga(‘mﬁl)lz log ¢
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We note that r”lZ~(r; 7) is integrable over R* because of (5.79), (5.81) and (5.83).
Moreover, observing (5.79), we have

1 emti-y

15 ~
(5.85) ~—Y YeiZ(es Dde~ S e RV 2R
2 Jo Smer morl—g
when t 0. Thus we get the asymptotic expansion of (5.63).
Now we observe (5.66), (5.82), (5.84) and (5.85). In particular, by setting
e, ¢;, we can get the asymptotic expansion of (5.1). That is, if we set

3 1 u ~ .
idé'%‘f m’;.’_'l;_] N 3 J7=m1,
(586) 144]’/2: 1
i(lil;,z+1)/2‘i_1€d(m+l)/gu log ll‘%‘?& t‘lZ(Z, l)l,lt, ]’:Hl—:"l,
0
1

- L
<387> 'L‘/';:"'"_unlia(m—%n/‘z:—"é“za(m¢1);'2>
which are, of course, independent of u, then we have

THEOREM 5.6.

o0

(588) Oe--z/iz’],.\, 20IAj/Qr(m-'rJ),rzfj/z_lr,lA Iog ¢ , ¢ iO,
= =

J

= / vol(X)
(5.89) 0 A0 pyemie

Besides, if we set

(5.90) Lils)= 20 A%,
"z,]>0
(5.91) NiQ)=#{4, ;1. ; <4},

then, by an usual argument, we get

COROLLARY 5.7.

(1) The zeta function L(s) can be extended to a meromorphic function with
sunple poles at points (n-+1)/2—j/2 which are not negative integers. The residue
of the pole at the point (n-+1)/2—j/2%0, is equal to I'((m-+1)/2—7/2)"Y, Ajje. The
residue of the pole at the point (n+1)/2—;/2=0, that 1s, the origin, is equal to

1

*111: ?ia(771+1)/2-

(2
LA0/2<m+l)/2 R

(5.92) 1\71(2>NT((771+-1Y/721I)’ AT co,
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In particular,
vol(X)Am+uiz
@)™ O (G 1)/2+1)

(5.93) No(H)~ AT oo,

Proof. Set b;=dim #*X) and

(5.94) T 3 oty Dy,
1,J
Take Non>- ?11—12{11»—. Then, if Re(s)>ﬂz-;:-»l»
l $-1 —tAl
5.95)  Lils) F(S)St Tr e-thudy
_,,1,, T st ~td, € o1
— 5 {St Tre -dH—SOt a(D)d1

bz’ A et DIz & log E e
s STE —(mA1)/2+5/2 'A< - S>}

J

where p,(f)y=0( Mo 2enttny ¢ [ () Here ~~£f~rts"]’l‘r e~'4idt can be extended

* I(s) J:
to a holomorphic function on C and F(YS ¥ 'u,(t)dt can be extended to a holo-
morphic function on {seClRe(s)>vn-1~2t~lr—n—%}. Hence, by the usual argu-

ment, we get (1). (2) is due to the Tauberian theorem.

Qur purpose was thus accomplished in such a way, but the meanings of the
coefficients of the right hand side of (5.88) still remain obscure. Of course, we
cannot expect them to be made perfectly clear. However, the constants (5.80)
can be made clearer through the independent study of TryZ(#;:), without using
the formula (5.78). (In the former arguments, we have got the asymptotic ex-
pansion (5.79) not by using the concrete expressions (5.75)—(5.77) but by estab-
lishing the relation between E, and Ej.) If it is possible, conversely through
the relation (5.80), we can get new informations on @/, A4,/ A, etc. Therefore,
it will be worth while to explore the possibility of its independent study.

The next section is devoted to the exploration of such a possibility.

§ 6. Asymptotic behavior of Z( ;).
From Lemma 5.5, we know that

6.1) TryZ(t; dée(i—1)-+dr Ace(i—1))

=—22t+DTryZ(t; celi—1)— 4t2~d‘—it~ TrvZ(t; celi—1)),
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(6.2) TeyZ({¢; drNEG—1)=TryZ(t; adbc, ée(m-+1—1)).

Now we make it the high aim to calculate the coefficients of the asymptotic
expansion of TrxyZ(t;:), or thus equivalently, of TryZ(t; éc(s)), as spectral
invariants of N. However, our aim in this section is lower. Actually we
restrict our attention only to the case where /=0.

Before stating our aim definitely, it may be better to make some preparations,
first.

We denote points of N simply by x, y, etc., i.e. delete “~7”.

Referring to Lemma 5.5, we can easily understand that

6.3) TraZ(t; O=TryZ({; c"c(O))zSNtr 74, x)¥l,,
(6.4) tr Z(t, x)= e N ] .(l)w (x),(x)
) ’ 2t AN A B
where D]:\/,uj—l—az, a:a(O):L—Tm, Y= p&Eo,; and ©;=05w,;. Obviously,
tr Z(t, x) is just the pointwise trace of
_ R 1
6.5) ZW=2, 5, 9)=r eV DL 5 )0x)B0,0)
.__“]'_ —-1/2¢ _l_
T 1’( 2z>’

namely, that function of the operator y= d+a* on N which is parametrized
by .
By the way, it is relevant for us to rewrite (6.5) as follows; see (5.29).

(6.6) Z(z):i—tz{g”e*l-ws 1% cos ys ds
7 0

—sin ”f”SO e—(1+cosh $)/2t e‘“isds}wj(x)®a)j(y)

1

ko oo
:__{S p~(1-C088) /2 nng vs ds—sin vn_g e—(1+cosh 8) /2t e—vsds} .
2xt Wo 0

Let o(s) be a smooth function on R satisfying that ¢(s)=1 near s=0 and ¢(s)=0
for |s|, large, and let us decompose (6.6) as follows.

T

6.7) Z(t):—z%go o(s)e =63 9128 o5 ys ds

+ 2;}5{5:(1—50(3))@‘“’“’5 /2t cos ys ds

©

—~Si1’1 D”S e—(1+Cosh 8)/et e—-usds} .

0
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Then, since we have, for »,>0,
T o0

(6.8) S (1—¢(s)ye=17c09 /2t cos ;5 ds—sin Djﬂ.'S gmirrcosh ) /2t p-vys g o
¢ 0

sin 8

=0 () gt S5 g

s @ \2r-1 e ¥s8
—.Qf X — -(t+cosh syseey = 7
sin u,n&)( > (e ) ST ds
7

ds
=/ 0 1-cos s) /2 cos v;$
=07 (55) @ mploper e R g
—sin angj<%>zn(e'(l+cosh S””)%ds ,

the second term of the right hand side of (6.7) can be regarded as a smooth
function on N and, moreover, decreases exponentially when ¢ | 0 because of the
existence of the cutting-off function ¢. Hence, for investigating the asymptotic
expansion of (6.3) or (6.4), it suffices to set, in disregard of the second term of
(6.7),

6.9) Z()= S o(s)e™ =0 912 cos s ds

1
2rt
1 -(1-c08 §) /2t ,-18V ——
ﬂg pls)e eds, 1=/,

and study that asymptotic expansion of its pointwise trace at x which is equal
to the asymptotic expansion of (6.4).

We can now state that our aim in this section is to explain the general
algorithm which describes how to compute the coefficients of its pointwise
asymptotic expansion at xInt N in terms of the informations which are derived
from the behavior of the wave kernel cosvs, or equivalently, the wave-like
kernel ¢7*%, near the time s=0. More explicitly, since we have already known
from (5.79) that, if x=Int N, then the pointwise trace tr Z({, x) can be expanded
mto

(6.10) tr ZQ, x)~ 3 a0,
=0

our aim is to explain how to compute the &,’s in terms of the informations
about the phase function and the amplitude of e~

Many of the results of this section can extend to the case where the objects
are forms. But the expressions will become more complicated. This is the main
reason why we restrict ourselves to the case where the objects are functions.
However, the reason for setting x<Int N is that, if x€dN, then there seems to
exist an essential difficulty : we will need more elaborate arguments in order to
surmount such a difficulty.
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The remainder of this section is divided into three subsections as follows:

6.1. Review of the wave-like kernel on N
6.2. Key lemma
6.3. Computation of &,

Please pay attention that we will use Dy, 1., a-, ai¥P, A-,, etc. which
resemble what were used in the former sections, in the senses which will be
specified in the following.

6.1 Review of the wave-like kernel on .

To study (6.9), we need to acquire the informations about the local behavior
of the wave-like kernel ¢ **(y,, vq) at (s, y1, ¥2)=(0, x, x). In this subsection, on
the basis of the Fourier integral operator theory, we will derive its property
when the time s is sufficiently close to 0 and y,, v, belong to a sufficiently small
neighborhood of x=Int N,

Let (R™, (x,, -, xn)) be a local coordinate at x=IntN. Our Laplace
(-Beltrami) operator has the following local expression on it.

~ 1 " T
(6.11) 1= 50 2 D8 VER) D)

=3 gD, Do, V=1 B Di(x)Ds
L, 7 .7,

—~

1.9

symbols. Hence the svmbol of the differential operator 4--a? is as follows.

where Z(x)—=det{g,;(x)), D,,= and the fhﬁ(x)’s are the Christoffel’s
(6.12) gld--a¥(x; &= z é’”(x)&&+¢l’1‘h§kfh§<x>sk+a2.

ential operator, also admits an asymptotic expansion

6.13) oW)(x; E)szZ_‘,le(x ;8),

~

with 2., homogeneous of degree --; with respect to . By an easy computation,
we have

alx 5 8 =p(x; E):«/;Lf‘;éf’{f(’xf)féié} )

(6.14) . ~
Ax 5 &=V —1C2A(x; 5))"1);]) RENCOTR

In general, according to [18] Page 298, we obtain

(6.15) R, =((x; D)+2lx; D)+ -+ +2_4(x; D)—(d+a?)=OSP~

with A_;(x; &)=~ 24,(x; &) "op(R,_;). Here op(R, ;) is the principal symbol of
R,_,. Hence we have
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(6.16) (R )= A ;42,2 501k - 20,4,
which combined with (6.14) implies
LEMMA 6.1. 2_,(x; &) is real, resp., tmaginary if j is even. resp., odd.

Now, setting 4-;(y; »)=0 for |x—y|, large, we will regard v as a pseudo-
differential operator on R™ and investigate the structure of the fundamental
solution ¢~*** of the initial-value problem of the first order hyperbolic equation;

(Ds+v)u=0
6.17)

Uis=0g==Uy .

According to Hormander [13] or Duistermaat and Guillemin 8] (our nota-
tions imitate mainly those of [8]), ¢*** is a Fourier integral operator of class
1'% with wave front set on the Lagrangian submanifold

(6.18) A=A(s; o), (¥; 1), (x; ENETHRXNKNNI0}
o+p(y; p=0, (y; nN=0%x; —&)},

where @° denotes the H,-flow in T*N\ {0}, namely, the Hamiltonian flow defined
by the principal symbol p(x; &) of v. We can find a phase function for 4 near
the set {(0, x, (x; &)} defined by

(6.19) O, 3, (x5 O)=<E, expz (¥ —splx; &),

where exp,: T,N—N is the exponential map associated with the Riemannian
metric ([12] Page 375). More generally, if we set, included a degree of freedom,

(6.20) By, (x; £)=<, expz'(y)>+0(lexpz (M%)
which is homogeneous of degree 1 in &, then
(6.21) @G, 3, (x; ©)=¢(, (x; E)—splx; <)

also defines a local phase function for .
Now ¢~ ** can be written 1n the form, when [s]| is small,

(6.22) e—nvEV(Zi)m 3‘8“’5“' Y, (1;5))(1(3, ¥, (x ; E))(]::

g”("(/ T;m)) - 8)y

— Oy, (T w)

. 1 S S 0 [ ( (7.)
Sx“

0

ca-y(s, v, (x;@)r™ ' dr dw,
where r=p(x;§), a= Z})XjaﬁES"(RXNX(T*N\{O})) with ¢., homogeneous of
jz

degree —; in & Here “=" means “equivalent to each other modulo C~*-operators”
and the Xs are defined as follows. Let X(») be a smooth even function on R
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which satisfies X(r)=0 for »=[0, 1] and X(»)=1 for »r=[2, o). Let {M,} be a
sequence which goes to infinity very fast when ;1 . Then we set

(6.23) x,(r):x(—}\%> :

Since our object, the &,’s, are influenced by C=-operators, a subtle argument will
be needed for managing their influences. The above explanation how to construct
the X,’s is a preparation for the argument.

We will collect the informations about the a_,’s from the eikonal equation
and the transport equations. By applying D,tv, formally to the right hand side
of (6.22), we get

(6.24) (2,1) e oy, (e,
where

1 0da
(6.25) (s, y, (5 O)=—plx; dat 5= 75-+b,

(6.26) b=e¢"*y(y; D, ae*?)

~2—(8‘“>2)y, WDIDE (als, ¥, (x; et v =0T,

(6.27) hy, v, (x; EN=0(y’, (x; E)—¢(y, (x; N—(3—3")-V .0y, (x;8).

0 i) ¢ . .
i{lz;e 8”7_5/] and V ,¢= (ayl—, e 97) (6.25) admits an asymptotic expan-

(6.28) els, v, (x; E))Njglc-j(s, v, (x; &)

with ¢., homogeneous of degree —; in & By setting ¢,=0, we get the eikonal
equation

(6.29) Py Vyg)=px; &),

which determines ¢. Moreover, by setting ¢,=0, we get the first transport
equation

(6.30 2 4¥)ads, 3, s 89=0,
where
. azl ......
(6.31) V=3 (y Vy¢> +«/ Ly ; Vyg)
1o azl _ ¢
T JEI)Q iy V)5~ T T

In general, by setting c¢_,=0, j=1, 2, ---, we get the transport equations
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0 .
(6.32), ((,TS+Y)a-j+d_j=0, j=1,2, -,
where d_, is expressible in terms of ¢, a,, a-y, ---, a,-,. The initial condition
concerning a, is determined by
(6.33) (0, x, (x; w))=1.

In general, we set
(6.34), a-,0, v, (x; @)=0, =12, .

A function f on SiN will be called an even, resp., odd function if f(x; —w)
=f(x; w), resp., f(x; —w)=—f(x; w). Then, referring to the proof of [8] Prop-
osition 2.1, we know

LEMMA 6.2. (%)kauj(o, x, (x; ®)) 18 an even, resp., odd function on S*N

if k—j is even, resp., odd.
By considering Lemma 6.1, we have
LEMMA 6.3. a-, is real, resp., pure imaginary if j is even, resp., odd.

Proof. Since the initial condition of a, is real and the operator Y is a real
operator because of Lemma 6.1, g, is real. Now, assume that the lemma is valid
if j<n. If we can show that d., is real, resp. pure imaginary if n is even,
resp. odd, then the lemma for a., which is the solution of (6.32), with the
initial condition (6.34), is obviously valid. Therefore, it suffices to prove that
the above assertion for J_, is valid. Observing (6.26) and (6.27), we know that
d-, is the sum of the following terms multiplied by real numbers:

1

Z"al

(6.35)

a;a)l_zaéﬁ’a_j[:a;[.’e”“y' v, <r;£>>]<17;>,=y ,

where j<n, a=g+y, —n-+l+j+|a}=0 and [0 ]{% -, is the sum of those
terms of [9’¢**],,.., whose degrees in & equal to —n-+I/+j+]a|. The degree
of 3¥2.,0%a_, equals to —/—j—|a|. Therefore, the assumption of the induc-
tion and Lemma 6.1 imply that (6.35) is real, resp. pure imaginary if

(6‘36) z'—lal+(l+1)+(]'+1)+(-n+l+]+lal):il'—n

is real, resp. pure imaginary. Here we note that (6.36) is obtained from (6.35)
by replacing 95®2-;, 8Pa_, and [0 1% -, by 7'*1, {7+ and ;~"*+7¥1«! respec-
tively. This completes the proof.

Moreover, let ¢*(s, v, (x; &) and a*(s, y, (x; )}~ a*, be the phase function
J

and the amplitude of ¢***. Then, by the argument parallel to that of ¢ **, we get

(6.37) G*s, 3, (x5 =9y, (x; &) +spx; &),
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(6.38) at(sy=a_;(—s),
where ¢ and a., are those of ¢~**”. Therefore,
(6.39) 2 cos sy(y, x)y=e**+e ™%
= 12—%)7{ Ej}gge"‘ﬁxj(r) {cos rs(a-;(s)+a-,(—s)
+isinrs(a_;(s)—a-,(—sHr™1dr dw .
Thus (6.39) is a real operator. Hence, by setting y=x, we know that
cos rsa_ (s, x, (x; w)+a-;(—s, x, (x; )
i sin rs(a- s, x, (x; @)—a-{~s, x, (x; @)))

is a real function. Therefore, observing Lemma 6.3, we get, for |s|, sufficiently
small,

LEMMA 6.4. a.,(s, x, (x; ) is an even, resp., odd function of s if jis even,
resp., odd.

6.2 Key lemma.
Let u, v be arbitrarily fixed non-negative integers and A(s) be a function on
R of class C**' with compact support near s=0. Then our purpose of this sub-
section is to show that
sin s\#/C0S §\?
< 2t ) Tt ) his)ds

admits an asymptotic expansion when ¢ | 0.

(640) Sne—(l—cos sy/et

¢

/ T =
If we decompose (6.40) into S 2+S ” then the term S / obviously decreases
T r/2

0
exponentially when ¢} 0. Hence, it suffices to study the asymptotic expansion of

iz . 1—coss w2

the term SO . By the change of variables, z="- 5 the term So equals to

1 /2t
(641) __tl/2—(u/2+v)g e—zz(u—l)/Z(l__tz>(u—l)/2

AL Jo

-(1—2tz)*h(arccos(l—2tz))dz .

Let us set
(6.42) fw)=1—w? @ D31 2w h(arccos(l—2w?%)

and try to expand it when w 0.
The term arccos(1—2w?)=2 arccos|w| is an analytic function on [0, ¢) and
admits the Taylor expansion as follows.

e 2@2n—111)°
—_— 2y — AN T aentd
(6.43) arccos(1—2w? n§=)0 @ni)]! , w=0,
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where Cn—1)11=2n—1}2n—3)---3-1 and (—1)!!=1. On the other hand, we
have the asymptotic expansion

(0)

(6.44) no~ £ Qoo slo

Since the first term of (6.43) is 2w, that is, not a constant term, we can get the
following asymptotic expansion by substituting (6.43) for s of (6.44).

h(arccos(l—2w?))~ i}onzu"'+O(urk+’) , w0,
where
(6.45) v =h(0), H,= —i—‘— h™(0)+ Zjl H po-200)

with f,, a constant number. By the way, we have

(6.46) (L) 2wt = 3 B ow
2t (l-u 1 @n—D!

(u, v _ @05, +  \aRT
6.47) Bv= 2 iy g) (vl B g R

where (a),=ala-+1) - (¢+n—1) and (@),=1. Hence, f(w) admits the following
asymptotic expansion.

(6.48) f(w)fv F\” Yt +(wktYy, w0,
(6.49) Fi#'”:p%):anBg“'”l F§e»=H,=h(0).
Thus we get
(6.50) F{{tz) %)~ I?k‘_:,OF%‘- DML O((t2) R %), t10.
Therefore, observing that
[ ez e, p(KEEELY g,

we can prove the following lemma by an easy induction.

KeYy LEMMA 6.5.

(6.51) Sze—u-cos 52 SID S)“(COS S
0

2 5 ) hs)ds

k
~ 2 2—vF<nu,v>['< u—[—n+]‘ )t(nﬂ)/z (u/Z+v)_}_0(t(k+2),2 (u/2+m>
#=0 2
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In many cases, we use (6.51) by assuming k=oc0, u=v=0 and A0)=A"(0)
= .. =™~ 2(0)=0 for some n,. On the above assumption, (6.51) can be expanded
as follows :

2 ool BT oin e <o,o>_2 (n)
(6.52) 2 F F( 5 >t , Feo="2h™(0).
Here (6.52) consists of the terms which involve the half-power of f, resp. the
terms which consist of the integer-powers of ¢ if A(s) is an even, resp. odd
function.

6.3 Computation of a,.
Observing (6.4), (6.9) and (6.22), we get

— 1 ” wh(s, z, (25 €))
6.53) tr Z(t, x)= (27[)%2155_0} ¢

cgma-cosRIt (o x (x E))dsdE

—_ ]‘ e -187,-(1-cos 8) /2t
(6.54) T @2r)ymti2t J;)Ss;zvgo&—we ¢
Airya-,(s, x, (x; @))r™1ds dr dw,

where a_,(s) is an either even or odd function and a-;(s)=0 for |s|, large.

The purpose of this subsection is to calculate the &,’s with the help of the
formula (6.53). However, to my regret, all 1 can show on the basis of the
informations mentioned in Subsection 6.1 is the existence of the following
asymptotic expansion (6.55) with (6.56) and the way of the computations of its
coefficients. In this paper we will not give the full descriptions of the formulas
of the coefficients because of their complexities : if necessary, sum up those terms
of the various asymptotic expansions described in due course whose orders in ¢
equal to the one fixed arbitrarily.

i &j(x)i—(mﬂ)/zw_[_ E< B’le(x)t—<m+1>/2+;’/2; m: Odd,
=0 ms )

6.55)  tr Z(t, x)~ veh
2 &j(x)t—(mﬂ)/za»]_i_ fj(x>t—<m+1>/2+_1 logt; m: even,
=0 J=m/2+1

(6.56) o(x)=(dm)~ mHV 2,

As a direct consequence of (6.10), we have
(6.57) Bire(x)=7(x)=0.

From our standpoint, this ought to be verified by the investigation of the wave-
like kernel, independently of (6.10). However, to do so, closer investigations
than those mentioned in Subsection 6.1 will be needed. Hence, we have omitted
the approach from such a standpoint.
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When we use the formula (6.54) for the study, we ought to pay attention
to the following fact.
If K(s) is a smooth function on R, then, from (6.52), we know that

]

(6.58) S:e-ﬂ-cos 12t (p(s)K(s)ds:SOe a-cos /2 o 5)(K(s)+ K(—s))ds

~ Z F<0,0>F<n+1>t(n+l)/2 t ‘ 0

= n 2 H v Vs
where the F{'°’s .are constant numbers, in particular, F®=2K(0). Hence,
much care is necessary in replacing an operator for the one which is equivalent
to the former one modulo C>-operators.

We will first investigate those terms of (6.54) with j<m—1.

659 [V ervrerameem ey gya(syrmoids dr

0

:S:xj(r)rm—l-]{gw e—tsre—(l—cos 8) /2t a_J(S)dS}dr

-0

ngrm_l_J{Sm o~ VST~ (1-cos ) /2t a_].(S)dS}d7’

0

N Nl | R 1 ﬂ MITT L (i-cos s) st
e 2 e g
1 a
1 0s
Here Y (s) is the Heaviside function and (V) is its Fourier transform (in the
distribution sense), that is,

(6.60) :STMQ(Y)(S)( )m_l_J(g“(l—COS 912 g (s)ds .

(6.61) HY )=V (s)=|" e v (idr.
Hence we have

(6.62) FYWs)=nd(s)+ %v.p-%,

where d(s) is the Dirac operator and v.p.é— is a distribution defined by the

principal value of % at s=0 ([14] 1 Page 274). Therefore, (6.60) equals to

(6.63) (% a—i)”””[e—ﬂ—w“”“ a-1(8)] 150
_{_%vpgojm%(_i_ %)m*‘l_.’[e‘(l—cos sy/at Cl_](S)]dS .

For studying the asymptotic expansion of (6.63), it suffices to differentiate
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e-Geosi2t g (g} with the help of the formula (5.31) and to apply Key lemma
6.5 to it. However, (5.31) is not a handy kind of formula. The following will
be a little more convenient than (5.31) for our purpose.

LemMMA 6.6. Given ne N,
0 \2» sin s\2n-2l/COS $\*
664 <__;_) —(l1-cos s)/2t :e—m—cos 8) /2t <2n>(_i77> (7 )
( ) ds (e ) ogkgzgnak’l 2t 2t ’
2n+1 sin s\2n+1-21/COS §\ *
665 _____) ef(lfcos 8)y/2et :e—(1~cos 8y /2t <2n+—1>( ) ( ,
( ) as ( ) bk i 2t 2t

where the coefficients have the following relations;

0

8skslsn

ai%=1,
(6.6 o { —bEPV A+ Cn 120080 — (BB P 0511,
. apy’=

B  l=n,

bV =—aP+@n+2-2068%, 1 —(k+1)ay, .
Proof. The lemma can be verified by an easy induction.
LEMMA 6.7.
vams_ ¢ n @2n—-D1!
(6.67) atp=(-1'(} >(2n -1

Proof. According to (6.66), the lemma can be verified easily by induction.
Here, we will compute a{?";, which provides the starting point of our inductive
proof. From (6.63), we know

(_a?;)ﬁn(emfcos 02, = 0 )

Hence, observing (5.31), a"; equals to
n 7(:._1)77';/2 n a 2n A B n <_1>k n (2")!
BTN w0 85T, B

Set A,= ~Ai—»—— and rearrange the above so as to 2 a;A;. Then,
p . +p>[ 2n j)l ])z (271)
=27(—-1)"2n—1)1 L

. ever

an, that” is, the coefficient of A, equals to (—1),-
Moreover, a,, {<n, equals to

g e () L e S Y co ("=,

Thus the proof of a?%=(—1)*2n—1)!! is complete.

By using Lemma 6.6, we can show that the first and the second terms of
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(6.63), respectively, equal to
1ym-1-y m—1—; ) b
TF<H> 2P+ 2 1 ]( 2p ) a5 0@

(6.68) ; »
66 O (s
o gm0
. (1—-cos 8) /2t SXIE, 2pmet C(,)§§ ka(q)(s) aﬂl)(ﬁs)
Joemmemm (3 (5 S as
1\m- m—1-—7p\ bEe+v
Y el TR
i <z> 2p+12-k<§77<0.;1 ( 2p+1 ) 2t
= sms 2p-2l/COS S\ % Sin §
. —{1-cos 8)/2¢ (q) () Yo o
Soe o) %) (@%(s)+a%(—s)ds,

where a9(s)= (8 ~) a-,(s).
Hence, it suffices to show that (6.69) admits an

(6.68) is a polynomial of ¢*
Set

asymptotic expansion.
Aw(sy= EIITeH()
S ’
(6.70)
BE(8)== (a9 (s) a9 (—s))
These are smooth functions and satisfy
P VRSN a'y o (0) if n is even,
(35) 4s0=
0 if n is odd,

/2 n/2-k 9
2(—1) <n )ag;zk)(o) if n is even,

(6.71)
(,%)"B@;(O): = nt1-2k \2k
0 if n is odd.
Referring to Key lemma 6.5, we set
FAG"=“F% with h(s)==A9(s)”
(6.72)
F(BGG»=“F& with h(s)=B9(s)".
0 if n is odd, (6.69) admits the following

Then, since F(AG) V=F(BE)3»=0
asymptotic expansion; see (6.45) and (6.49).
+1
)

—1-
]<m %) ])

1\m-

(6.73) (7) ]ogn<°° R

n: even
,F(A(_q});zzp—zl,k>t<n+1)/2 (p-l+&)
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F(n—}—l +p—l>

+<i>’"‘:s§w 2p+1+qu— ] <7712;izj>b<2p+1> 22k+1

7 even slsp

F(B<_q]>)<nzp—2l k>t(n—l)/2-(p—l+k).

In order to complete our task of investigating the terms with j=<m—1, we
have only to integrate (6.68) and (6.73) over S*N. Though it seems that the
resulting asymptotic expansions have imaginary parts, they are, of course, real.

Actually, as for (6.68), if m is odd, then <~j—>m_1 a‘9(0) is real because of Lemma
6.3, and, if m is even, then L*N 2(0)de=0 for any j because of Lemma 6.2.

Moreover, as for (6.73), the first, resp. the second sums of (6.73) are the power
series of t with the coefficients which equal to certain finite sums of the

(%)m“]a‘_‘lf"dd’(O)’s, resp. the <%>m_]ai‘1feve“>(0)’s multiplied by real numbers; if

. . . . 1\m-s
m is odd, then their integrations, that Iis, SS*N<——> a9 0)dw and

7

Xs* (—21—>m a%reey (Bdw, equal to 0 because of Lemma 6.2, if m is even, then
they are real because of Lemma 6.3. Besides, from the other view-point, these
argument verifies that, zf m 15 odd, then our asymptotic expansion 1s put under
the control of (6.68) which consists of those terms whose ordersint are of integer-
powers, and, 1f m is even, then it 1s put under the conirol of (6.73) which consists
of those terms whose orders in t are of half-integer-powers.

Thus we get the following results.

The expression

1
7(27[)"”1’2? m§;]

admits the following asymptotic expansion:

(6.74) Ss* Nrgf g WTgmmeosnEty (™ ds dy dw

6.75) (mi))/zc*xl,j(x)t’(m“”“’ if m is odd,
£
(6.76) Ew)d J(xygm(mrbees if m is even.
=

Besides, we get, by an easy computation,
(6.77) &y, o(x)=(Am)(mD12,
Actually, if m is odd, then, in view of (6.68), (6.33) and (6.67), we have
(6.78) @y, o x)=2r) M2 g al I o) (me1y2(—2) T PV /E yOI(SEN)
= (4m) o,

and, if m is even, then, in view of (6.73), (6.33), (6.66) and (6.67) we have,
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r(iﬂzll——z
6.79) &y, o(x)=Qr)"mV2- Y —1)™/2 by X vol(SEN)
oslsm/f2-1
_1\m/2
— ) (m—3—20) 11 B>
2(m—2)/2< m—2 )! (4r)m+r2 osism/2-1
_ (=™ m—1)11 (=1 (<m~2>/2>
- . m—2 n ostdme-1 [—(m—1)/2 l
2( 2)/2( 2 )!(471.)( +1)/2
_ S (—Dymrsgmes( 22
m- m_ m
2¢ 2”2( 5 )!(471')( o/

=(4g)-(misz

where the last equality but one is due to [14] II Page 12. Or, more easily, since
ay,¢(x) is a value which can be computed by an elementary algebraic method
(that is, @ .(x) does not depend on x or N), (6.77) can be regarded as a direct
consequence of the case where N™=S™, that is, C(N)=R™**\ {0}.

Next, before investigating those terms of (6.54) with j>m—1, we will deal
with the influence of C=-operators; see (6.58). Regarding the left hand side of
(6.53) as the trace of the right hand side of (6.9), we set

(6.80) Sle—ﬂ-cosw Ei(s, t, x)ds=“the . h.s. of (6.53)”

—“the r.h.s. of (6.53)”,

N
@Cm)™ 12t

Then k(s)=k(s)-+4,(s) is a smooth function and, moreover, can be regarded as
an even function. Hence, from (6.58), we have

681 |7 emdmoran (s, 1, x)dse ., (46,596,607 do.

> eyl R if s odd,
6.82) j‘w g Amcos /2t pig t x)d g ;f:lriégoo

oo

3 g (xyfmmADEY if m is even.
J=m/2

We will now deal with those terms of (6.54) with j>m—1.

6.83) [ eremerameomvimy gya (syrmarvds dr

0

o0

e—zsre—(l—cos s)/at a_](s)a's}dr.

—~c0

TR

We will first rewrite (6.83) so that we can apply Key lemma 6.5 to it. (6.83) is
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a real function of ¢ and, moreover, a.;(s) has the property mentioned at Lemma
6.3. Hence, it suffices to deal with

(6.84) ReSjX(r)r‘k Andr,  kEN

in the four cases, namely,

Case (i): k is even and f(s)=g(s),
Case (ii): £k is even and f(s)=ih(s),
Case (iii): k is odd and f(s)=g(s),
Case (iv): k is odd and f(s)=1h(s),

where g(s) and A(s) are real functions. Actually, by setting X(r)=X,;(»), k=j—m-+1
and f(s)=e-t-e089/2t q_(s), (6.83) can be classified into a certain one of the above
cases.

Now, (6.84) equals to

6.85 Re(” 50 71420 (* sgn r) /S s
(6.85), :Regl{g(fﬂ “#)(s)+F(|r]“* sgn r><s>}/f~§'> ds
(6.85), ~%;Regfm{¢*g(lrl‘k)+s3*9'<lr| “*'sgn f>}’%sf>'ds -
where ¢(r)=1—X(r). Moreover, from [14, II Page 274], etc.,
—_1\k/2
,,,(,fl%l(lél)_ﬁ,]slk‘l if b is even,
686 Fr =] .
. ,T(k—)vﬂzs’*"l(Zr-%Z logls!) if & is odd,
(— 1)k 12 . .
T -15*71(2r+2logls!) if & is even,
(6.87)  F(|r| *sgnr)s)= ‘
(DB s s it & is odd
D) AR gn s 1 1S oddq,

where 7 is the Euler’s constant. Applying (6.86) and (6.87) to (6.85), we get the
following results. Let’s set

Gs)= 3 (@5 +g(—s),  His)= 3 (hs)—h(—5).

In Case (i), (6.85) equals to

_«1 k2 . _1VRI2 r .
(6.88) g_l_ﬂ,go s*1G(s)ds— (2—15()?)~S0 (dxls|* HG(s)ds .

For the further rewriting of the second term of (6.88), the following formula is
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useful.

(6.89) @+l = [s—t1-gwar

:ﬁféﬂ(k;l)“’&@um

Lo (k;1>szzfx Dq¢ g:@(z)dt},

p+q=k—1
P. even

In Case (ii), (6.85),, that is, the first term of the right hand side of (6.85),
equals to

(=DF225 (= ., L (DR e
(6.90) oE Sﬂs H©)ds+ s \ H(s)log s ds ,
and, (6.85),, that is, the second term of the right hand side of (6.85), equals to
I Gt g
(6.91) e S His)ds

( 1)(12-(-1)/2

zl(k)  pedes

=oe(* ) Dsgtogshse His)a

Here we have used the formula

(6.92) dx(s* 12y +2log|s]))
R—1\
— k-1 /] 2 el o
=4rys ‘p+q§:k—1( 1)4< ) )si(Df;g/).logls[).

In Case (iii), similarly to Case (ii), (6.85), and (6.85), equal to

( )(k+1)/"2?: f1 ( - 17)(77/¢+1)/22 . o ]
(6.93) T SO Gds+ T ps go F1G(s) log s ds
( 1)(k+1)/€2/- b ‘
(6.94) T g Gls)ds
< 1)(k+1>/z . bP—1 m/\r‘, s
xR ‘p%kfl(—nq( p )So<Dﬂwlogls!>>16<s>ds-
In Case (iv), similarly to Case (i), (6.85) equals to
B Gt DA G !
(6.95) o) go H(s)d s
(—1)k+nre

YO8

Moreover, for the further rewriting of the second term of (6.95), the following
formula is useful.

o @eCis1 sgn spH)ds
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(6.96) (@+(|s]*sgn ()= <k;l)sp{gjﬁﬁ\gl;(t)dt—l—gfs@t)dt}

+g=k—1
%: odd

”l)spgs_s@t)dt .

+q=k-1<
5; even p

Now let us set

a-j<S)=—i—(a-;-(S)+a-j(—S)) if j is even,
(6.97) A= .
—a-i(8)= 5 (a-(5)—a-(s)) if 7 is odd,
{6.98) &i(r)y=1=X,(r)
and
[ii’"il] if m is odd,
o " [Jif%”] if m is even.

Then, observing Lemmas 6.3, 6.4 and using the above results properly, we get

LEMMA 6.8
(1) If m is odd, then (6.83) equals to
77}1(#1)"] < -(1-coss) /2t oj-m .
®100 F.7 ol M A (s)ds
. ('—1)_17__“ JTMN([® —(1-cos 8) /2t s <q\ p
2(]_771)' g:+eqv=e,;~m< p >Soe {S—sDTng(t)dt}s A—j<s>d8

A 2 e

2(3—m) !>51:+0qd:dJ—m b
00
+S_ Dgt)dt}s? A (s)ds .

(2) If m 1s even, then (6.83) equals to

6.101) - ((72_%)1,~2S:e-“*cmw s mA_(s)log s ds

_ _<f1>1], of I gm ~i~cos ) 2t e D
m(y—m)! p+q§J—m(~D ( P ) 08 (Dig logls])sPA-(s)ds
Let us assign the reference numbers (6.100);, (6.100), and (6.100); to the first,
second and third terms (or sums) of (6.100), respectively. Similarly, (6.101); and
(6.101), are defined to be the reference numbers of the first and second terms of
{6.101), respectively.
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Now, first, let’s deal with the case where m is odd.

Since f(s)=s'"™A_,(s) is an odd function and f{™(0)=0 for n=2n,, observing
(6.52) and the remark folllowing it, we know that (6.100); admits the asymptotic
expansion
kn(—l)"] -l

3 F(F)fnt

6.
(6.102) G 2,

Next, if we define

s“‘l“’gs @-(z‘)dt if ¢ is even
_s k) / >

{6.103) fa.d8)= 0 °
1 S-(q+1>{§ng¢yJ(t)dt+S_ D%L'J(t)dt

00
—2& Digwdi} if ¢ is odd,

then (6.100),-+(6.100); equals to

(_l)n] ]._771 o —(l-coS$) /20 - N
#*72‘?(]'——771)! p+q=]_m< » )Soe « izt g +1f]»Q<S)-4~]\5,idS

—1)" o 0 e 08 £) JuF g
—?(}‘”“721) ! p+q§—m(] p771>[§o Dg"/’j(l‘)(it:]goe_“_w~ o stdesls)ds
° g odd

Moreover, since g, (s)=s"™*f, (s)A_;(s) is an even function and g{?(0)=0 for
n=2n,+1, the first sum of (6.104) admits the asymptotic expansion

(6.104)

_7(_1)”] B - J—m <0, 0> Vgl o
<6105) 2(]'-*771)! p+q§-m n:%-u( p )F(g]’q)m [1<”+1/2{ ’

Before dealing with the second sum of (6.104), it will be best to summarize
the results already obtained. That is, the formal sum

1 “ e ‘e
(6.106) ’@;Wﬁé?»%_lgs;y*(6‘100>1+ the first sum of (6.104)"}
admits an asymptotic expansion of the form
(6.107) D e RO LN ES Ll
J=(m+1)/2 ja—-grégQ

Now, let us deal with the second sum of (6.104). Of course, it admits such
an asymptotic expansion as

oo

(6.108), > F, e,

n=1

However, at this stage, I cannot say which the lowest term in (6.108), is, that
is, which the first non-zero term is. Hence, in order to show that the formal
sum
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1

(6 109) (2’::) n'z'_'l“’zt j)%*l

Ss “the second sum of (6.104)”
N
admits an asymptotic expansion, we have to carefully investigate whether the
formal summation of the (6.108),’s over j>m—1 has a sense or not.
The formal sum

(6.110) 3 “the second sum of (6.104)”
Joom—-1

equals to
6.111) | o eos i £ (6 |
where

J(5)= }] ;—‘—fp(ﬁ .
(6.112) Ry o

T leyen oD gy g J-m=p (t tl 5

7 23 J/Zi*g: » (]77”) ' < b )‘{50 Dr 9)]( )d julA](S)

Moreover, if ¢ 1s odd, then

S oo oo T
(6.113) \ Dy nde——{ Datde=\" 1D L0t

=\ s ynD = e rgl s
(1)« 22 (g) ‘Tr‘q)(}(r)dr
(o 1):q—n/22[‘<(]):\,jj-lg:r*‘lx’(}’/ifj)dr

s KA AR e W GO

=g,
and

i =2) o= vidr=2,
that is, C(g) is bounded independently of ¢; see (6.23). Thus
(CDmRCG—m—p) - A-is)

(6. 114) ]‘ )( ‘} s e . N o
o f/ﬁ%‘é odd ]_‘771—‘]5 ‘/‘/]]J—mAD

Here, it is obvious that, for gwen N&N, we can find such a sequence {M;} that

Z%M;IA;](S) and (s termwise derivatives of order <N-1 converge absolutely near
~
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s=0. Hence, if N=N is given and such a sequence {M}} is fixed, then the above
is true for f,(s) and, moreover, true for f(s). Thus, f(s) which is defined through
such a sequence {M;} is of class C¥*' and (6.111) admits an asymptotic expan-
sion of the form
(6.115) Ev I(n+1/2)F(H0en 2 202 5,

1snsN/2
Hence, given such a sequence {M,}, (6.109) admits an asymptotic expansion of
the form
6.116) 2 Gt R BRI O )

}7?;33]:;)% Ly

By the way, {&;2(0}, {3 ;2(x)} and this {3, ;;.(x)} are dependent upon the
choice of {M,}; see (6.82), (6.107) and (6.116). The summations 3j,(x)=c¢;.(x)
=51 ()= 25 50(x), however, are independent of its choice and produce the
second series which appears in the right hand side of (6.55).

Thus, in the case where m is odd, gathering the results (6.75), (6.77), (6.82),
(6.107) and (6.116), we can conclude that tr Z(f, x) admits the asymptotic expan-
sion (6.55) with (6.56).

Next, we will deal with the case where m is even, that is. (6.101).

Let’s decompose (6.101), into
6.177) gme“‘““s’”‘s]‘mfl_xs)log<~ Ss>ds

JO .
‘Sln~2~,

jV_S:’e—(lfcos $yj2L 3]7,71;4,J<S) 10g(sin %)d\‘.

sin &
: 2
S . . .
s?TmA_(s) log(* sﬁ> is an even function and f;"(0)==0 for n<2n,, 1t admits an

About the first term, since Iog<—~3~8> is smooth near s=0 and f,(s)=

Sil’l§
asymptotic expansion of the form

(6.118) i T(n4-1/2)F (f )01,
n:"J
About the second term, setting g;(s)=s’"™A_,(s) and changing the variable

t—coss
z:~~-~~2—t~ -, it equals to

(6.119) T (arccos(l—2iz))dz

et - log([2)1/2
ﬂﬂoefﬂkﬁwg

1 12t . s .
= §t”25 e *z'* Y (1—~12)"* log z g,(arccosil—2iz))dz
o
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-+ ilog tre“l‘c"s DI g(s)ds .

2 0

By the argument similar to Subsection 6.2 (the I-function should be replaced by

its derivative), the first term of (6.119) admits an asymptotic expansion of the

form 2 F, ,t""'% Moreover the second term admits an asymptotic expansion
n=n]

of the form f} G, t"*'*logt. Hence, the formal sum

RZRJ

L s | 6.10n,

2y 2t w1l st N

(6.120)

admits an asymptotic expansion of the form

(6_121) i &z,j<x>t—(m+l) /2+]+ i ?j()C)t—-(val) /2 log t.
7= 2+ J=m/j2+1
Next, let’s deal with (6.101),. Owing to the circumstances similar to those
of the second term of (6.104), it is no use expanding (6.101), one by one. Let’s
decompose > (6.101), as follows. For a positive integer N,

Joom -1

(6.122) i 1(6.101>2:h],,\7(t, x)+he, ¥, 1),

) N;Zy:n-l (=Dymats 5 (~l)q< jfm>

S zG—m)! prdiSiom Y/

(6.123) oyt ox-

oo R
[ emameomo u(Dagelog | s)s7 A (9)ds

o — )n'+1 -m - "_
(—1m 1 (—1) 1(71)771)

J=N+m rr(j—m) ! pey-m-N+1
b 1 ¢) iut /\ 1 .
-§0e*< ~eos ) (om0 wlog s )s” A (s)ds

(6.124) Nt 5 f0 V= \ch-m— cos ‘\')'mfN(S)dS ,
Jo

T G DT AR ol
(6.125) Tylse= X (1) 1( . )

p=N+m ;z'(]—m)" =0

e —

(D= rgplog s )s? A (s)

- ,?fi,@fffff”.‘f?ﬁ(J;’”>

S Ty m(j—m)!
T \
(DITmPglogistystAL(s) .

Then, it 1s obvious that the first sum of the right hand side of (6.123)
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admits an asymptotic expansion i‘, Ft™12  As for the second sum of the right
n=1
. . /\ . .
hand side of (6.123), since f, ,(s)=(Di ™ P¢ xlog|s|)s?A.,(s) is an even function
and f{M(0)=0 for n<j—m—N-+1, g g--cosmiat £ (s)ds admits an asymptotic
expansion of the form

F,

tn+1/2
.7 .

nzl()j-m-N+2)/2]
Hence, the second sum also admits an asymptotic expansion. Thus, we get
__ L
2m)™*+12¢

In order to show that

(6.126) j e vl D~ S @ ()t mE i,
S”;CN J=m/2+1

I
@x)™*i2t

admits an asymptotic expansion, some preparations are needed. If ¢=N, then

(6.127) [ ot )

(6.128) @*log{ s| :@*(—r_%g(]ﬂ-l))

=21y Dip,(0)—nF(|r| ' Di,(r))

=~m"qS:e‘”'[r[ 1O (r)dr

:m"qj e v | TP (r)dy

oD | (N g gy

-N
=r kz gk (q kA'[) S e Ty @ kN b gen ¢ YV () dy
=0 .

! o0
=g s “""“‘“‘"Mf(q‘k)lk“qg oS, r‘(’l’k*‘v“’sgn I X(N)(T)d}’

-N
=z’ s k" DM RGN, 5, g, k),
where

h(s N, j, ¢, ky=(—1)m++a 9™ qM

S e—LSrM] 7,.—((1——11+4V+1)SgnrX(N)(r)dr.

Hence, fx(s), that is, (6.125), equals to

oo oo J-N-m-p

6129 ¥ > St Mo R (s N, 7, j—m—p, R)A-(s)

p=0 3=N+m+p P=0
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B i b -y 1 11 G-m-0 — —
ﬁz;zju ]:A'+Z ™D zz;) f)‘(l* )! stM;O h(s:N, j, j—m—p, [—p)A-,(s)
o (25)!
zgo ( S) ~ [l
where
= : I\ R{s:N, j, j—m—p, lfp)A_,(s)
(6.130) f'\"l<s>‘]=iv§n+z I;)Z Z<P> My

Given n< AN, we have

. lrk+1+’v m-l- lx(N)(r)]d},Am k)(s)
() < n : -1 4 ,S;‘X{A e - RS
PRHICIE= l§0<k>J::4Vz+)m1-l 7)202 <p> Mmm- ¢

= [ADP(s)|

J=N+m+l Ml"mfl_k

= AR B ()l

J=N+m+i M]

H/\

ész\c <k>

< & k+V

:kZ:: 2 (k)

<2VC, \i M max | A% (3)],
J=N+m n<N

where C_,V:Sw 4V (r)yldr. Hence, we can choose such a sequence {Mj} that

[, (s) is of class CV-1. Moreover, fy(s) which is defined through such {M}
is also of class C¥-', Observing that fx(s) is an even function and fy(0)=0,
we know that (6.127) admits an asymptotic expansion
(6.131) b @y, ) mAD Iz L O ey |
Mi2+1SJS(N ~3) /2

By the way, {e,(x)}, {@. (%)}, {as (x)} and {&, (x)} are dependent upon the
choice of {Mj} ; see (6.82), (6.121), (6.126) and (6.131). The summations &;(x)=
@y, ,(x)Fe(x)+a,, (x)+as, {x)+&, {x), however, are independent of its choice and
produce the first series which appears in the right hand side of (6.55).

Thus, in the case where m is even, gathering the results (6.76), (6.77), (6.82),

(6.121), (6.126) and (6.131), we can conclude that tr Z(¢, x) admits the asymptotic
expansion (6.55) with (6.56).

REFERENCES

“17 J. CHEEGER, Analytic torsion and the heat equation, Ann. Math., 109 (1979), 259~
322.

.21 J. Cueecer, On the spectral geometry of spaces with cone-like singularities,
P.N.A.S., V. 76, No. 5, (1979), 2103-2106.

-3 J]. CHEeGER, Spectral geometry of spaces with cone-like singularities, preprint,
(1978).



c4

5]

_6°

77

-10}
L11]
125
:13]
L14]
(15
(16
7]

18"

THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 455

J. CuerceRr, On the Hodge theory of Riemannian pseudomanifolds, Proc. Sym.
Pure Math., 36 (1980), 91-146.

J. Cuercer, M. Goresky AxND R. MacPiuiersox, L2.cohomology and intersection
homology of singular algebraic varieties, in Proceeding of year in differential
geometry, 1. A.S., S. Yau ed. (1981), Ann. Math. Studies, Princeton.

J. Cueecer axp M. Tavyror, On the diffraction of waves by conical singularities
I, II, Comm. Pure Appl. Math., XXXV (1982), 275-331: XXXV (1982), 487-529.

P.E. CoxxeEr, The Neumann’s problem for differential forms on Riemannian
manifolds, Mem. Amer. Math. Soc., 20 (1956).

J. DuisTErRMAAT axD V., GuiLLEMmIN, The spectrum of positive elliptic operators
and periodic bicharacteristics, Invent. Math., 20 (1975), 39-79.

M.P. GAFFNEY, A special Stokes theorem for Riemannian manifolds, Ann. Math.,
V. 60, No. 1, (1954), 140-145.

M.P. Garrxey, The heat equation method of Milgram and Rosenbloom for open
Riemannian manifolds, Ann. Math., V. 60, No. 3, (1954), 458-466.

P. GREINER, An asymptotic expansion for the heat equation, Arch. Rat. Mech.
Anal., 41 (1971), 163-218.

V. GUILLEMIN AND S. STERNBERG, Geometric Asymptotics, A. M. S., Math. Surveys,
No. 14 (1977).

L. Horaaxper, The spectral function of an elliptic operator, Acta. Math., 121
(1968), 193-218.

S. MoricuTi, K. Upacawa axp S. Hrroresmare, Sagaku Koshike I, I, I,
Iwanami Shoten (in Japanese).

M. Nacasg, De Rham-Hodge theory on a manifold with cone-like singularities,
Kodai Math. J., V. 5§, No. 1, (1982), 38-64.

M. Nacase, L2-cohomology and intersection homology of stratified spaces, Duke
Math. J., V. 50, No. 1, (1983), 329-368.

D.B. Ray axp .M. SixGER, R-torsion and the Laplacian on Riemannian maifolds,
Adv. in Math., 7 (1971), 145-210.

M. TavrLor, Pseudodifferential Operators, Princeton Univ. Press, (1981).

DEPARTMENT OF MATHEMATICS
Toxyo INSTITUTE OF TECIHNOLOGY
OH-0KAYAMA, MEGURO-KU, TOKYO
Jarax








