A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION BY PRODUCT II

By Shigeru Kimura

§1. Introduction. In our previous paper [2] we proved the following result.

Theorem A. Suppose that $f(z)$ is an entire function of order $q=2 p+1$ having only negative zeros. Setting $\phi\left(z^{2}\right)=f(z) f(-z), g(z)=\phi(-z) / \phi(0)$, we assume that $g(z)$ is a canonical product. Further we assume that there is an arbitrarily small $\beta>0$ such that if $|g(r)| \geqq 1$,

$$
\log \left|g\left(r e^{2 \beta}\right)\right| \leqq(\cos \beta q / 2) \log |g(r)|
$$

for all sufficiently large r and if $|g(r)| \leqq 1$,

$$
\log \left|g\left(r e^{2 \beta}\right)\right| \geqq(\cos \beta q / 2) \log |g(r)|
$$

for all sufficiently large r. Then $f(z)=e^{P(z)}$ where $P(z)$ is a polynomial of degree q, or else

$$
\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{q}}=+\infty
$$

The purpose of this paper is to improve Theorem A and prove the following.
Theorem. Suppose that $f(z)$ is an entire function of order $q=2 p+1$ having only negative zeros. Setting $\phi\left(z^{2}\right)=f(z) f(-z), g(z)=\phi(-z) / \phi(0)$, we assume that there is an arbitrarily small $\beta>0$ such that if $|g(r)| \geqq 1$ for all sufficiently large r,

$$
\begin{equation*}
\log \left|g\left(r e^{\imath \beta}\right) g\left(r e^{-\imath \beta}\right)\right| \leqq 2(\cos \beta q / 2) \log |g(r)| \tag{1}
\end{equation*}
$$

for all sufficiently large r and if $|g(r)| \leqq 1$ for all sufficiently large r,

$$
\begin{equation*}
\log \left|g\left(r e^{\imath \beta}\right) g\left(r e^{-\imath \beta}\right)\right| \geqq 2(\cos \beta q / 2) \log |g(r)| \tag{2}
\end{equation*}
$$

for all sufficiently large r. Then $f(z)=e^{P(z)}$ where $P(z)$ is a polynomial of degree q, or else

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{q}}=+\infty \tag{3}
\end{equation*}
$$

Received December 6, 1983.

In order to prove our theorem we need the following two lemmas.
LEMMA 1. [2]. Suppose that $g(z)=e^{Q(z)} g_{1}(z)$ is an entire function of finite order having only negative zeros, where $Q(z)$ is a polynomial and $g_{1}(z)$ is a canon${ }_{\imath}$ cal product. Then the sign of $\log |g(r)|$ is definite for $r \geqq r_{0}$ where r_{0} is a positive number, unless

$$
\begin{equation*}
\operatorname{deg}(\operatorname{Re} Q(r))=0 \quad \text { and } \quad g_{1}(z)=1 \tag{4}
\end{equation*}
$$

Lemma 2. Let $0<t_{1}<t_{2}<\infty$. Let $B(t)$ be a nondecreasing convex function of $\log t$ on each interval of $\left(0, t_{1}\right),\left(t_{1}, t_{2}\right),\left(t_{2}, \infty\right)$ with $B(0)=B(0+)=0$ and $B(t)=0\left(t^{\rho}\right)$ $(t \rightarrow \infty)$ for some $\rho \in(0,1)$. Let $b\left(r e^{i \theta}\right)$ be the function which is harmonic in the slit plane $|\theta|<\pi$, is zero on the positive axis and tends to $B(r)$ as $\theta \rightarrow \pi$ - with the possible exception of $r=t_{1}, t_{2}$. Then we have

$$
\begin{equation*}
b(r)=\int_{0}^{\infty}\left[b_{\theta}(t)+b_{\theta}(--t)\right] Q(r, t) d t \tag{5}
\end{equation*}
$$

where

$$
Q(r, t)=\frac{2 r \log r / t}{\pi^{2}\left(r^{2}-t^{2}\right)} .
$$

This is a slight generalization of Proposition 5 in Baernstein [1] and the proof is similar to the one in [1]. Hence we omit the proof of Lemma 2.
§ 2. Proof of Theorem. Let $f(z)$ be an entire function satisfying the hypotheses in Theorem. We suppose that (3) is false, i.e.,

$$
\liminf _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{q}}<+\infty
$$

Since $\phi\left(z^{2}\right)=f(z) f(-z), g(z)=\phi(-z) / \phi(0)$ and $\log M\left(r^{2}, \phi\right) \leqq 2 \log M(r, f)$, there exists a sequence $\left\{r_{n}\right\}=r$ which tends to $+\infty$, such that

$$
\begin{equation*}
\frac{\log M(r, g)}{r^{q / 2}}=0(1) \tag{6}
\end{equation*}
$$

We see from Lemma 1 that the sign of $\log |g(r)|$ is definite for all sufficiently large r, with the exception of case (4) in which case we have the required function $f(z)=e^{P(z)}, \operatorname{deg} P(z)=q$. In the sequel we confine ourselves to the case that the sign of $\log |g(r)|$ is positive for all sufficiently large r, because the remaining case can be dealt with in the same way as in §4 of [2].

If the sign of $\log |g(r)|$ is positive for all sufficiently large r, then (6) yields

$$
\liminf _{r \rightarrow \infty} \frac{\log |g(r)|}{r^{q / 2}}<+\infty
$$

We set $g(z)=e^{Q(z)} g_{1}(z)$ where $Q(z)$ is a polynomial and $g_{1}(z)$ is a canonical product and we denote the genus of $g_{1}(z)$ by k and the degree of $\operatorname{Re}(Q(r))$ by l.

Case (1). $k \geqq l$. Proceeding as in case (1) of $\S 4$ of [2], we have

$$
\begin{align*}
& \int_{r}^{s} \frac{H_{\theta}^{*}\left(t e^{i \beta}\right)-(\cos \beta q / 2) H_{\theta}^{*}(t)}{t^{1+q / 2}} d t \tag{7}\\
\geqq & C_{1} \frac{\log |g(r)|}{r^{q / 2}}-C_{2} \frac{\log M_{\beta}(2 s, g)+\log M_{\beta}(\sqrt{2} s, g)}{s^{q / 2}}, \quad(s<R)
\end{align*}
$$

where $H^{*}(z)$ is the harmonic function in $\{z: 0<|z|<R, 0<\arg z<\beta\}$, which has the following boundary values: $H^{*}(r)=0, H^{*}\left(r e^{i \beta}\right)=B^{*}\left(r^{1 / r}\right)\left(B^{*}\right.$ is a nondecreasing convex function of $\log t$ on $(0, \infty)$ with $\mid B(0)=B(0+)=0$ and $\gamma=\beta / \pi)$ and C_{1}, C_{2} depend only on β and q and $M_{\beta}(2 s, g)=\sup _{|\theta|<\beta}\left|g\left(2 s e^{i \theta}\right)\right|$. Further we have

$$
\begin{align*}
& H_{\theta}^{*}\left(t e^{\imath, \beta}\right) \leqq \log \left|g\left(t e^{2, \beta}\right) g\left(t e^{-2, \beta}\right)\right|, \tag{8}\\
& H_{\theta}^{*}(t) \geqq 2 \log |g(t)| .
\end{align*}
$$

Now we consider subcases.
Case (1.1). $\quad A=\underset{r \rightarrow \infty}{\limsup } \frac{\log |g(r)|}{r^{q / 2}}=+\infty$.
We can find arbitrarily large values of r and s, with $r<s$, such that the righthand side of (7) is positive from (6). Hence (8) implies that the inequality

$$
\log \left|g\left(t e^{\imath \beta}\right) g\left(t e^{-\imath \beta}\right)\right|-2(\cos \beta q / 2) \log |g(t)|>0
$$

holds for some $t>r$ and this contradicts our assumption (1).
Case (1.2). $A=0$. There exists a sufficiently large number r_{v} such that $(\log |g(r)|) / r^{q / 2}>0$ for $r \geqq r_{0}$. Thus for each fixed $r\left(\geqq r_{0}\right)$ the right-hand side of (7) is positive for all sufficiently large s, and we have again a contradiction.

Case (1.3). $0<A<+\infty$. We define the function $H(z)$ in $D=\{z: 0<\arg z<\beta\}$ by

$$
H\left(r e^{\imath \theta}\right)=\int_{-\theta}^{\theta} \log \left|g\left(r e^{2 \dot{\varphi}}\right)\right| d \phi .
$$

Since $g(z)=e^{Q(z)} g_{1}(z)$ we have

$$
\begin{aligned}
H\left(r e^{i \theta}\right)= & \frac{2}{l}\left|a_{l}\right| r^{2} \sin l \theta \cos \theta_{l}+\cdots+2\left|a_{1}\right| r \sin \theta \cos \theta_{1} \\
& +2 \int_{0}^{\theta} \log \left|g_{1}\left(r e^{t \rho}\right)\right| d \phi
\end{aligned}
$$

where $Q(z)=a_{k^{\prime}} z^{k^{\prime}}+\cdots+a_{1} z, \operatorname{deg}(\operatorname{Re} Q(r))=l\left(\leqq k^{\prime}\right)$ and $\arg a_{j}=\theta_{j}\left(\jmath=1, \cdots, k^{\prime}\right)$. Since $g(z)$ has only negative zeros, $H\left(r e^{i \theta}\right)$ is harmonic in D. Further we proved in [2] that $H\left(r e^{i \beta}\right)$ is an increasing convex function of $\log r$ for all sufficiently large r, if β is sufficiently small.

Now we construct the harmonic function $U\left(r e^{i \theta}\right)$ in D which majorizes $H\left(r e^{i \theta}\right)$ in D and has the boundary values $U(r)=0$ and $U\left(r e^{i, \hat{s}}\right)=-B\left(r^{1 / i}\right)$ where B
is a function satisfying all the hypotheses of the B in Lemma 2 and $\gamma=\beta / \pi$.
Since

$$
H\left(r e^{\imath \beta}\right)=G\left(r e^{\imath \beta}\right)+c_{j}^{\prime} r^{j}+\cdots+c_{l}^{\prime} r^{l} \quad(j \geqq 1),
$$

where

$$
\begin{aligned}
G\left(r e^{2 \beta}\right) & =2 \int_{0}^{\beta} \log \left|g_{1}\left(r e^{\imath \phi}\right)\right| d \phi \\
& =2 r^{k+1} \int_{0}^{\infty}\left(\int_{0}^{\beta} \frac{n(x)}{x^{k+1}} \frac{x \cos (k+1) \phi+r \cos k \phi}{x^{2}+r^{2}+2 r x \cos \phi} d \phi\right) d x,
\end{aligned}
$$

we have

$$
H\left(r e^{\imath \beta}\right)=c_{m} r^{m}+c_{m+1} r^{m+1}+\cdots\left(m \geqq 1, c_{m} \neq 0\right) .
$$

If $c_{m}<0$, then $H\left(r e^{2 \beta}\right)$ is a decreasing function of r for all sufficiently small r. If $c_{m}>0$, then

$$
\frac{\partial^{2} H}{\partial(\log r)^{2}}=m^{2} c_{m} r^{m}+(m+1)^{2} c_{m+1} r^{m+1}+\cdots
$$

implies that $H\left(r e^{i \beta}\right)$ is an increasing convex function of $\log r$ for all sufficiently small r.

Thus, firstly, we define the function $B(t)$ by

$$
\begin{align*}
& B(t)=\left\{\begin{array}{ll}
0, & \text { if } c_{m}<0 \\
H\left(t^{r} e^{\imath \beta}\right), & \text { if } c_{m}>0
\end{array} \text { for } 0 \leqq t \leqq t_{1},\right. \tag{9}\\
& B(t)=a t \quad(a>0) \tag{10}
\end{align*} \text { for } t_{1}<t<t_{2}, ~ l
$$

and

$$
\begin{equation*}
B(t)=H\left(t^{\top} e^{\imath \beta}\right) \quad \text { for } \quad t_{2} \leqq t<+\infty \tag{11}
\end{equation*}
$$

where t_{1} is a sufficiently small positive number and t_{2} is a sufficiently large positive number, which are defined as follows. Since $B(t)$ satisfies all the hypotheses of the B in Lemma 2 with $\rho=\gamma q / 2$, the Poisson integral

$$
\begin{equation*}
b\left(r e^{i \theta}\right)=\frac{1}{\pi} \int_{0}^{\infty} B(t) \frac{r \sin \theta}{t^{2}+r^{2}+2 \operatorname{tr} \cos \theta} d t \tag{12}
\end{equation*}
$$

satisfies all the hypotheses of the b in Lemma 2. Then we have

$$
b_{\theta}(-r)=\int_{0}^{\infty} \log \left|1-\frac{r}{t}\right| d B_{1}(t)
$$

where $B_{1}(t)=t B^{\prime}(t)$. For any $\varepsilon>0$ and any $t_{2}>0$, if t_{1} is sufficiently small, then we have

$$
\int_{0}^{t_{1}} \log \left|1-\frac{r}{t}\right| d B_{1}(t)<\varepsilon \quad \text { for } \quad t_{1}<r<t_{2}
$$

Thus, observing that

$$
\int_{t_{2}}^{\infty} \log \left|1-\frac{r}{t}\right| d B_{1}(t)<0 \quad \text { for } \quad t_{1}<r<t_{2}
$$

we see that

$$
b_{\theta}(-r)<\varepsilon+\int_{t_{1}}^{t_{2}} \log \left|1-\frac{r}{t}\right| d B_{1}(t) \quad \text { for } \quad t_{1}<r<t_{2}
$$

Hence we have for $r \in\left(t_{1}, t_{2}\right)$, using (10),

$$
b(-r)<\varepsilon+a t_{1} \log t_{1}-a t_{2} \log t_{2}+a\left(r-t_{1}\right) \log \left(r-t_{1}\right)+a\left(t_{2}-r\right) \log \left(t_{2}-r\right) .
$$

Thus we can choose a sufficiently small number t_{1} and a sufficiently large number t_{2} such that

$$
\begin{equation*}
b_{\theta}(-r)<0: t_{1}<r<t_{2} . \tag{13}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
U(z)=b\left(z^{1 / \tau}\right) \tag{14}
\end{equation*}
$$

in $D=\{z: 0<\arg z<\beta\}$. Choosing a sufficiently large number a in (10), we can see that if $\beta q / 2<\pi$

$$
\begin{equation*}
H(z) \leqq U(z) \text { in } D \tag{15}
\end{equation*}
$$

In fact, H and U are harmonic in D and $H(z) \leqq U(z)$ on the boundary with the possible exception of $z=t_{1} e^{i \beta}, t_{2} e^{i \beta}$ from (9) $\sim(12)$ and (14). Further we see that $H(z)$ is $O\left(|z|^{q / 2}\right)$ in D by the definition of H and that $U(z)$ is $O\left(|z|^{q / 2}\right)$ in D by (12) and (14). Therefore we can conclude that $H(z) \leqq U(z)$ inside the angle if $\beta q / 2<\pi$.

If (1) holds for all $r>0$, then we claim that the following inequality holds

$$
\begin{equation*}
\varphi\left(r^{r}\right) \leqq \int_{0}^{\infty} \varphi\left(t^{r}\right)\left(1+\cos \frac{\beta q}{2}\right) Q(r, t) d t \tag{16}
\end{equation*}
$$

where

$$
\varphi\left(t^{r}\right)=\left\{\begin{array}{lll}
U_{\theta}\left(t^{r}\right) & \text { for } & 0 \leqq t<t_{2} \tag{17}\\
2 \log \left|g\left(t^{r}\right)\right| & \text { for } & t \geqq t_{2}
\end{array}\right.
$$

if $c_{m}<0$ and

$$
\varphi\left(t^{r}\right)=\left\{\begin{array}{lll}
U_{\theta}\left(t^{T}\right) & \text { for } & t_{1}<t<t_{2} \tag{18}\\
2 \log \left|g\left(t^{r}\right)\right| & \text { for } & 0 \leqq t \leqq t_{1}, t \geqq t_{2}
\end{array}\right.
$$

if $c_{m}>0$.
From Lemma 2, we have

$$
\begin{equation*}
U_{\theta}\left(r^{r}\right)=\int_{0}^{\infty}\left(U_{\theta}\left(t^{r}\right)+U_{\theta}\left(t^{t} e^{\imath \beta}\right)\right) Q(r, t) d t \tag{19}
\end{equation*}
$$

At first, we consider the case $c_{m}<0$. Since $U(z)>0$ in the angle $D=\{z: 0<\arg z$
$<\beta\}$ and $B(t)=0$ for $0 \leqq t \leqq t_{1}$ from (9), we have

$$
\begin{equation*}
L_{f}\left(t^{7} e^{l^{3},}\right) \leqq 0, \quad U_{\theta}\left(t^{r}\right) \geqq 0 \quad\left(0 \leqq t \leqq t_{1}\right) . \tag{20}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
U_{\theta}\left(t^{i}, \cdots-L_{H}\left(t^{i} e^{i, j}\right) \leqq\left(1+\cos \frac{\beta q}{2}\right) U_{\theta}\left(t^{i}\right), \quad\left(0 \leqq t \leqq t_{1}\right)\right. \tag{21}
\end{equation*}
$$

For $t_{1}<t<t_{2}$, since $b_{\theta}(-t)=U_{f}\left(t^{\gamma} e^{2,3}\right)$ we have (20) from (13) and also (21) again. Thus we set in $0 \leqq t<t$.

$$
\begin{equation*}
\varphi\left(t^{i}\right)=U_{\theta}\left(t^{\prime}\right) . \tag{22}
\end{equation*}
$$

Next we consider the case $t \geqq t_{2}$. From $H(r)=U(r)=0$ and (15), we have $H_{\theta}\left(t^{r}\right) \leqq U_{\theta}\left(t^{\prime}\right)$. Hence. from the definition of H, we have

$$
\begin{equation*}
2 \log \left|g\left(t^{r}\right)\right| \leqq U_{0}\left(t^{r}\right) \tag{23}
\end{equation*}
$$

Now we define two functions $H_{1}(z)$ and $H_{2}(z)$ in the angle $D_{1}=\{z: 0<\arg z$ $<\beta / 2\}$, which are harmonic and subharmonic respectively, as follows:

$$
\begin{aligned}
& H_{1}\left(r e^{i \theta}\right)=U\left(r e^{2(\hat{j} / 2+\theta)}\right)-U\left(r e^{2(\xi / 2-\theta)}\right), \\
& H_{y}\left(r e^{i \gamma}\right)=\int_{-\beta / 2-\theta}^{-\hat{\beta} / 2+\theta} \log \left|g\left(r e^{2 \dot{\xi}}\right)\right| d \phi+\int_{; / 2-\theta}^{\beta / 2+\theta} \log \mid g\left(r e^{2 \dot{\theta}}\right)!d \dot{\phi} .
\end{aligned}
$$

Then we have $H_{1}\left(r:=H_{2}(r)=0\right.$ and

$$
\begin{aligned}
H_{0}\left(r e^{2 S / 2}\right) & =\int_{-\beta}^{\beta} \log \left|g\left(r e^{i \phi}\right)\right| d \phi=H\left(r e^{2, \hat{s}}\right) \\
& \leqq U\left(r e^{2, \beta}\right)=H_{1}\left(r e^{2, \beta / 2}\right)
\end{aligned}
$$

Since H_{1} and H_{2} are both $O\left(r^{q / 2}\right)$ in D_{1} as $r \rightarrow \infty$, and since $\beta q / 4<\pi$, we can conclude that $H_{2}(z) \leqq H_{1}(z)$ inside D_{1}. Further we have $H_{2}\left(r e^{i \beta / 2}\right)=H_{1}\left(r e^{i \beta / 2}\right)$ for $r \geqq t t_{2}^{\gamma}$ and hence we obtain
(24) $\quad \varlimsup_{\theta \rightarrow \beta / 2} \frac{H_{2}\left(r e^{2 \beta / 2}\right)-H_{2}\left(r e^{i \theta}\right)}{\beta / 2-\theta} \geqq\left(H_{1}\right)_{\theta}\left(r e^{\imath^{3 / 2} 2}\right)=U_{\theta}\left(r e^{i \hat{\beta}}\right)+U_{\theta}(r), \quad\left(r \geqq t_{3}^{i}\right)$.

From the definition of H_{2}, we have

$$
\begin{aligned}
& H_{2} r r e^{2 ;}--H_{2}\left(r e^{i \theta}\right)=\int_{-\beta}^{-\beta / 2-\theta} \log \left|g\left(r e^{2 \dot{\varphi}}\right)\right| d \dot{\phi} \\
& \quad-\quad \int_{-j, 2-\theta}^{j, 2-\theta} \log \left|g\left(r e^{i \phi}\right)\right| d \dot{\phi}+\int_{\beta, 2+\theta}^{\beta} \log \left|g\left(r e^{i \omega}\right)\right| d \dot{\phi},
\end{aligned}
$$

and thus we have

$$
\begin{aligned}
\overline{\lim }_{h \rightarrow 5,2} & H_{y}\left(r e^{i, j, 2}\right)-H_{2}\left(r e^{i \theta}\right) \\
3 / 2-\theta & \log \left|g\left(r e^{-i s}\right)\right|+2 \log |g(r)| \\
& +\log \left|g\left(r e^{2, s}\right)\right|, \quad\left(r \geqq t_{2}\right) .
\end{aligned}
$$

Combining this with (24) and (1) we obtain

$$
\begin{equation*}
U_{\theta}\left(t^{i}\right)+U_{\theta}\left(t^{i} e^{i, \hat{\beta}}\right) \leq 2\left(1+\cos \frac{\beta q}{2}\right) \log \left|g\left(t^{i}\right)\right| \quad \text { for } \quad t>t_{2} \tag{25}
\end{equation*}
$$

Therefore setting $\varphi\left(t^{r}\right)=2 \log \left|g\left(t^{r}\right)\right|$ for $t \geqq t_{2}$, from (19), (23) and (25), we have (16) for the function $\varphi(t r)$ defined by (17) in view of (22).

If $c_{m}>0$, then we can also prove (16) for the function $\varphi\left(t^{*}\right)$ defined by (18).
Proceeding as in $\S 5$ of [2] from (16), we arrive at

$$
\lim _{r \rightarrow \infty} \frac{\log \left|g\left(r^{r}\right)\right|}{r^{\gamma / / 2}}=A>0 .
$$

Hence, by Valiron's Tauberian Theorem [3], we have

$$
n(r, 0, g) \sim \frac{A}{\pi} r^{q / 2},
$$

and so

$$
n(r, 0, f) \sim \frac{A}{\pi} r^{q} .
$$

Therefore we have $\delta(0, f)=1$. Proceeding as in the proof of Theorem 2 of [2], we have $A=0$, which is impossible.

Next we suppose that (1) holds for all $r \geqq t_{0}>0$. Then there exists a positive C such that $h(z)=g(z) / C$ satisfies (1) for all $r>0$. In fact, set

$$
\begin{aligned}
& \varphi(t)=\log \left|g\left(t e^{i, s}\right) g\left(t e^{-\imath,}\right)\right|-2(\cos \beta q / 2) \log |g(t)| . \\
& \max _{0 \leq t \leq t_{0}} \varphi(t)=M(>0)
\end{aligned}
$$

and

$$
C=\exp (M / 2(1-\cos \beta q / 2)) .
$$

Then it is easily seen that $h(z)$ satisfies (1) for all r.
We show an inequality corresponding to (16), using hiz). Setting

$$
\tilde{b}\left(r e^{i \theta}\right)=b\left(r e^{i \theta}\right)-2 \theta \log C
$$

where b is the Poisson integral of (12) constructed by $g(z)$. We can see

$$
\begin{equation*}
\tilde{b}_{\theta}(r)=\int_{\theta}^{\infty}\left(\tilde{b}_{\theta}(t)+\tilde{b}_{\theta}(-t)\right) Q(r, t) d t \tag{26}
\end{equation*}
$$

where $Q(r, t)=(2 r \log r / t) / \pi^{2}\left(r^{2}-t^{2}\right)$. In fact, by contour integration

$$
\int_{0}^{\infty} Q(r, t) d t=1 / 2
$$

and so we have (26) from (5).
If we define $\tilde{U}(z)=\tilde{b}\left(z^{1 / r}\right)$ in $D=\{z: 0<\arg z<\beta\}$, then we have from (26)

$$
\tilde{U}_{\theta}\left(r^{i}\right)=\int_{0}^{\infty}\left(\tilde{U}_{\theta}\left(t^{r}\right)+\tilde{U}_{\theta}\left(t^{\tau} e^{\imath \beta}\right)\right) Q(r, t) d t,
$$

where $\tilde{U}_{\theta}\left(r^{i} e^{i \theta}\right)=U_{\theta}\left(r^{r} e^{i \theta}\right)-2 \log C$.
Now we define two functions $\widetilde{H}_{1}(z)$ and $\widetilde{H}_{2}(z)$ in the angle $D_{1}=\{z: 0<\arg z$ $<\beta / 2\}$ as follows:

$$
\begin{aligned}
& \widetilde{H}_{1}\left(r e^{i \theta}\right)=\tilde{U}\left(r e^{2(\beta / 2+\theta)}\right)-\tilde{U}\left(r e^{2(\beta / 2-\theta)}\right), \\
& \widetilde{H}_{2}\left(r e^{i \theta}\right)=\int_{-\beta / 2-\theta}^{-\beta / 2+\theta} \log \left|h\left(r e^{2 \phi}\right)\right| d \phi+\int_{\beta / 2-\theta}^{\beta / 2+\theta} \log \left|h\left(r e^{\imath \delta}\right)\right| d \phi
\end{aligned}
$$

Then we have $\widetilde{H}_{1}(r)=\widetilde{H}_{2}(r)=0$ and

$$
\widetilde{H}_{2}\left(r e^{2 \hat{\beta} / 2}\right)=H\left(r e^{2 \beta}\right)-2 \beta \log C \leqq \tilde{U}\left(r e^{2 \beta}\right)=\widetilde{H}_{1}\left(r e^{2 \beta / 2}\right) .
$$

Hence we have $\widetilde{H}_{2}(z) \leqq \widetilde{H}_{1}(z)$ in D_{1}. Proceeding as in the previous case, we have the following inequality:

$$
\tilde{\varphi}\left(r^{r}\right) \leqq \int_{0}^{\infty} \tilde{\varphi}\left(t^{r}\right)\left(1+\cos \frac{\beta q}{2}\right) Q(r, t) d t
$$

where

$$
\check{c}\left(t^{\prime}\right)= \begin{cases}\tilde{U}_{\theta}\left(t^{r}\right) & \text { for } \quad 0 \leqq t<t_{2} \\ 2 \log \left|h\left(t^{r}\right)\right| & \text { for } t \geqq t_{2}\end{cases}
$$

if $c_{m}<0$ and

$$
\tilde{\varphi}\left(t^{i}\right)=\left\{\begin{array}{lll}
\tilde{U}_{\theta}\left(t^{r}\right) & \text { for } & t_{1}<t<t_{2} \\
2 \log \left|h\left(t^{3}\right)\right| & \text { for } & 0 \leqq t \leqq t_{1}, t \geqq t_{2}
\end{array}\right.
$$

if $c_{m}>0$. Thus we have a contradiction again.
Case (2). $k<l$. Since $g_{1}(z)$ is a canonical product of $g(z)$, we have

$$
\begin{aligned}
& \log \left|g_{1}(r)\right| \left\lvert\,=r^{k+1} \int_{0}^{\infty}-\frac{n(x)}{x^{k+1}} \frac{d x}{x+r}\right. \\
& \quad \leqq r^{k} \int_{0}^{r} \frac{n(x)}{x^{k+1}} d x+r^{k+1} \int_{r}^{\infty} \frac{n(x)}{x^{k+1}} d x
\end{aligned}
$$

and so we have $|\log | g_{1}(r)| |=o(\operatorname{Re} Q(r))$. Thus in this case we have

$$
A=\lim _{r \rightarrow \infty} \sup \frac{\log |g(r)|}{r^{q / 2}}=0
$$

Hence proceeding as in the proof of case (1.2), we have a contradiction.

References

[1] Baeristen, A., A generalization of the $\cos \pi \rho$ theorem, Trans. Amer. Math. Soc., 193 (1974), 181-197.
[2] Kimura, S., A characterization of the exponential function by product, Kodai Math. J. 7 (1984), 16-33.
[3] Valiron, G., Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondance régulière, Ann. Fac. Sci. Univ. Toulouse (3)5 (1931), 117-257.

Department of Mathematics
Utsunomiya University
Mine-machi, Utsunomiya
Japan

