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Introduction.

The functions of bounded mean oscillation in the euclidean spaces have been
extensively studied from various points of view (cf. for instance [1], [4]). The
present article is also concerned with those functions on Riemann surfaces, and
actually we show that some fundamental potential functions on Riemann surfaces
are of bounded mean oscillation, and moreover we discuss some related topics.

First we show in § 1 that a harmonic function u with finite Dirichlet inte-
gral on a given Riemann surface is of bounded mean oscillation if it can be
written as c log | /1 with some analytic function / , (in other words, if every
periods of the conjugate harmonic function of u is equal to zero modulo a con-
stant,) which generalizes Metzger's result [3].

The next §2 and §3 are concerned with functions of bounded mean oscilla-
tion in two dimensions. We shall prove that every Green's potential with the
measure having a compact support is of bounded mean oscillation, and so are
every potentials with the measure having a finite total mass in the unit disk and
every harmonic function with finite Dirichlet integral on Riemann surfaces of
finite type. Finally we shall give a sufficient condition under which a function
of bounded mean oscillation is of bounded mean oscillation in hyperbolic metric.

§ 1. On harmonic functions of BMO.

Let U be the unit disk {|*|<1} and T = { | z | = l } . An integrable function
g(t) on T is, by definition, of bounded mean oscillation if

where | / | — 1 dt, gJ = ——\ g(t)dt and the supremum is taken for all subarcs /

in 7 . Set
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BMOU(U)= {u : u is the Poisson integral of some function
of bounded mean oscillation on T].

Next for every Riemann surface R having U as a universal covering surface,
we set

BMOHίi?)^ {u : u is a harmonic function on R such that
u°π belongs to BMOH(£/)},

where π is a universal covering mapping from U onto R.

Remark. The space BMOH(i?) does not depend on the choice of π. Actu-
ally, BMOH(i?) is coincident with the space of harmonic functions u(p) on R for

which supii |grad u(p)\2g(p, q)\dpΛdp\ is finite, when R admits Green's func-
q(ΞR J J R

tions g(p, q) (cf. [3] § 2 Remark).

We denote by HD(i?) the space of all harmonic functions on R with finite
Dirichlet integral, and by BMOA(i?) and AD(R), respectively, the subspaces of
BMOH(i?) and HD(i?) consisting of analytic functions on R. Without loss of
generality, we shall consider in the sequel only real-valued harmonic functions.

It is known ([3] Theorem 1) that AD(R) is contained in BMOA(#). Here
our problem is to find a relationship between HD(/?) and BMOH(i?) A partial
answer is the following

THEOREM 1. Let R be a Riemann surface having U as a universal covering
surface and u^HD(R). Suppose that w = c log |/ | with some real constant c and
an analytic function f on R, then u belongs to BMOH(i?).

In other words, u in HD(R) belongs to BMOH(i?) if all the periods of the
conjugate differential *du of du along loops on R are equal to zero modulo a
constant.

Proof. Let π be a universal covering mapping from U onto R, then V(z)
— u°π{z) is a harmonic function on U. Consider a holomorphic function F(z) on
U whose real part is V(z) (for instance, F(z) = c-(log f)°π{z)). Let G be the
Fuchsian group associated with R and π, then from the assumption it holds that

F(γ(z))=F(z) (mod. 2πic)

for every γ in G, where i=V::Λ.
We shall study about the image domain F(U) of U by F in the complex w-

plane. Let ω be the fundamental domain of G on U (given in [5] XI § 2), then
F(U) is contained in the union of {F(ω)+2πisc}t=-<*>. For every real number t we
denote by Lt and L(t) the set F(ω)r\{w; Re w=t} and its length \Lt\ respec-
tively. Since the Dirichlet integral D(u) of u on R is finite, it holds that
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(ω)| of F{ω)^ \F'(z)\*dxdy

For every positive number δ, let e{δ)—{V- L(t)^δ} and e'(δ)= {t: L(f)>δ}, then
\e'(δ)\^D(u)/δ<+co. Consider a sequence {/w}ίΞ-oo of disjoint intervals on the
real axis such that the length \In\=l and the distance between In-1 and /„ is
equal to 1 for every n. From the above fact one sees that there is a positive
integer no~no(δ) such that for all n with \n\^n0

\e\δ)rλln\ ̂ 1/2, hence

Now fix δ and n with \n\^n0. Consider the set

en={Lt:t(Ξe(δ)r\In}

and all shifts en+2πisc, where s—0, ± 1 , ±2, •••. Then we claim that for every
square Q of side length q placed parallel to the coordinate axes, we have

(*) Σ \{en+2πιsc)rλQ\^v\enΓ\Q\,
S=-oc

where v=\jq/2π\c\^\ + l and Q is the strip region of width q which is parallel to
the imaginary axis and contains Q.

To see this, let XQ be the characteristic function of Q. Then \enΓ\Q\ =

I XQ(w)dm(w), dm(w) being the Lebesgue measure, and it holds that
J en

I (en+2πisc)r\Q I = ί XQ{w)dm(w)
J en + 2r:ιsc

Since the shifts Q—2πιsc of Q mutually overlap at most v times, it follows that

Σ XQ-2πιs
S

for every w in Q, hence by the equality above we have the inequality (*).
From (*) it follows that for the set

En={ιv(ΞF(U): R

we have

While \enr\Q\<δ and \e(δ)r\In\^/2 for every n with \n\^n0, so if we take
-f4, there is an n with \n\^n0 such that QZ)In. Therefore we have
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so \Q\F{U)\^q/^l provided that δ<l/4((l/2τr|c|)+l)
Every disk J(wo)={w: \w — wo\^q} with center wo^F(U) contains such a

square Q as above. Thus for every ιvo^F(U), we have

m I A(wo)\F(U) \ /πeY"

(For the first inequality, see [5] Theorem III. 10). Hence by a theorem due to
Hayman and Pommerenke ([2] Theorem 1), we know that F(z) belongs to
BMOA(ί7), which implies that U<ΞBMOH(R). q.e.d.

Actually we have shown the following

P R O P O S I T I O N 1 . Let f be an a n a l y t i c f u n c t i o n on R s u c h that \ \ \ f Ί f \ 2 d x d y

< + oo, then (log/) ;τ belongs to BMOA(£7).

Applying Proposition 1 to f^expg with g^AD(R), we know that AD(R)
cBMOA(i?) (Metzger [3]).

Another result concerning harmonic functions with finite Dirichlet integral
will be given in the next section.

§ 2. On potentials of BMO.

Analogously as in § 1, a locally integrable function f{z) on U belongs, by
definition, to BMO(£7) if

sup-i-ί \f(z)-fB\dm(z)<-\-^,
B \B\ JB

where | £ | = \ dm, fB=-~—\ fdm and the supremum is taken for all closed
J B I D I J B

disk B in U. For a Riemann surface R having U as a universal covering sur-
face, set

BMO(i?)={/: / is a function on R such that

f°π belongs to BMO(£7)}

Here π is a universal covering mapping from U onto R, and BMO(i?) does not
depend on the choice of π (cf. [4] 9ρ). In this section we shall show first the
following

THEOREM 2. // R admits Green's function, then every Green's potential
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pf(p)=\ g(ρf q)dμ{q) with measure μ having a compact support on R belongs to
J R

BMO(R), where g(p, q) is the Green's function on R with pole q.

To prove Theorem 2, we consider an auxiliary function. Fix q^R arbitrarily,
and let πq be a universal covering mapping such that πq(0)=q. Also fix a posi-
tive number tq such that { | z |<3ί j is mapped univalently by πq, and set

Ht.q(z)= Σ \og+(tq/\γ(z)\),
rzoq

where Gq is the Fuchsian group associated with R and πq. Then Ht,q is Gq-
invariant, and it is known ([4] lOp) that Ht,^^1 considered as a function on R
belongs to BMO(R).

LEMMA. Let R and g(p, q) be as in Theorem 2, then g(p, q) belongs to
BMO(tf).

Proof. It is well-known ([5] Theorem XI. 13) that

g(πq(z),q)= Σ log(l/ |r(z)l).
G

Now fix tq as above, then g(p, q)—Ht>q°πq

1(p) is bounded on R, hence belongs
to BMO(i?). Thus from the above remark we have the assertion.

Proof of Theorem 2. Let E be the compact support of μ on R, then we
can take a positive constant t as tq for every q^E. Let Ht>q(z) and πq be as
above and set hq(p)=Ht,q°πq

1(p) for every q^E. Next fix any point q in E
and denote a fixed πq simply by π. Consider the set F=π~1{E)c\ωy where ω is
as in the proof of Theorem 1. Then clearly F is relatively compact and π is
bijective from F onto E. For every a<^F, set Ha(z) = hq,°π(z), where q'—π{a).
Then we can see that there is a K satisfying the following condition for every
q'^E, there is a iί-quasiconformal selfmapping of R which is homotopic to the
identical mapping and maps τr({0< \z\ <t}) conformally onto πq,({0<\z\<t}).
Equivalently, for every a^F, there is a Tf-quasiconformal selfmapping Fa{z) of
U such that F«(0)=α, r°Fa=Fa°r for every γ^G (=Gβ) and HaoFa(z)=H0(z).
Since hq, belongs to BMO(i?) for every q''GE as noted above, using Reimann's
theorem ([4] V. C. Satz 3) we can find an M depending only on K and hq such
that

JB
Ha(z)-aB(a)\dm(z)^M'\B\

for every a in F and every closed disk B in U, where α5(α) = ——-I Ha{z)dm(z).
\B\ JB

Also it is easily seen that for a fixed B, aB{&) is continuous with respect to a,
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hence in particular, aB=\ aB(a)dμ°π(a) is finite. Hence, letting Hμ°π(z)~

\ Ha(z)dμ°π(a), we have
J F

\ \H"°π{z)-aB\dm{z)
JB

namely, Hμ(p) belongs to BMO(R).
Finally, because g(p, π(a))-~Ha°π~1(p) is uniformly bounded on R for every

a in F, Pμ(p)~Hμ(p) is bounded on R, hence belongs to BMO(i?). Thus we
conclude that Pμ(p) belongs to BMO(R). q. e. d.

Remark. In the case that R—U, we can show that every potential with
measure of totally finite mass belongs to BMO(i?). (See Proposition 2 in the
next section.)

Relating of Theorem 1 in § 1, we note the following

THEOREM 3. Let R be a Riemann surface of finite type and u(p)^HΌ(R).
Then u(p) belongs to BMO(i?).

Proof. Let a universal covering mapping π from U onto R be fixed and ϋ?*
be the interior of the compact bordered Riemann surface obtained from R by
filling all punctures. Take a subsurface S of R which is relatively compact in
R* and contains a neighbourhood of each puncture of R, and set D=π~1(S).
Since u{p) can be extended harmonically onto all punctures of Ry sup|w(/>)| is

finite. Also it is easily seen that there is a AT such that for every closed disk B
in U, not contained in D, with hyperbolic radius (i. e. radius with respect to the
Poincare hyperbolic metric) not greater than K, π is injective on B. Here recall
that there is an r(K) (<l/2) such that every disk B in U with center z0 and
radius (l—\zo\)-2r(K) has a hyperbolic radius not greater than K. Fix such an
r(K) once for all.

Now to prove the assertion, it suffices to find an M (cf. [4] I. D. 2) such that
for every closed disk B with center z0 and radius not greater than (1— \zo\) r(K),
it holds that

where V(z) = u°π(z). If B is contained in D, then it is clear that
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\V(z)-VB\dm(z)^2 \B\ sup\u(p)\.

If B is not contained in D, then because {w : \w— zo\<2rQ} with r o = ( l — | z o | )
r(K) is mapped univalently by π, for every Z<ΞB it holds that

3 F , ,Λ . \2

dr)

dr

O V 7ΓΓ5
dm(w))dr

----2-

πn
π

where γ1—\z— zo\ and Z)(M) is the Dirichletlntegral of u on i?. Since F β =
we conclude that

\V{z)-VB\dm(z)ύ{D{u)/πyι* \B\.

Thus we have the assertion. q. e. d.

§ 3. On functions of BMO in hyperbolic metric.

We consider the space BMO(R, λ) of functions of bounded mean oscillation
with respect to the Poincare hyperbolic metric dσ(z)—λ(z)dm(z) with λ(z)=
(1— \z\2)~2, which is defined by using dσ instead of dm in the definition of
BMO(i?). It is known ([4] lOp) that BMO(#, λ) is contained in BMO(#). On
the other hand, it seems to be unknown whether BMO(R, λ) is coincident with
BMO(#). Here we show the following partial answer.

THEOREM 4. // / belongs to BMO(i?) and is bounded outside a compact set
of R, then f belongs to BMO(#, λ).

Proof. Fix a positive number d arbitrarily. If the hyperbolic radius of a

closed disk B is less than d, then we can easily see that I - B I J M \F{z)— aB\dσ(z)
JB

is bounded by a constant depending only on / and d, where F(z)=f°π(z), \B\χ

= [ dσ and α ^ l B I - ^ f F{z)dm(z), because /e=BMO(J?) and supλ(z)/'mf λ(z) is
JB JB z<ΞB ZGB

clearly bounded by a constant depending only on d.
Next let a positive ε be arbitrarily fixed, and set
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\ \F(w)\dσ(w),

where £[>] is the disk {u; : the hyperbolic distance d(w, z)^ε}. Then from the
local integrability of F, Mε(z) is finite for every z and continuous by the Lebesgue's
convergence theorem. Clearly, Mε(z) is G-invariant (for G see § 1), and sup Mε{z)

is finite, for / is bounded outside a compact set of R. Also for every closed
disk B in U the following inequality holds;

,-~j- f I F(z) I dσ(z)^ .4 .- ( Mε(z)dσ(z),
\n\χ JB \β\λ jBε

where Bs={zt=U : d(a, z)^r+ε} if B
In fact, we have

= ^ \\ \F(W)\
J JUxTJ

\F{w)\ΊB{w)dσ(w)

where A=l/\B[_z2\x is a constant depending only on ε.
Now we take ε = d, then \Bd\χ/\B\χ is bounded by a constant C(d) depend-

ing only on d for every closed disk B in U whose hyperbolic radius is not less
than d. Hence for every such disk B it holds that (with α β =0)

\F(z)\dσ(z)^C(d) sup Md(z).
I £> I X JB ZE,U

Thus we have an M such that for every closed disk B in U there is a constant
as satisfying the condition

which implies that F(z) belongs to BMO(U, λ), hence / belongs to BMO(i?, λ).

COROLLARY 1. // R is compact, then BMO(i?) is coincident with BMO(i?, λ).

COROLLARY 2. // R admits Green's functions, then every Green's potential
Pμ{p) with measure μ having a compact support on R belongs to BMO(i?, λ).
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Proof. Since the support of μ is compact, Pμ(p) is bounded outside a com-
pact set containing the support. Hence the assertion follows from Theorem 2
and 4.

In case that R=U, we can generalize Corollary 2 as follows.

PROPOSITION 2. Let μ be a measure on U with a finite total mass, then the
Green's potential Pμ(z) on U belongs to BM0(ί7, λ).

Proof. Set F0(z)=log (1/1*1) and aB(0) = \ F0(z)dσ(z)/\B\λ for every closed
JB

disk B in U, then because F0(z) belongs to BM0(£7, λ) by Corollary 2, there is
an M such that

for every closed disk B in U.

Next set Tw(z)={z-w)/(l-ϊϋz), Fw(z)=-F0°Tw(z) and αB(w) = [ Fw(z)dσ{z)/\B\λ

JB

w ) , then it is clear that αB{w) is continuous and bounded for every

given B. So αB—\ αB(w)dμ(w) is finite and we have

Fo(z)-αTw(B)(0)\dσ(z))dμ(w)

which implies that pr(z) belongs to BM0(ί7, λ).
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