H. UEDA KODAI MATH. J. 6 (1983), 384–396

A SUBHARMONIC FUNCTION RELATED TO THEOREMS OF BARRY

By Hideharu Ueda

Introduction. Let u(z) be a nonconstant subharmonic function in the finite plane and write

$$m^*(r, u) = \inf_{|z|=r} u(z), \qquad M(r, u) = \max_{|z|=r} u(z).$$

The order and lower order of u(z), $\rho(u)$ and $\mu(u)$ respectively, are by definition

$$\rho(u) = \lim_{r \to \infty} \sup \frac{\log M(r, u)}{\log r}, \quad \mu(u) = \liminf_{r \to \infty} \frac{\log M(r, u)}{\log r}.$$

If E is a Lebesgue measurable set on the positive real axis, we use the notation $E_r = E \cap [1, r]$, and define the upper logarithmic and lower logarithmic densities, respectively, of E by

$$\frac{\log \text{ dens } E = \limsup_{r \to \infty} \frac{1}{\log r} \int_{E_r} t^{-1} dt ,$$

$$\frac{\log \text{ dens } E = \liminf_{r \to \infty} \frac{1}{\log r} \int_{E_r} t^{-1} dt .$$

Kjellberg [5] proved that, if $0 < \mu(u) < 1$,

$$\limsup_{r\to\infty}\frac{m^*(r, u)}{M(r, u)} \ge \cos \pi \mu(u) .$$

Barry showed that, if $0 \leq \rho(u) < \alpha < 1$,

(1)
$$\log \operatorname{dens} \{r; m^*(r, u) > \cos \pi \alpha M(r, u)\} \geq 1 - \rho(u)/\alpha,$$

and that, if $0 \leq \mu(u) < \alpha < 1$,

(2)
$$\overline{\log \operatorname{dens}} \{r; m^*(r, u) > \cos \pi \alpha M(r, u)\} \ge 1 - \mu(u) / \alpha.$$

(For (1) see [1]; for (2) see [2]). The above estimates (1) and (2) are both sharp in the sense that the sign \geq cannot be replaced by >. In fact, the following result was proved by Hayman [3].

Received January 25, 1983

THEOREM A. Given any numbers ρ , α such that $0 < \rho < \alpha < 1$, there exists a subharmonic function u(z) in the finite plane satisfying the following conditions:

(i)
$$\rho(u) = \mu(u) = \rho$$
,

(ii) log dens $E = \overline{\log dens} E = 1 - \rho/\alpha$, where E is defined by

(3)
$$E = \{r; m^*(r, u) > \cos \pi \alpha M(r, u)\}$$

In § 1, we show that the relation (1) ((2)) is the only essential restriction imposed on log dens $E(\overline{\log \text{ dens }} E)$, where E is the set defined by (3).

THEOREM 1. Given any numbers ρ , α , γ such that $0 < \rho < \alpha < 1$ and $0 \le \gamma \le 1$ there exists a subharmonic function u(z) in the finite plane satisfying the following conditions:

- (i) $\rho(u) = \mu(u) = \rho$,
- (ii) log dens $E = \overline{\log \text{ dens }} E = 1 \gamma \rho / \alpha$, where E is defined by (3).

Since Hayman has given examples for $\gamma = 1$, we may consider the cases $0 \leq \gamma < 1$. In §1, we suppose $\gamma > 0$. The remaining case $-\gamma = 0$ is handled by minor technical variations of our arguments, and we will omit the proof.

In [6], we showed the following result complementing Theorem A.

THEOREM B. Given any numbers μ , ρ , α such that $0 \leq \mu < \rho < \alpha < 1$, there exists a subharmonic function u(z) in the finite plane satisfying the following conditions:

- (i) $\rho(u) = \rho$,
- (ii) $\mu(u) = \mu$,
- (iii) log dens $E = 1 \rho / \alpha$,
- (iv) $\overline{\log \text{ dens}} E = 1 \mu/\alpha$,

where E is the set defined by (3).

Now, it is natural to ask whether only the relations (1) and (2) are essential restrictions imposed on log dens E and log dens E. I do not know the answer. In §2, we give examples in this direction.

THEOREM 2. Let μ , ρ , α , β be any numbers such that $0 < \mu < \rho < \alpha < 1$ and $\beta > \alpha$. If $\beta \leq 1$, let λ be a number satisfying

$$\frac{\rho}{\mu} \leq \lambda < \frac{\beta(\rho - \mu) + (\alpha - \rho)\mu}{\mu(\alpha - \mu)},$$

If $\beta > 1$, let λ be a number satisfying

$$\frac{\beta(\rho-\mu)\!+\!(1\!-\!\rho)\mu}{\mu(1\!-\!\mu)}\!<\!\lambda\!<\!\frac{\beta(\rho\!-\!\mu)\!+\!(\alpha\!-\!\rho)\mu}{\mu(\alpha\!-\!\mu)}.$$

Then there exists a subharmonic function u(z) in the finite plane satisfying the following conditions:

- (i) $\rho(u) = \rho$,
- (ii) $\mu(u) = \mu$,
- (iii) $\overline{\log \text{ dens}} E = 1 \mu/\beta$,
- (iv) log dens $E = 1 \lambda \mu / \beta$,

where E is defined by (3).

§1. Proof of Theorem 1.

1. Let $\{\alpha_m\}_0^\infty$ be a decreasing sequence tending to α such that $\alpha_0 < 1$, and set

(1.1)
$$\beta_m = \alpha_m \rho (1-\gamma)/(\alpha_m - \gamma \rho) \quad (m=0, 1, 2, \cdots) .$$

Define a sequence $\{r_m\}_{0}^{\infty}$ by

(1.2)
$$r_0 = 1$$
, $K_m \equiv r_{m+1}/r_m = 4 + m \quad (m \ge 0)$.

Further let r'_m be the number satisfying

(1.3)
$$\left(\frac{r'_m}{r_m}\right)^{\alpha_m} = \left(\frac{r_{m+1}}{r_m}\right)^{r_{\rho}} (m=0, 1, 2, \cdots).$$

Then, since $\gamma \rho < \rho < \alpha < \alpha_m$, we deduce from (1.2) and (1.3) that

$$r_m < r'_m < r_{m+1}$$
 (m=0, 1, 2, …).

Now, we put $\nu(t)$ as follows:

(1.4)
$$\begin{cases} \nu(t) = 0 \quad (0 \leq t < 1), \quad \nu(r_m) = r_m^{\rho} \quad (m = 0, 1, 2, \cdots), \\ \nu(t)/t^{\alpha_m} = r_m^{\rho - \alpha_m} \quad (r_m < t \leq r'_m), \quad \nu(t)/t^{\beta_m} = r_{m+1}^{\rho - \beta_m} \quad (r'_m < t < r_{m+1}) \end{cases}$$

It is easy to see from (1.1)–(1.4) that $\nu(t)$ ($t \ge 1$) is a continuous increasing function.

LEMMA 1. $\nu(t)$ has order and lower order equal to ρ .

Proof. Assume that $r_m \leq t < r_{m+1}$. From (1.4) and (1.2) we have

$$\nu(t) \leq r_{m+1}^{\rho} \leq t^{\rho} \left(\frac{r_{m+1}}{r_m}\right)^{\rho} = t^{\rho} (4+m)^{\rho}$$

and

$$\nu(t) \ge r_m^{\rho} \ge t^{\rho} \left(\frac{r_m}{r_{m+1}}\right)^{\rho} \ge t^{\rho} (4+m)^{-\rho} .$$

By (1.2), we have for $m \ge 1$

$$r_m = (3+m)(2+m) \cdots 4 \ge m! = \Gamma(m+1) \sim \sqrt{2\pi} (m+1)^{m+1/2} e^{-m-1} \quad (m \to \infty),$$

so that

$$r_m \ge (m/e)^m$$
 (m: large enough).

Hence, for all sufficiently large t

$$t^{\rho}(4+\log t)^{-\rho} < \nu(t) < t^{\rho}(4+\log t)^{\rho}$$
.

This proves Lemma 1.

2. Put

(2.1)
$$K_m = (\log K'_m)^{2/\rho}$$
.

In view of (1.2), (1.3) and (2.1), we have $r'_m/K_m > K_m r_m$ and $r_{m+1}/K_m > K_m r'_m$ $(m \ge m_0)$. Now, we define F_1 and F_2 as follows:

(2.2)
$$F_1 = \bigcup_{m=m_0}^{\infty} [K_m r_m, r'_m / K_m], \quad F_2 = \bigcup_{m=m_0}^{\infty} [K_m r'_m, r_{m+1} / K_m].$$

Then we have the following

LEMMA 2. log dens $F_1 = \gamma \rho / \alpha$, log dens $F_2 = 1 - \gamma \rho / \alpha$.

Proof. Let R be a large positive number and let m_1 be the integer such that $r'_{m_1}/K_{m_1} \leq R < r'_{m_1+1}/K_{m_1+1}$. Suppose first that $r'_{m_1}/K_{m_1} \leq R < K_{m_1+1}r_{m_1+1}$ $(m_1 \geq m_0)$. Then we have from (2.2), (1.2) and (1.3) that

$$\int_{(F_1)_R} \frac{dt}{t} = \sum_{m=m_0}^{m_1} \int_{K_m r_m}^{r'_m/K_m} \frac{dt}{t}$$
$$= \sum_{m=m_0}^{m_1} \left\{ \log\left(\frac{r'_m}{r_m}\right) - 2 \log K_m \right\} = \sum_{m=m_0}^{m_1} \left\{ \frac{\gamma \rho}{\alpha_m} \log K'_m - 2 \log K_m \right\}.$$

In view of (2.2)

(2.3)
$$\log K_m = o(\log K'_m) \quad (m \to \infty).$$

Also $\alpha_m \downarrow \alpha(m \to \infty)$. Hence given $\varepsilon > 0$, we can choose $N = N(\varepsilon)$, so that for $m_1 \ge N$

$$\frac{\gamma \rho}{\alpha} \log \frac{r_{m_1+1}}{r_{m_0}} > \int_{(F_1)_R} \frac{dt}{t}$$
$$> \frac{\gamma \rho}{\alpha} (1-\varepsilon) \sum_{m=N}^{m_1} \log K'_m = \frac{\gamma \rho}{\alpha} (1-\varepsilon) \log \frac{r_{m_1+1}}{r_N}.$$

Since $R \in [r'_{m_1}/K_{m_1}, K_{m_1+1}r_{m_1+1}]$, we have

(2.4)
$$\frac{(\gamma \rho / \alpha)(\log r_{m_{1}+1} - \log r_{m_{0}})}{\log r'_{m_{1}} - \log K_{m_{1}}} > \frac{1}{\log R} \int_{(F_{1})_{R}} \frac{dt}{t} > \frac{(\gamma \rho / \alpha)(1 - \varepsilon)(\log r_{m_{1}+1} - \log r_{N})}{\log K_{m_{1}+1} + \log r_{m_{1}+1}}$$

By (1.2), (1.3)

(2.5)
$$\log K'_m = o(\log r_m) \quad (m \to \infty).$$

Using (2.3) and (2.5), we deduce from (2.4) that

(2.6)
$$\frac{\gamma\rho}{\alpha}(1+\varepsilon) > \frac{1}{\log R} \int_{(F_1)_R} \frac{dt}{t} > \frac{\gamma\rho}{\alpha}(1-\varepsilon)^2$$

for all sufficiently large $R \in \bigcup_{m \ge m_0} [r'_m/K_m, K_{m+1}r_{m+1}]$.

Next suppose that $K_{m_1+1}r_{m_1+1} \le R < r'_{m_1+1}/K_{m_1+1}(m_1 \ge m_0)$. In this case

$$\int_{(F_1)_R} \frac{dt}{t} = \sum_{m=m_0}^{m_1} \left\{ \frac{\gamma \rho}{\alpha_m} \log K'_m - 2 \log K_m \right\} + \log \frac{R}{K_{m_1 + 1} r_{m_1 + 1}}$$

Since $R < r'_{m_1+1}/K_{m_1+1}$, we have

$$\frac{1}{\log R} \int_{(F_1)_R} \frac{dt}{t} < \frac{(\gamma \rho / \alpha) \log (r_{m_1+1} / r_{m_0}) + \log R - \log r_{m_1+1}}{\log R} < 1 - \frac{(1 - \gamma \rho / \alpha) \log r_{m_1+1}}{\log R} < 1 - \frac{(1 - \gamma \rho / \alpha) \log r_{m_1+1}}{\log r'_{m_1+1} - \log K_{m_1+1}}$$

On the other hand, since $R > K_{m_1+1}r_{m_1+1}$

$$\frac{1}{\log R} \int_{(F_1)_R} \frac{dt}{t} > \frac{(\gamma \rho / \alpha)(1 - \varepsilon) \log (r_{m_1 + 1} / r_N) + \log (R / K_{m_1 + 1} r_{m_1 + 1})}{\log R}$$

= $\frac{\log R - \log K_{m_1 + 1} - \{1 - (1 - \varepsilon)(\gamma \rho / \alpha)\} \log r_{m_1 + 1} - (1 - \varepsilon)(\gamma \rho / \alpha) \log r_N}{\log R}$

> 1-o(1) - {1-(1-\varepsilon)\gamma \rho/\alpha}
$$\frac{\log r_{m_{1}+1}}{\log K_{m_{1}+1} r_{m_{1}+1}} \quad (m_{1} \to \infty).$$

Thus for all sufficiently large $R \in \bigcup_{m \ge m_0} [K_{m+1}r_{m+1}, r_{m+1}/K_{m+1}]$

(2.7)
$$\frac{\gamma\rho}{\alpha}(1-\varepsilon)^2 < \frac{1}{\log R} \int_{(F_1)_R} \frac{dt}{t} < \frac{\gamma\rho}{\alpha} + \varepsilon(1-\gamma\rho/\alpha).$$

Combining (2.6) and (2.7), we have

$$\frac{\gamma\rho}{\alpha}(1\!-\!\varepsilon)^2 \!<\! \frac{1}{\log R} \!\int_{(F_1)_R} \! \frac{dt}{t} \!<\! \frac{\gamma\rho}{\alpha} \!+\! \varepsilon$$

for all sufficiently large R. Hence

$$\frac{\gamma\rho}{\alpha}(1-\varepsilon)^2 \leq \underline{\log \text{ dens}} F_1 \leq \overline{\log \text{ dens}} F_1 \leq \frac{\gamma\rho}{\alpha} + \varepsilon$$

Since ε is an arbitrary positive number, we deduce that

log dens
$$F_1 = \gamma \rho / \alpha$$
 .

The proof of log dens $F_2 = 1 - \gamma \rho / \alpha$ is quite similar to the above one.

3. Define $\nu(t)(t \ge 0)$ by (1.4). It follows from Lemma 1 that

$$\int_{1}^{\infty} \frac{d\nu(t)}{t} = -1 + \int_{1}^{\infty} \frac{\nu(t)}{t^2} dt < \infty .$$

Hence

(3.1)
$$u(z) \equiv \int_0^\infty \log \left| 1 + \frac{z}{t} \right| d\nu(t) = \operatorname{Re}\left\{ \int_1^\infty \frac{z\nu(t)}{t(t+z)} dt \right\}$$

is subharmonic in the finite plane (See [4, Theorems 4.1 and 4.2].). Clearly

(3.2)
$$M(r, u) = r \int_{1}^{\infty} \frac{\nu(t)}{t(t+r)} dt .$$

By Lemma 1 and (3.2), $\rho(u) = \mu(u) = \rho$.

LEMMA 3. Suppose that $z=re^{i\theta}$, Then if u(z) is defined by (3.1), we have the following estimates.

(3.3)
$$\left| u(z) - \frac{\pi \nu(r)}{\sin \pi \alpha_m} \cos \alpha_m \theta \right| < O\left(\left(\frac{\log K'_m}{K_m^{\rho}} + \frac{1}{K_m^{1-\alpha_0}} \right) \nu(r) \right) \\ (K_m r_m \le r \le r'_m / K_m),$$
(3.4)
$$\left| u(z) - \frac{\pi \nu(r)}{\sin \pi \beta_m} \cos \beta_m \theta \right| < O\left(\left(\frac{\log K'_m}{K_m^{\rho}} + \frac{1}{K_m^{1-\beta}} \right) \nu(r) \right)$$

 $(K_m r'_m \leq r \leq r_{m+1}/K_m)$,

where $\beta = \lim_{m \to \infty} \beta_m = \alpha \rho (1 - \gamma) / (\alpha - \gamma \rho).$

Proof. We prove only (3.3). By (3.1)

(3.5)
$$u(z) = \operatorname{Re}\left\{z\int_{1}^{\infty} \frac{\nu(t)}{t(t+z)} dt\right\} = \operatorname{Re}\left\{z\int_{1}^{r_{m}} \frac{\nu(t)}{t(t+z)} dt\right\} + \operatorname{Re}\left\{z\int_{r_{m}}^{r_{m'}} \frac{\nu(t)}{t(t+z)} dt\right\} = I_{1} + I_{2} + I_{3}, \quad \text{say} .$$

For $t \leq r_m$, we have $|z/(t+z)| \leq r/(r-r_m) \leq K_m/(K_m-1) \leq 2$, so that

$$|I_{1}(z)| \leq 2 \int_{1}^{r_{m}} \frac{\nu(t)}{t} dt = 2 \sum_{\mu=1}^{m} \int_{r_{\mu-1}}^{r_{\mu}} \frac{\nu(t)}{t} dt \leq 2 \sum_{\mu=1}^{m} \nu(r_{\mu}) \log K'_{\mu-1}$$

$$\leq 2 \log K'_{m-1} \sum_{\mu=1}^{m} r_{\mu}^{\rho} \leq 2 (\log K'_{m-1}) r_{m}^{\rho} \sum_{\mu=0}^{\infty} 4^{-\mu\rho} = 2r_{m}^{\rho} (\log K'_{m-1}) \frac{1}{1 - 4^{-\rho}}$$

$$< \frac{8}{\rho} r_{m}^{\rho} (\log K'_{m-1}) = \frac{8}{\rho} (r_{m}/r)^{\alpha m} \nu(r) (\log K'_{m-1})$$

$$\leq \frac{8}{\rho} K_{m}^{-\alpha m} \nu(r) (\log K'_{m-1}) < \frac{8}{\rho} K_{m}^{-\rho} \nu(r) (\log K'_{m-1}) .$$

Assume next that $r_m \leq t \leq r'_m$. Then, we have $\nu(t) = r_m^{\rho-\alpha_m} t^{\alpha_m}$. Hence from Lemma 1 in [3] we have for $|\theta| < \pi$

(3.7)
$$\left|I_{2}(z)-\frac{\pi\nu(r)}{\sin\pi\alpha_{m}}\cos\alpha_{m}\theta\right| < \left\{\frac{2}{\alpha_{m}K_{m}^{\alpha_{m}}}+\frac{2}{(1-\alpha_{m})K_{m}^{1-\alpha_{m}}}\right\}\nu(r) .$$

Finally for $t \ge r'_m$, $|(t+z)/t| \ge (r'_m - r)/r'_m \ge 1 - 1/K_m \ge 1/2$, so that

$$|I_{3}(z)| < 2r \int_{r'_{m}}^{\infty} \nu(t)/t^{2} dt$$
 .

Since $\nu(t)/t^{\alpha_0}$ decreases for all t, we deduce that

$$\int_{r'_m}^{\infty} \frac{\nu(t)}{t^2} dt \leq \int_{r'_m}^{\infty} \frac{\nu(r)t^{\alpha_0}}{r^{\alpha_0}} \frac{1}{t^2} dt = \frac{\nu(r)}{r^{\alpha_0}(1-\alpha_0)(r'_m)^{1-\alpha_0}}.$$

Hence

(3.8)
$$|I_{3}(z)| \leq \frac{2\nu(r)}{1-\alpha_{0}} \left(\frac{r}{r'_{m}}\right)^{1-\alpha_{0}} \leq \frac{2K_{m}^{\alpha_{0}-1}}{1-\alpha_{0}}\nu(r) .$$

Combining (3.5)–(3.8), we obtain (3.3) for $|\theta| < \pi$.

Now, we consider the case $|\theta| = \pi$. Since $\log \left|1 + \frac{re^{i\theta}}{t}\right|$ is a decreasing function of θ in $(0, \pi)$, and since $\log \left|1 + \frac{re^{i\theta}}{t}\right| \leq \log \left(1 + \frac{r}{t}\right) (0 < \theta \leq \pi)$ with $\int_{0}^{\infty} \log \left(1 + \frac{r}{t}\right) d\nu(t) < \infty$, the monotone convergence theorem shows that $\lim_{\theta \to \pi^{-1}} u(re^{i\theta}) = \lim_{\theta \to -\pi^{+1}} u(re^{i\theta}) = u(-r)$. Hence (3.3) is valid also for $|\theta| = \pi$.

Assume now that $K_m r_m \leq r \leq r'_m / K_m (m \geq m_0)$. We deduce from Lemma 3 that

$$M(r, u) = \left\{ \frac{\pi}{\sin \pi \alpha_m} + O\left(\frac{\log K'_m}{K^{\rho}_m} + \frac{1}{K^{1-\alpha_0}_m} \right) \right\} \nu(r) ,$$

and that

$$m^{*}(r, u) = \left\{ \frac{\pi \cos \pi \alpha_{m}}{\sin \pi \alpha_{m}} - O\left(\frac{\log K'_{m}}{K^{\rho}_{m}} + \frac{1}{K^{1-\alpha_{0}}_{m}} \right) \right\} \nu(r) .$$

Here we choose $\alpha_m = \alpha + \frac{1-\alpha}{2} (1 + \log^+ \log^+ m)^{-1}$. Then

$$\frac{m^*(r, u)}{M(r, u)} \leq \cos \pi \alpha_m + O\left(\frac{1}{\log m} + \frac{1}{(\log m)^{2(1-\alpha_0)/\rho}}\right) + O\left(\frac{\log r}{\nu(r)}\right)$$
$$\leq \cos \pi \alpha_m + O\left(\frac{1}{\log m} + \frac{1}{(\log m)^{2(1-\alpha_0/\rho)}}\right) < \cos \pi \alpha_m + o(\alpha_m - \alpha) < \cos \pi \alpha .$$

Hence for all sufficiently large $r \in F_1$

(3.9)
$$m^*(r, u) < \cos \pi \alpha \ M(r, u)$$
.

Next assume that $K_m r'_m \leq r \leq r_{m+1}/K_m (m \geq m_0)$. By (1.1) and the definition of β , $\alpha_m - \alpha = O(\beta - \beta_m) (m \to \infty)$. Hence

$$\frac{m^*(r, u)}{M(r, u)} \ge \cos \pi \beta_m - O\left(\frac{1}{\log m} + \frac{1}{(\log m)^{2(1-\beta)/\rho}}\right) - O\left(\frac{\log r}{\nu(r)}\right)$$
$$\ge \cos \pi \beta_m - o(\alpha_m - \alpha) \ge \cos \pi \beta_m - o(\beta - \beta_m) > \cos \pi \beta.$$

Thus for all sufficiently large $r \in F_2$

$$(3.10) \qquad m^*(r, u) > \cos \pi \beta M(r, u) > \cos \pi \rho M(r, u) > \cos \pi \alpha M(r, u).$$

4. Define E by (3). Then by (3.9) and (3.10)

$$F_2 \cap [R_0, \infty) \subset E \subset [1, \infty) \setminus F_1 \cap [R_0, \infty)$$

for a large positive constant R_0 . Hence

log dens
$$F_2 \leq \log$$
 dens $E \leq \overline{\log \text{ dens }} E \leq 1 - \log \text{ dens } F_1$.

From this and Lemma 2 we deduce that log dens $E=1-\gamma\rho/\alpha$. This completes the proof of Theorem 1.

§2. Proof of Theorem 2.

5. Put

(5.1)
$$\gamma = \frac{(\beta - \mu\lambda)(\rho - \mu)}{(\lambda - 1)\mu} + \rho$$

and

$$\delta = \frac{\lambda \mu - \rho}{\lambda - 1}.$$

The choice of β and λ implies $\alpha < \gamma < 1$ and $0 \le \delta < \mu$. Define two sequences $\{r_m\}_{0}^{\infty}, \{r'_m\}_{1}^{\infty}$ as follows:

(5.3)
$$r_0=1, r_1=3, r_{m+1}=r_m^{\lambda(\beta-\mu)/(\beta-\mu\lambda)} \quad (m=1, 2, \cdots),$$

(5.4)
$$r'_{m} = r_{m}^{(\beta-\mu)/(\beta-\mu\lambda)} \quad (m=1, 2, \cdots).$$

It is easy to see that $r_m < r'_m < r_{m+1}$ $(m=1, 2, \dots)$. Now, we define $\nu(t)$ so that

(5.5)
$$\begin{cases} \nu(t) = 0 \quad (0 \le t < 1), \quad \nu(r_m) = r_m^{\mu} \quad (m = 0, 1, 2, \cdots), \\ \nu(t) = r_m^{\mu - \gamma} t^{\gamma} \quad (r_m \le t \le r'_m; m \ge 1), \quad \nu(t) = r_{m+1}^{\mu - \delta} t^{\delta} \quad (r'_m \le t < r_{m+1}; m \ge 1). \end{cases}$$

We deduce from (5.1)–(5.5) that $\nu(t)(t \ge 1)$ is a continuous increasing function.

LEMMA 4. $\nu(t)$ has order ρ and lower order μ .

Proof. We note that $\nu(r_m) = r_m^{\mu}$ and $\nu(r'_m) = (r'_m)^{\rho} (m = 1, 2, \cdots)$. Hence it suffices to show that $t^{\mu} \leq \nu(t) \leq t^{\rho} (r_m \leq t < r_{m+1}; m=1, 2, \cdots)$. Assume first that $r_m \leq t \leq r'_m$. From (5.5) we have $\nu(t)/t^{\mu} = (t/r_m)^{\tau-\mu} \geq 1$. On the other hand, we deduce from (5.5), (5.4) and (5.1) that $\nu(t)/t^{\rho} = r_m^{\mu-\tau}t^{\tau-\rho} \leq r_m^{\mu-\tau}(r'_m)^{\tau-\rho} = r_m^{\mu-\tau+(\beta-\mu)(\tau-\rho)/\beta-\mu\lambda} = r_m^0 = 1$. Assume next that $r'_m \leq t < r_{m+1}$. By (5.5) $\nu(t)/t^{\mu} = (r_{m+1}/t)^{\mu-\delta} \geq 1$, and from (5.2)—(5.5) we have

$$\nu(t)/t^{\varrho} \!=\! r_{m+1}^{\mu-\delta} t^{\delta-\varrho} \!\leq\! r_{m+1}^{\mu-\delta} (r'_m)^{\delta-\varrho} \!=\! r_m^{(\mu-\delta)\,\lambda\,(\beta-\mu)/(\beta-\mu\,\lambda)+(\beta-\mu)\,(\delta-\varrho)/(\beta-\mu\,\lambda)} \!=\! r_m^0 \!=\! 1 \,.$$

6. We set $K'_m = r_{m+1}/r_m$ (m=1, 2, ...) and define

(6.1)
$$K_m = (\log K'_m)^{2/\mu}$$
.

In view of (5.3), (5.4) and (6.1), we have $r'_m/K_m > K_m r_m$ and $r_{m+1}/K_m > K_m r'_m$ $(m \ge m_0)$. Define two sets F_1 and F_2 by (2.2). Then the same reasoning as in the proof of Lemma 2 gives the following.

LEMMA 5. log dens $F_1 = \mu/\beta$, log dens $F_1 = \lambda \mu/\beta$, log dens $F_2 = 1 - \lambda \mu/\beta$, log dens $F_2 = 1 - \mu/\beta$.

7. Define $\nu(t)$ by (5.5). Then from Lemma 4 we deduce that

(7.1)
$$u(z) \equiv \int_0^\infty \log\left|1 + \frac{z}{t}\right| d\nu(t) = \operatorname{Re}\left\{\int_1^\infty \frac{z\nu(t)}{t(t+z)} dt\right\}$$

is subharmonic in the finite plane. Clearly

(7.2)
$$M(r, u) = r \int_{1}^{\infty} \frac{\nu(t)}{t(t+r)} dt$$

Here we prove the following

Lemma 6. $\rho(u) = \rho$, $\mu(u) = \mu$.

Proof. As noted in the proof of Lemma 4, $t^{\mu} \leq \nu(t) \leq t^{\rho}(t \geq 1)$. From this and (7.2) it is easy to see that $\mu \leq \mu(u) \leq \rho(u) \leq \rho$. We proceed to show that $\rho(u) \geq \rho$. For this purpose, note that $N(r) = \int_{1}^{r} \nu(t)t^{-1}dt$ has the same order as $\nu(r)$, and so by Lemma 4 it has order ρ . Further by the subharmonic from of Jensen's Theorem

$$M(r, u) \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{i\theta}) d\theta = N(r) .$$

Thus we have $\rho(u) \ge \rho$. It remains to prove that $\mu(u) \le \mu$. By (7.2)

(7.3)
$$M(r_m, u) = r_m \left(\int_1^{r_m} + \int_{r_m}^{\infty} \right) \frac{\nu(t)}{t(t+r_m)} dt \equiv J_1 + J_2, \quad \text{say} .$$

Clearly

$$J_1 \leq \int_1^{r_m} \frac{\nu(t)}{t} dt \; .$$

Computing as in (3.6), we have

(7.4)
$$J_1 \leq \frac{4}{\mu} r_m^{\mu} \log K'_{m-1} = \frac{4(\lambda - 1)\beta}{\mu\lambda(\beta - \mu)} r_m^{\mu} \log r_m \,.$$

Since $\nu(t)/t^{\gamma}$ decreases for all t, we have

(7.5)
$$J_{2} \leq r_{m} \int_{r_{m}}^{\infty} \frac{\nu(t)}{t^{2}} dt \leq r_{m} \nu(r_{m}) \frac{1}{r_{m}^{\prime}} \int_{r_{m}}^{\infty} t^{\gamma-2} dt \\ = \frac{\nu(r_{m})}{1-\gamma} = -\frac{r_{m}^{\mu}}{1-\gamma}.$$

Combining (7.3)—(7.5), we obtain

$$M(r_m, u) \leq O(r_m^{\mu} \log r_m) \quad (m \to \infty).$$

Hence

$$\mu(u) \leq \liminf_{m \to \infty} \frac{\log M(r_m, u)}{\log r_m} \leq \mu.$$

8. We first suppose that $\lambda > \rho/\mu$. By (5.2) $\delta > 0$. In this case the same arguments as in the proof of Lemma 3 give

(8.1)
$$\left| u(z) - \frac{\pi \nu(r)}{\sin \pi \gamma} \cos \gamma \theta \right| < O\left(\left(\frac{\log K'_m}{K_m^{\mu}} + \frac{1}{K_m^{1-\gamma}} \right) \nu(r) \right)$$
$$(z = re^{i\theta}, \ K_m r_m \leq r \leq r'_m / K_m, \ m \geq m_0),$$

and

(8.2)
$$\left| u(z) - \frac{\pi \nu(r)}{\sin \pi \delta} \cos \delta \theta \right| < O\left(\left(\frac{\log K'_m}{K_m^{\mu}} + \frac{1}{K_m^{1-\delta}} \right) \nu(r) \right) \\ (z = re^{i\theta}, K_m r'_m \le r \le r_{m+1}/K_m, m \ge m_0).$$

Since $\alpha < \gamma < 1$, we deduce from (8.1) that

(8.3)
$$m^*(r, u) < \cos \pi \alpha M(r, u) \quad (r \in F_1, r \ge R_0).$$

Similarly, by (8.2) and the fact that $0 < \delta < \alpha$

(8.4)
$$m^*(r, u) > \cos \pi \alpha M(r, u) \quad (r \in F_2, r \ge R_0).$$

From (8.3) and (8.4) it follows that

$$F_2 \cap [R_0, \infty) \subset E \subset [1, \infty) \setminus (F_1 \cap [R_0, \infty))$$

for a large positive constant R_0 . Hence

(8.5)
$$\log \operatorname{dens} F_2 \leq \log \operatorname{dens} E \leq 1 - \overline{\log \operatorname{dens}} F_1$$
,

and

(8.6)
$$\overline{\log \text{ dens }} F_2 \leq \overline{\log \text{ dens }} E \leq 1 - \underline{\log \text{ dens }} F_1$$
.

Combining (8.5), (8.6) with Lemma 5, we have

$$\frac{\log \text{ dens}}{E} = 1 - \lambda \mu / \beta, \qquad \overline{\log \text{ dens}} E = 1 - \mu / \beta.$$

Next, we suppose that $\lambda = \rho/\mu$. It is easy to see that (8.1) remains true in this case. We estimate $u(re^{i\theta})$ for $K_m r'_m \leq r \leq r_{m+1}/K_m$ $(m \geq m_0)$. We write

(8.7)
$$u(z) = \operatorname{Re}\left\{\left(\int_{1}^{r_{m}} + \int_{r_{m}}^{r_{m}'} + \int_{r_{m}'}^{r_{m+1}} + \int_{r_{m+1}}^{\infty}\right) \frac{z\nu(t)}{t(t+z)} dt\right\}$$
$$\equiv I_{1} + I_{2} + I_{3} + I_{4}, \text{ say.}$$

For $t \leq r_m$,

$$|I_1(z)| \leq 2 \int_1^{r_m} \frac{\nu(t)}{t} dt \; .$$

Hence by (7.4)

(8.8)
$$|I_1(z)| \leq \frac{8(\lambda-1)\beta}{\mu\lambda(\beta-\mu)} r_m^{\mu} \log r_m = \frac{8(\lambda-1)\beta(\beta-\mu\lambda)}{\mu(\beta-\mu)^2\lambda^2} r_{m+1}^{(\mu/\lambda)} r_{m+1}^{(\mu/\lambda)} \log r_{m+1}.$$

Next,

(8.9)
$$|I_{2}(z)| \leq 2 \int_{r_{m}}^{r'_{m}} \frac{\nu(t)}{t} dt = 2 \int_{r_{m}}^{r'_{m}} r_{m}^{\mu-\gamma} t^{\gamma-1} dt < \frac{2}{\gamma} r_{m}^{\mu-\gamma} (r'_{m})^{\gamma} = \frac{2}{\gamma} r_{m+1}^{\mu} .$$

Since $\nu(t)/t^{\gamma}$ is a decreasing function, we have

(8.10)
$$|I_4(z)| \leq 2r \int_{r_{m+1}}^{\infty} \frac{\nu(t)}{t^2} dt \leq 2r \int_{r_{m+1}}^{\infty} r_{m+1}^{\mu-\gamma} t^{\gamma-2} dt$$
$$= \frac{2r \cdot r_{m+1}^{\mu-1}}{1-\gamma} \leq \frac{2r_{m+1}^{\mu}}{(1-\gamma)K_m}.$$

Finally, for $|\arg z| < \pi$

$$I_{3}(z) = r_{m+1}^{\mu} \operatorname{Re} \int_{r_{m}'}^{r_{m+1}} \frac{z}{t(t+z)} dt = r_{m+1}^{u} \log \left| \frac{r_{m+1}}{r_{m+1}+z} \frac{r_{m}'+z}{r_{m}'} \right|$$
$$= r_{m+1}^{\mu} \left\{ \log \frac{r}{r_{m}'} + \log \left| \frac{1 + (r_{m}'/z)}{1 + (z/r_{m+1})} \right| \right\}.$$

Hence

(8.11)
$$\left| I_{3}(z) - r_{m+1}^{\mu} \log \frac{r}{r_{m}'} \right| \leq r_{m+1}^{\mu} \log \frac{1 + K_{m}^{-1}}{1 - K_{m}^{-1}} \leq \frac{3}{K_{m}} r_{m+1}^{\mu}.$$

Combining (8.7)–(8.11) we deduce that for $|\theta| < \pi$

(8.12)
$$\left| u(re^{i\theta}) - \left(\log \frac{r}{r'_m} \right) r_{m+1}^{\mu} \right| \leq O(r_{m+1}^{\mu}) \quad (K_m r'_m \leq r \leq r_{m+1}/K_m) \; .$$

However as noted in 4, $\lim_{\theta \to \pi^-} u(re^{i\theta}) = \lim_{\theta \to -\pi^+} u(re^{i\theta}) = u(-r)$, so that (8.12) holds also for $|\theta| = \pi$.

Since $\alpha < \gamma < 1$, we obtain from (8.1) that

$$(8.13) mmodes m^*(r, u) < \cos \pi \alpha M(r, u) \quad (r \in F_1, r \ge R_0).$$

On the other hand, (8.12) gives

(8.14)
$$m^*(r, u) > \cos \pi \alpha M(r, u) \quad (r \in F_2, r \ge R_0).$$

Combining (8.13), (8.14) with Lemma 5, we have

$$\log \text{ dens } E = 1 - \lambda \mu / \beta$$
, $\log \text{ dens } E = 1 - \mu / \beta$.

This completes the proof of Theorem 2.

References

- [1] BARRY, P.D., On a theorem of Besicovitch, Quart. J. Math. Oxford (2) 14 (1963), 293-302.
- [2] BARRY, P.D., On a theorem of Kjellberg, ibid. (2) 15 (1964), 179-191.
- [3] HAYMAN, W.K., Some examples related to the cos $\pi \rho$ theorem, Mathematical essays dedicated to A.J. Macintyre Ohio Univ. Press (1970), 149-170.
- [4] HAYMAN, W.K. AND KENNEDY, P.B., Subharmonic Functions, Vol. 1 Academic Press.
- [5] KJELLBERG, B., On the minimum modulus of entire functions of lower order less than one, Math. Scand. 8 (1960), 189-197.
- [6] UEDA, H., An entire function related to theorems of Barry, Kodai Math. J. 5 No. 2, (1982), 289-302.

Department of Mathematios Daido Institute of Technology Daido-cho, Minami-ku, Nagoya, Japan