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§1. Introduction.

Let f(z) be meromorphic in the plane. We define my(r, f) by

. 8
milr, fy=5—\ (og| fre))}d0,
and denote by N(r, ¢) the usual Nevanlinna counting function for the ¢-points of

f in |z| =<7, then Miles and Shea had shown

N, O+N(r, o0) _ Isinzpl (2 e
ma(7, f) = mp { 1+sin2zp/27p } =Cp)

for pelpT(r, 1)), (T (r, /)]
Further they had characterized those f for which equality holds in (1) as func-
tions which are locally Lindeloffian (or the reciprocals of such).

Let M, be the class of all meromorphic functions f(z) of order p defined
by g(z)/g(—z) with the canonical product

(L Ky(f)=lim sup

glz)= nlle(Z/an, 9, q=Lp].
Recently by making use of Fourier series method, Ozawa proved

THEOREM A. Let f(z) belongs to M,, then

. N(r, 0) _~v2 lcosmp/2|
@ Imsup- . /) =vzp (wp—sinzp)® ~ DO

It is natural to hope that (2) holds for p<=[pu«, 4«] and that those f for
which equality holds in (2) are f(z)=g(z)/g(—z) with locally Lindeléffian g.
But when p is an even integer, B(p)>0 and the proof is not straightforward.
We need some existence lemma of strong peaks for feM,.

We assume that the reader is familiar with the fundamental concept of
Nevanlinna theory and Fourier series method developed by Miles and Shea (See
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W.K. Hayman [3], Miles and Shea [5], [6] and Ozawa [7]). We use the ter-

minology from [6] without comment.
The author express his heartiest thanks to Professer M. Ozawa for his tender

support in preparing this note.

§2. Discussion of results.
Our first result is following.

THEOREM 1. Let f(z) be meromorphic in the plane and defined by f(z)=
g(z)/g(—z) with an entire function g. Then

. N(, 0, )
2.1) llrzlaiup mar. )

Sfor pelp(T, 1), 2T, )], p>0.

Next we have

=B(p)

THEOREM 2. Under the same assumption as in theorem 1 and i1f

N, 0, /)

(2.2) lim sup =B(p)

ro  My(r, f)

for some pELus(T(r, f)), 2(T(r, )], p#an odd integer.
Then there exist positive sequences r,—oo and 7,—0 sucnh that

(2.3) N(r, 0)~N(r,, 0)(r/r.)",
(2.4) N(r, 0)~B(p)my(r, f),

uniformly for ¥&[)ura, p5'ra] as n—co.  Further there exist 0,—0 and 6,
[0, 2r) such that i1f

S,={z:0,=argz—0,<2xr—d,},
then

(2.5) N(r, 0; Sp)=o(N(r, 0, f)), Dt SrENatr,

as n—oo, where N(r, 0; S,) denote the counting function for the numbzr of zeros

of f in the sector S,.
If (2.2) holds with p=an odd integer, t.e. N(r, 0O)=0(my(r, f)) as r—co,

then p=psx=2% and
(2.6) my(r, f)=r°L(r), liIn L(%’;l:l 0<o<o0)

holds.

Theorem 1 and 2 have extensions.
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THEOREM 3. Let f(z) be meromorphic in the plane defined by f(z)=g(2)
gle*™®z) with an entive function g and 0<a=1. Then

(2.7) lim supM—D—

=Bla, =2 & (- .
ra® (e, f) =N TS Cosm“)‘mz—pz}

f()?’ pEEy*(T(T, f))’ X*<T(7” f)):l’ [0:/;0‘

THEOREM 4. Under the same assumption as in theorem 3 and if equality
holds in (2.7) for some p&[ux(T(r, [)), 2(T(r, )], p#0 and B(a, p)=0. Then
there exist sequences vn,—co, 7,—0, 0,—0 and 6,<[0, 2] satisfying (2.2)-(2.5).
If p satisfies B(a, p)=0 and p>0, then p=ps=2x and (2.6) holds.

Especially, if a=1, then we have theorem 2. Proofs of theorem 3 and 4 are
quite similar as to theorem 1 and 2. It will be done by improving the lemma 3
and be left to the reader.

Theorem 1 and 3 are not new, essentially they were proved by Ozawa ([7]
theorem 4 and its extension in §11).

§3. Preliminaries.
To prove (2.1) we need some lemmas.

LEMMA 1. Let f(z) be meromorphic in the plane defined by f(z)=g(z)/g(—z)
with an entire function g. Put a, be zeros of g and W(z) by

|E(z/anz, q)l

(3.1 log | f(2)] :maznjlgﬂlog TE(—z/ay, 9| +W(z)
where 0<2s=|z|=r=R/2. Then if ¢=1.
(3.2) IW(2)| =V (s, v, R)y=AL(r/s) " {my(s, g)+N(2s, 0)}

+(#/R)* {my(R, g)+NQ2R, 0)}],

where A is an absolute constant and q,=2[(q+1)/2]; if ¢=0,
[W(2)| =V (s, r, R)3=A{N(2s, 0)log (r/s)+(r/R)mx(R, g)+N2R, 0))} .

Proof. According to the proof of theorem 3.b in [2],

— S _m 5 m ’l—i/_aiL
W(z)~Re{"§1dm(s)< +m§+1dm(R)Z +logla£_'|[§s Il—{—z/a,,l }

where
]_ 2w .
dm(t>:—S log lf(z@”’)ll"me-wmﬁ)de
T Jo

+ s @uon—(—aunm, tels, R

mt™ et
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Hence we have d,,()=0 and

1 [Capsilt, ©)I n(t, 0)
T e O1S 5 g e
Next we have
33 log|(l—z/a)/(1+2/a.)] | = 2N(s 0)42 1890y
lapiss " mH = ’ 2¢+1 :
Consequently
C(g+1)/2]1-1 . n(S O)
7 < 2p+1 . )
WIS s s, o +2-5 2
el , 2n(R, 0)
2p+1 N ,
+E<q§>/21(r/R) ’ {47112([?, 9+ 2p+1 }

+2N(s, 0)+

2005, 0) )0
q

and hence we have the desired result when ¢=L.
If ¢=0, we have

W(z)zRe{é}ldm(R)z’”—i—[ogmlfl[gs(l—z/an)/(l—l—z/an)}

and

logml;'[§s |1—z/a)(1+z/a,)| S2N(s, 0)+n(s, 0)(1+logr/s),

and this completes the proof of lemma L.

LEMMA 2. Under the same assumption as in lemma 1, we have

i
(3.4 my(r, f)équqoﬂr N(t, 0, g)

, iy GBS T R,

where K, and B are constants depending only on ¢=0.

Proof. By lemma 1,

10g|f(2)(:10gs<|4:!:[\§1-3 I E(Z/anx q)/E<'—Z/a7u Q)l +W(2)}

hence we have by Minkowski’s inequality,

B8 mln NS mlr/lanl, EG Q/E(—z Q)+Vs 7, R,

For ¢=1, we have by calculating the m-th Fourier coefficients

241
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o0 7,4k+2
2 &, Rty r<l
(3.6) my(r, G)P=
2‘1"2"{“11.’?:3__ 2 BEEY e
=0l (2k+1)2 (2k+1)* =0 k12 T
and if ¢=0
0o 7,4k+2
3.7 . S o Tt
3.7 myr, GP=4 -k
> - r=1

o (2kF1)2 7 =

where G(z)=G(z, ¢)=E(z, q)/E(—z, q) and ¢,=2[(¢g+1)/2]. Hence we obtain
from (3.6) and (3.7)

2pa0tt r<l
(3.8) ms(7, G)§{
2y~ r=1.
Thus we have from (3.5) and (3.8),
(3.9 mitr, N2 (/o 1/g)—n(s, 1/g)

w2 (r/ppdint, 1/9)=ntr, )4V, 7, R).

Integration by parts applied twice to (3.9) yields (3.4).

LEMMA 3. Let g be a entire function and put f by f(z2)=g(z)/g(—=z). Suppose
px(my(r, f))<oo and Ky(f)< co.

If pa(me(r, <p<2Aslmy(r, f)) and p 1s not an odd integer, then there exist
sequences Sn, v, and R, tending to co and &,—0 such that

(3.10) Sp=0(ry), ro=0(R},) -
(3.11) N(t, O)=N(ry, 0)t/74)" s <I<R.,
(3.12) molt, IZENra, Osu/ra) s St=2s,
molt, [)ZEN(rn, O(R/ry) R St=2R,.
11 paelmy(r, [))=2x(ms(r, [)) and psx(ms(r, f)) 1s not an odd integer, then

Ner0)
it e,

Proof. We first observe that there exist sequences s,, #,, R, and A, tending
to o and d,—0, such that

(3.13)  sp=o(r,), ta=0(Ry) as n—> oo
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mZ(t, f)§m2(zn, f)(t/ln); Sn§l§2Rn’
my(t, [IS0,maltn, F)E/t), $p=<t<A,s, or R,/A,Zt<2R,.

(3.14)

To see this, choose ¢>0 so that pux<p—e¢, p+e<Ax, then there exist x,, ¥, and
A, tending to oo and y,—0 such that

myt, ISA+70me(xn, [ta/x2)0, AxSt=ARx,
1 my(t, [ISA+70me(ya, £t/ va)0¢ ARty St=<2A3y..
And we may assume AZx,<Az?y,. Choose t,€[Az'x,, Anys] SO that
My(tn, fRC2Zms(, [)1° A X St=Anyn.
Then
my(t, [)<A+72)E/ x0) @/ %) (x0/t2)Mstr, f)
=0./t)muls, f), A xnSt= A7l 5y,
ArynSt=2A3y,.

Thus (3.13) and (3.14) hold with s,=A43%x, and R,=A2vy,.
Choose r,€[s,, 2R,] so that

Ny, O)rnf=N(, 0)-°, Sn=t=2R,.
By Jemma 2 and K,(f)<oo

Ry N, 0)

o Wdt—i—o(mz(tn, .

milte, =Kt |

Hence

(Aot IS KN, Ot /ro)0 |\ d.

Since |p—g,| <1, the integral is convergent. We have
M(tn, IZA+0ANK,N(r,, 0)E./7.)°  as n—oo,
Thus for n large enough,
(3.16) my(t, [)Z0,mutn, )1/12)°=2K,6,N(ry, 0)t/r2)",
SRSt A8, AFR.=t<2R,.
Next we note from (3.14), (3.16) and K,(f)<co that
ra€[AmSn, AVR]  (nzny),
and (3.10) follows.
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To prove last assertion of lemma 3 suppose first that for any o¢>1, there
exist a sequence 7,— oo such that 7,=N(at,)/ms(ts, f)—0. Let ¢go=2[(p+1)/2],
and use
rotiN(t, 0)

oty 4

my(r, f)= KqOS

where K, is a constant depending only on g,.
Since p4(my)=2Ax(my)=p, given ¢>0 their exist A=A(e) and x,=x.(e) such
that for any x=x,, there is a peak ye[x, Ax]:

mo(t, FIEmy(y, /)P (2 =t=y),
ma(t, l=my(y, FIt/y)r+  (y=t<oo).

(See [11, p. 410 and [6], p. 178). Choose ¢>0 so that p-+e<g,+!l and g,—!
<p—e. Then for all large & there exist peaks y,=[t./A, t:]; if spr=(xo, V1),

(3.17)

malye, NE{BELN|  mitt f>+§::"N<atk, 0

+BEAN| ity P} gl dt 0G0

m
vplzg ylo=Pt VrlSk Ut
< o+e - 4
1=BK2(f)S varsn (AFu)? T dutead Syk/m aur
/o [
+ BN dutol).

We determine the s, so that s,— o0, y,/s,— o0 and

velsy  u?
Z'kgo ——“(1+u)2 du —>O

Then since y,<t, <Ay,
e y qo-p-2

1<BE,(f) So ATar

a contradiction if ¢ has been chosen large enough. Thus m(r, f)SC,N(ar, 0).
Since K2(f) < oo, we haVe ﬂ*(N) = Ft*(]’ﬂg) :/Z*(N> = Z*(mz) — p In particular
N(or, 0)ZC,N(r, 0), and we have

—————du-o(1) as k— oo,

Jim inf - > O

e My, f) >0

§4. Proof of Theorems 1 and 2.

We may assume K,(f)<co, since otherwise (2.1) is trivial. Hence we have
()= ps(T) and As(my)=2(T).
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Let p=[px, 2+1(p>0) be not odd and choose a=a(p)=(0, e™*) by
4.1) l1—loga>pt, (ae)(l—loga)<l.
Let go=2[(p+1)/2] and put f,(z) by
fo)=_ I E(z/an, ¢")/ E(=2/aqa, q)

sp<ianlsaky,
where s,, r, and R, satisfy (3.10), (3.12) and 7, —0
4.2) N, 0)=(1+72)NFa, 0)t/72)°, SASE=R,.
Define associated functions G,(z2) and F,(z) by

Guz)= TI  E(z/|aal, q0),

sp<iaglsaky
Fu(2)=Gy(2)/ Gn(—2).
Put N,(, 0)=N(¢, 1/F;) so that by (3.12) and (4.2)
4.3) Np(#p, O~N@,, 0) as n—oo.
(4.4) N, O=(1+7)Nra, Ot/r)?,  0<t<co.
We apply lemma 1 on |z|=r,, and obtain
log| f(2)|=log| fr(2)| +0(N(r,, 0), as n—oo.
Since my(r, f)<ms(r, F,), we have
4.5) Mo(¥n, HISA+o(WImy(r,, Fr), as n-—o00,
Let

Loe)= 1 Bz/ds, 40/ E(—=2/ds, 40

be the meromorphic function with positive zeros d, and negative poles —d,
satisfying

n(t, 0)=Lo/r.)*N(r,, 0]  0<t<oo.
Then for each n=>1

N, 1/ La)=@/ra)N(ry, 0)  0<t<oo,

(4.6)
NG, 1/L)~@/r,)?N(r,, 0)  as t—oo.
and
C2p(Tny La)=0
4.7)

lCzp+1(7”n, L) ~N(r,, 0

as n —oo,

—
[2p+1)2—p?|
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uniformly in p. Hence
(4.8) [V, F)l=A+0) | cnlra, L)l as n—oo,
uniformly in m. We deduce
M7 Frp) S(140(1))Mylra, Ly)=~1+0(L)N(rs, 0)B(p)™!

and thus (2.1) follows (See [4] p. 185).

Proof of theorem 2. Let p>0 satisfy (2.2) and be not odd. Then by the
proof of theorem 1 there exist meromorphic f, and associated G,, F,, and L,
satisfying (3.10), (3.12) and (4.2). Let M>1 be large and suppose that there
exist x,€[r,, Mr,] and ¢<(0, 1) such that

N(xp, 0)<2N(r,, 0)(x,/7n)" for infinitely many =n.

Then
. qu +1(Fay Lyl
I g B R >,
2P e gor(Far Fol
a contradiction. We conclude
4.9) N(x, 0)=1+0(1))N(rs, 0)(x/7,)°, rRSxEMr,,

uniformly as n—oo. Thus by lemma 1 and lemma 3
log|f(z)|=log| fn(2)| +olms(r, 1)),  raZlz|=r=Mr,,

uniformly as n — oo and we have

(4.10) my(r, HH=A+o))my(r, Fr)=(140(1)B(p)"*N(r, 0)

uniformly on »,=<|z|=r<Mr, as n—co; by (2.2) equality holds throughout in
(4.10).
Now by (4.8) there exist ¢, tending to 0 with

(411> lcm(rny fn)l >(1—5n)lcm(7'n, Fn)[

for m=g,+1, go+3. By lemma (2.2) of [6], there exist d,—0 and ¢,, ¢,
[0, 27) such that if
9y*2

- 9 .
(4.12) I,= QOS(¢n+2]ﬂ/(qo+1), 0,) Ip= JQO S(pn+277/(qo+3), 62)

(4.13) Guz)= I  E@/an g) Gua)= TII  E(z/as, g
sp<iaylsaRyp sn<layI§uRn
A&l aEl g

and put F,(2)=G,(2)/Ga(—2) and F,(z)=G,(2)/G.(—z), then
[Copr1(Tny Fu)l <Ven|Coper(ra, Fu)l,

(4.14)
lﬁqo+3(7'n, Fn)l <\/E;|Cq0+1(7'n, Fn)] .
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One consequence of (4.14) is
(4.15) NG, 0, Fp)+N(@, 0, F,)=M-*¢N(, 0, L,) M3y, =t=Mr,.

And (4.15) shows (2.5). (See [6] p. 183).
If (2.2) holds for p=a positive odd integer, the proof of (2.6) is quite similar
to (14) of [6] and will be left to the reader.
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