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A SUBHARMONIC FUNCTION RELATED TO

THEOREMS OF BARRY

BY HIDEHARU UEDA

Introduction. Let u(z) be a nonconstant subharmonic function in the finite
plane and write

m*(r, u)= inf u(z), M{r, w)= max u(z).
\z\=r \z\=r

The order and lower order of u(z), p{u) and μ(u) respectively, are by definition

, , v logM(r, u) / N r < logM(r, u)
p{u)=\\m sup——, — , n{u)—\\m inf : .
r v r-̂ oo H l o g r ' ^ r-oβ logr

If £ is a Lebesgue measurable set on the positive real axis, we use the notation
Er=Er\[ly r ] , and define the upper logarithmic and lower logarithmic densities,
respectively, of E by

log dens £ = l i m sup- \ t~λdt,
r->oo κ l o g r jEr

1 f
log dens £ = h m inf- \ t~λdt .

r-oo log r JEr

Kjellberg [5] proved that, if 0<μ{u)<l,

,. w*(r, u)

Barry showed that, if 0^

(1) log dens{r 7n*(r, w)>cos πaM(r, u)}^l—p(u)/a,

and that, if 0^μ(u)<a<l,

(2) log dens{r; m*(r, w)>cos πaM(r, u)}>,l—μ{u)/a.

(For (1) see [1]; for (2) see [2]). The above estimates (1) and (2) are both
sharp in the sense that the sign ^ cannot be replaced by >. In fact, the fol-
lowing result was proved by Hayman [3].
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THEOREM A. Given any numbers ρy a such that 0<p<a<l, there exists a
subharmonic function u(z) in 'the finite plane satisfying the following conditions:

( i )

(ii) log dens E=\og dens £ — 1—pi a, where E is defined by

(3) E={r; m*(r, u)>cos πaM(r, u)} .

In § 1, we show that the relation (1) ((2)) is the only essential restriction

imposed on log dens E(log dens E)f where E is the set defined by (3).

THEOREM 1. Given any numbers p, α, γ such that 0<p<a<l and Q^ϊSl
there exists a subharmonic function u(z) in the finite plane satisfying the following
conditions:

( i ) p(u)

(ii) log dens £=log dens E~l—γp/a, where E is defined by (3).

Since Hayman has given examples for y—1, we may consider the cases 0 ^
γ<l. In § 1, we suppose γ>0. The remaining case —^=0— is handled by
minor technical variations of our arguments, and we will omit the proof.

In [6], we showed the following result complementing Theorem A.

THEOREM B. Given any numbers μ, p, a such that 0^μ<p<a<l, there
exists a subharmonic function u(z) in the finite plane satisfying the following
conditions:

( i ) p(u)=ρ,

(ii) μ(u)=μ,

(iii) log dens E — l~p/a ,

(iv) log dens E — l~μ/a,

where E is the set defined by (3).

Now, it is natural to ask whether only the relations (1) and (2) are essential

restrictions imposed on log dens E and log dens E. I do not know the answer.

In § 2, we give examples in this direction.

THEOREM 2. Let μ, p, ay β be any numbers such that 0<μ<p<a<l and β
>a. If /3rgl, let λ be a number satisfying
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9 "Λ< β(ρ-μ)+(«-
μ μ(a—μ)

If β>l, let λ be a number satisfying

μ(a—μ)

Then there exists a subharmonic function u(z) in the finite plane satisfying the
following conditions:

( i ) p(u) = p,

( i i )

(iii) log dens E=l—μ/β ,

(iv) log dens E = 1-λμ/β ,

where E is defined by (3).

§ 1. Proof of Theorem 1.

1. Let {am}°S be a decreasing sequence tending to a such that ao<l, and set

(l.i) βm=*mpa-r)/(<χn-rp) (w=o, 1,2, •••).

Define a sequence {rm}™ by

(1.2) r o = l , ^ Ξ r m + 1 / r m = 4 + m (m^O).

Further let r'm be the number satisfying

(1.3) ( I ) - = ( J J ±i.Y' ( m = 0 , l , 2 , . . . ) .

Then, since γp<ρ<a<am, we deduce from (1.2) and (1.3) that

rm<rf

m<rmΛ1 (m=0, 1, 2, •••).

Now, we put v(t) as follows:

v ( r J = r S l (m=0, 1, 2, •••),

It is easy to see from (1.1)—(1.4) that v(ί) ( ί^ l ) is a continuous increasing function.

LEMMA 1. v(t) has order and lower order equal to p.

Proof. Assume that rm^t<rm+1. From (1.4) and (1.2) we have



A SUBHARMONIC FUNCTION 387

^-)fW(4+m)'
I'

and

By (1.2), we have for ra^l

rm=(3+m)(2+m) ••• 4^m ! ^ Π r a + l ^ V ^ m + l Γ + ^ V 7 7 1 - 1 (w -> oo),

so that

rm^(m/e)m (m: large enough).

Hence, for all sufficiently large t

This proves Lemma 1.

2. Put

(2.1) Kn

In view of (1.2), (1.3) and (2.1), we have r'm/Km>Kmrm and rm+1/Km>Kmr'm
(m^m0). Now, we define Fi and F2 as follows:

(2.2) F,= 0 [ # Λ , r y # m ] , F,= 0 lKnr'm, rm + 1/iΓm] .

Then we have the following

LEMMA 2. log dens F1=γp/a, log dens F2=l—γp/a.
Proof. Let i? be a large positive number and let mi be the integer such

that rnJKn^RKr'm^/K^+L Suppose first that rf

mJKmi^R<Kmi+1rmi+l

(m^m 0 ) . Then we have from (2.2), (1.2) and (1.3) that

r dt___ ψ rrmικndt

J(F1)R t m=mojKmrm t

= Σ {log(-^)-2 1ogtfJ= Σ {ΪJ>- log K'n-2 log Km\.

In view of (2.2)

(2.3) log Km=o(log K'n) (772->oo).

Also α:m I α(ra —> oo). Hence given ε>0, we can choose N=N(ε), so that for
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rp_l0

a

r « 1 + 1 f
'g ~ s* \
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at

mi

Σ log 1̂ 4 = ( ) g
rN

Since R^[r'mJKmv KΊϊll+1rmi+1~], we have

(0 A) (ϊp/a)(lθg Γmi + i —lOg Γmp) 1 Γ dt_

lOg Γmj —lOg Kmi lOg i? J (fΊ)Λ t

By (1.2), (1.3)

(2.5) log K'm = o(\og rm) (m -> o o ) .

Using (2.3) and (2.5), we deduce from (2.4) that

(2.6) r _ £ ( 1 + e ) > _ ϋ _ f ^ > l & ( i _ ε ) 2
α: log /c J(F1)Λ t a

for all sufficiently large i ? e U [ r m // ί m , Km+1rm+1'] .
771^7710

Next suppose that Kvll+1rvll+1SR<rf

mi+i/Kmi+1(7n1'^??i0). In this case

~ - Σ
Since R<rf

mί+i/Kmi+1, we have

_i_ f dΛ
ogR )(F1)R t

(rp/a)\og(rmi+i/rmo) + \og R—log

log R J (-FΊ)Λ ί log

log R log r^1 + 1—log Kmi+1 '

On the other hand, since R>Kmi+1rmi+1

1_ f ^ . (7p/ά)(l — έ) log (rmi+i/rN) +log (R/Kmi+irmi+i)

log R J(Fj)Λ ί log i?

_ logfi—log/iCmi+i— {1 —(1 —εX7Ίo/«)} log rmi+i—(1 —ε)(r/o/α) log r ^

log i?

_J^i±ί ( m i -> oo).
log Λ m i + i rmi+i

Thus for all sufficiently large /?<= U [/fm+^m+i, r m 4 1 / / ί m + 1 ]

3.7) I£(i_β ).< i f Λ<I
α log/? J(ίΊ)Λ ί α
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Combining (2.6) and (2.7), we have
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if
g R J(a log R J(ίΊ)Λ t a

for all sufficiently large R. Hence

ϊp~r ^ ( l - ε ) 2 < log dens F^ log dens F^ ϊp~ + ε .
α α

Since ε is an arbitrary positive number, we deduce that

log dens Fλ — γp/a.

The proof of log dens F2=l—γp/a is quite similar to the above one.

3. Define y(ί)(ίΞ>0) by (1.4). It follows from Lemma 1 that

l t

Hence

(3.1) u(z)
Jo 1+

is subharmonic in the finite plane (See [4, Theorems 4.1 and 4.2].). Clearly

(3.2) M(r,u)=

By Lemma 1 and (3.2), p(u) = μ(u)=p.

LEMMA 3. Suppose that z=reίθ, Then if u(z) is defined by (3.1), we have
the following estimates.

(3.3) u{z)
S1I1M

cos amθ
K'm

where β= lim βn=otp(l—r)/(a—rp).
771—>oo

Pra?/. We prove only (3.3). By (3.1)



390 HIDEHARU UEDA

t(t+z)
dt

(3.5)

For t^rm, we have \z/(t+z)\^r/(r-rm)^Km/(Km-l)^2, so that

»(0

-

(3.6)

t

^ 2 log ^ _ !

,.! ί

'm-ύr<L Σ
0

r) dog ϋf^_χ) < - /
9

r) (log K'm^) .

Assume next that rm^tt^r'm. Then, we have v(t)—rp

w;
amtam. Hence from Lemma

1 in [3] we have for \θ\<π

(3.7)
πvir)

cos amθ
\ ίY Ka

Finally for ter'm, \(t+z)/t\^(r'm-r)/r'm^l-l/Km^l/2, so that

Since v(t)/ta° decreases for all t, we deduce that

v(r)t ° 1

Hence

(3.8) |/,(z) |<

Combining (3.5)—(3.8), we obtain (3.3) for | 0 | < τ r .

Now, we consider the case | 0 | = 7 r . Since log

function of θ in (0, π), and since log

re*1 + — - — is a decreasing
TβLυ / 7̂  \

H ^login—) (fi<θ<π) with
t \ t /

\ logίlH—)dv(t)<oo, the monotone convergence theorem shows that lim u{re%θ)
JO \ t / ^->π-

= lim u(reίθ) = u(—r). Hence (3.3) is valid also for | 0 | = τ r .
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Assume now that Kmrm^r^rr

m/KΊϊl{m>1mQ). We deduce from Lemma 3 that

M(r, M)={-7Π:

and that

x, s r π cos
m*(r, w)= I — r

sinπ«

I—a
Here we choose αm=αH ^—(l+log+ log+ m)'1. Then

m*(r, u) ^ ] nf 1 , 1 \ /logr
C0S 7 Γ α + ° V + W + °A/(r,

^ θ ( ) () πa .

Hence for all sufficiently large

(3.9) m*(r, w)<cos τr«: M(r, w).

Next assume that Kmr;

m^r^rm+1/Km(m^m0). By (1.1) and the definition
of β, am-a=O(β-βm)(τn-> oo). Hence

m*(r, z/) / 1 1_ \ / log r \
M(r, M) = C 0 S 7 Γ ^ U V l o g m + (log m)2 ( 1~^^ / ^V v(r) /

^cos πβm-o(am-a)^cos πβm-o(β-βm)>cos πβ .

Thus for all sufficiently large

(3.10) m*(r, u)>cos πβM(r, u)>cos πpM{r, w)>cos πaM(r, u).

4. Define E by (3). Then by (3.9) and (3.10)

F 2 π[i? 0 , o o ) c £ C [ l , co)\i?iΠC^o, oo)

for a large positive constant Ro. Hence

log dens F2 ̂  log dens E ̂  log dens E^l—log dens Fλ.

From this and Lemma 2 we deduce that log dens E — l—γp/a. This completes
the proof of Theorem 1.

§ 2. Proof of Theorem 2.

5. Put
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and

(5.2) ί = J τΞf
The choice of β and λ implies a<γ<l and 0^δ<μ. Define two sequences
{ r j ; K J ? as follows:

(5.3) r o = l , n = 3 , r m + 1 = r i ί ^ ) / ( ^ - ^ (m=l, 2,

(5.4) r'm=r<i-W-P» (w=l, 2, •••).

It is easy to see that r m < r ^ < r m + i (m=l, 2, •••).
Now, we define v(ί) so that

ί (0 ( ^ ) , ( m ) = r £ (m=0, 1,2,
(5.5)

We deduce from (5.1)—(5.5) that v(t)(t^l) is a continuous increasing function.

L E M M A 4. v{t) has order p and lower order μ.
Proof. We note that v(rm)=r^ and i>(r'm)=(r'm)p(m = l, 2, •••). Hence it

suffices to show that tμ^v(t)^tp(rm^t<rm+i; m = l , 2, •••). Assume first that
rm^t^r'm. From (5.5) we have v(t)/tr=(t/rnγ-μ^l. On the other hand, we deduce
from (5.5), (5.4) and (5.1) that ^t)/tP=r^-ψ-p^rξrΨm)7'p^rξrr+'β-μHr'p)/β-μλ

=r°m = l. Assume next that r'm^t<rm+1. By (5.5) v(t)/tμ=(rm+1/t)μ-δ^l, and
from (5.2)—(5.5) we have

6. We set K'm=rm+i/rn(m=l, 2, •••) and define

(6.1) Km=(\og K'J*'".

In view of (5.3), (5.4) and (β.l), we have r'm/Km>Kmrm and rm+1/Km>Kmr'm
(m^mQ). Define two sets Fi and F2 by (2.2). Then the same reasoning as in
the proof of Lemma 2 gives the following.

LEMMA 5. log dens Fj = μ/β, log dens Fλ = λμ/β, log dens F 2 = 1—λμ/β,

log dens F2—l — μ/β.

7. Define v(t) by (5.5). Then from Lemma 4 we deduce that

(7.1) u ^

is subharmonic in the finite plane. Clearly
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(7.2) M(r, u)=

Here we prove the following

LEMMA 6. p(u)=p, μ{u)—μ.

Proof. As noted in the proof of Lemma 4, tμ^v(t)^tp(ΐ^l). From this
and (7.2) it is easy to see that μ^μ(u)^p(u)^p. We proceed to show that

p(u)^p. For this purpose, note that N(r)=\ v(t)t~1dί has the same order as

v(r), and so by Lemma 4 it has order p. Further by the subharmonic from of
Jensen's Theorem

M(r, u)^4~[* u(reiθ)dθ=N(r).
Zπ J-π

Thus we have p(u)^p. It remains to prove that μ(u)^μ. By (7.2)

(7.3) M(rmfu)=rJ\rm+\n)7^r^dt=J1+J29 say.
\Jl Jrm/ t{t + r)

Clearly

Computing as in (3.6), we have

(7.4) / ^ ~r& log Kf

m^= ^ r ~ ^ r ί log rm .

Since v(t)/tr decreases for all t, we have

(7.5)

v(rm)

l-γ - l-γ '

Combining (7.3)—(7.5), we obtain

M(rm, u)^O(rfm log rm) (m —> oo).

Hence

/ \^i £ log M(rm, u) ̂
u(u)^hm inf -b—^-^'—-'-<Lu .

logrm

8. We first suppose that λ>p/μ. By (5.2) o>0. In this case the same
arguments as in the proof of Lemma 3 give
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(8.1)

and

(8.2)

HIDEHARU UEDA

sinπd

Since a<γ<l, we deduce from (8.1) that

(8.3) m*(r, u)<cos πaM{ry u)

Similarly, by (8.2) and the fact that 0<<5<α

(8.4) m*(r, w)>cos πaM(r, u)

From (8.3) and (8.4) it follows that

F2ΓΛZR0, o o ) c £ C [ l , oo^FiΠC^o,

for a large positive constant Ro. Hence

(8.5)

and

(8.6)

log dens F2 ̂  log dens £ g 1—log dens Fx

log dens F2 ̂  log dens E ̂  1-log dens F1

Combining (8.5), (8.6) with Lemma 5, we have

log dens E = l—λμ/β , log dens E = l-μ/β .

Next, we suppose that λ—plμ. It is easy to see that (8.1) remains truejin
this case. We estimate u{reίd) for Kmrf

m^r^rm+i/Km (m^m0). We write

(8.7)

For
say.

Hence by (7.4)

(8 8) I Liz) I log r = J?W^l)£(£zML
iogrm μ{βμγχ* log rΉ
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Next,

(8.9)
jrm y

Since v(t)/tr is a decreasing function, we have

S.10)

Finally, for | arg z \ < π

Hence

(8.11) h(z) — r%ι+1 log—- log - : -^-™ Γ ^
1—Λm

C o m b i n i n g (8.7)—(8.11) w e d e d u c e t h a t for | 0 | < J Γ

u{reiβ)-( log-Ar^
\ Trrt. '

(8.12)

However as noted in 4, Urn u(reiθ)= lim u(reίθ)=u(—r), so that (8.12) holds
θ-π- θ~>-π +

also for \θ\=π.

Since a<γ<l, we obtain from (8.1) that

(8.13) m*(r, u)<cosπaM(r, u) (r<=Fu r ^

On the other hand, (8.12) gives

(8.14) ?ft*(r, u)>co$πaM(r, u) (r^F2, r ^

Combining (8.13), (8.14) with Lemma 5, we have

log dens E = l—λμ/β , log dens E = l—μ/β .

This completes the proof of Theorem 2.
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