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A SUBHARMONIC FUNCTION RELATED TO
THEOREMS OF BARRY

By HipEHARU UEDA

Introduction. Let u(z) be a nonconstant subharmonic function in the finite
plane and write

m*(r, u)= irllf u(z), M(r, u)= llnlax u(z).
lz1=r z|=r
The order and lower order of u(z), p(u) and u(u) respectively, are by definition

log M(r u) log M(r, u)

p(u)=1im sup ogr p(w)=lim inf-— og 7

If E is a Lebesgue measurable set on the positive real axis, we use the notation
E.=FEN[1, r], and define the upper logarithmic and lower logarithmic densities,
respectively, of E by

log dens E=lim sup og L S t-ldt

log dens E=lim inf-v—-—l-—- '§ t-idt .
E— e logr JE,

Kjellberg [5] proved that, if 0<pu(u)<1,
m*(r, u)

1‘“}3}19 M, u) -=cos wu(u) .
Barry showed that, if 0<p(u)<a<l,
) log dens{r; m*(r, u)>cos raM(r, u)} =1—pu)/a,
and that, if 0= p(u)<a<l,
2) log dens {r; m*(r, u)>cos zaM(r, u)} =1—pu)/a.

(For (1) see [1]; for (2) see [2]). The above estimates (1) and (2) are both
sharp in the sense that the sign = cannot be replaced by >. In fact, the fol-
lowing result was proved by Hayman [3].
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THEOREM A. Given any numbers p, a such that 0<p<a<1, there exists a
subharmonic function u(z) in the finite plane satisfying the following conditions:

(i) pw)y=pu)=p,
(ii) log dens E=log dens E=1—p/a, where E s defined by
3) E={r; m*(r, u)>cos raM(r, u)} .

In §1, we show that the relation (1) ((2)) is the only essential restriction
imposed on log dens E(log dens E), where E is the set defined by (3).

THEOREM 1. Given any numbers p, a, 1 such that 0<p<a<l and 0=7=1
there exists a subharmonic function u(z) in the finite plane satisfying the following
conditions :

(1) pw=pu)=p,
(ii) log dens E=log dens E=1—yp/a, where E s defined by (3).

Since Hayman has given examples for y=1, we may consider the cases 0=
y<1. In §1, we suppose y>0. The remaining case —y=0— is handled by
minor technical variations of our arguments, and we will omit the proof.

In [6], we showed the following result complementing Theorem A.

THEOREM B. Given any numbers p, p, a such that 0=u<p<a<l, there
exists a subharmonic function u(z) in the finite plane satisfying the following
conditions :

(i) plw)=p,

(i) plw)=p,

(iii) log dens E=1—p/a,

(iv) Tog dens E=1—p/a,
where E is the set defined by (3).

Now, it is natural to ask whether only the relations (1) and (2) are essential
restrictions imposed on log dens £ and log dens E. I do not know the answer.
In §2, we give examples in this direction.

THEOREM 2. Let p, p, a, B be any numbers such that 0<pu<o<a<l and f8
>a. If B=1, let A be a number satisfying
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P e Blo—p)+(a—p)p .
2 pla—p)

If 8>1, let 2 be a number satisfying

Blo—pm+d—p)p .  Ble—ptla—pp
(1= p) la—p) '
Then there exists a subharmonic function u(z) in the finite plane satisfying the
following conditions :

(i) pw=p,

(ii) p)=g,

(iii) log dens E=1—p/p,

(iv) log dens E=1-2n/8,
where E is defined by (3).

§1. Proof of Theorem 1.
1. Let {a,}% be a decreasing sequence tending to a such that a,<1, and set
(1.1 Bn=anp(l—7)/(@n—7rp) (m=0,1,2, --).

Define a sequence {r,}$% by

(1.2) ro=1, Kn=rmi/rm=4+m (m=0).
Further let 7, be the number satisfying

r;n m_ f Vmsr \T° _
(1.3) (H> “(T) (m=0,1,2, ).

Then, since yp<p<a<an, we deduce from (1.2) and (1.3) that
T <tm<rmsr (m=0,1,2, ).
Now, we put v(t) as follows:
v()=0 (0=t]), y(rm)=r5 (m=0,1,2, ),
i { v)/tem=rem (rp<t<rn),  v@Q)/tPm=r{fm (rR<t<rm.)
It is easy to see from (1.1)—(1.4) that v(¢) (t=1) is a continuous increasing function.

LEMMA 1. u(t) has order and lower order equal to p.

Proof. Assume that »,<t<rp.;. From (1.4) and (1.2) we have



A SUBHARMONIC FUNCTION 387

V() Srf i =tf (Ml—)p:l‘p(él’%‘m)p
Ym
and

v(t>zr¢ngtﬂ(r—“)"zrﬂ(aprm)-p .

Vm+1

By (1.2), we have for m=1
rm=0G+m)2+m) - 4=m! =L'(m+1)~~2x (m+-1)"+12=m=1 (15 5 o) |
so that
rm=(m/e)™ (m: large enough).

Hence, for all sufficiently large ¢

t?(4-+log 1)~° <u(t)<t*(4-+logt)° .

This proves Lemma 1.

2. Put
2.1) K,=(og Kn)¥°.

In view of (1.2), (1.3) and (2.1), we have 7, /Kn>Knrn and vpei/Kn>Knvn
(m=m,). Now, we define F; and F, as follows:

2.2) Fi= U [Knrm vn/Knl,  Fo= \J [Knth, rmsr/Knl.
m=mg m=mg

Then we have the following

LEMMA 2. logdens Fi=yp/a, log dens Fo=1—7p/c.

Proof. Let R be a large positive number and let m;, be the integer such
that #5n,/Kn, S R<rm,+1/Kmn,«1.  Suppose first that rn /Kn, S R<Kn i1Fm
(m;=m,). Then we have from (2.2), (1.2) and (1.3) that

S dt_ mi Sr’mu{mﬂ
Fppt - m=mgJKmrm L
mi

-3 {10g(%)—2 log n} = m%;o{ ZZ log K72 log Kn}.

m=mg
In view of (2.2)
(2.3) log Kn=o0(log K}) (m— o0).

Also an | a(m — o). Hence given ¢>0, we can choose N=N(¢), so that for
n?lzN



388 HIDEHARU UEDA
dt
TP jog Tmt o S a
o Pmg Fpp t
Vmi+1

Py r IO
> l=e) 3 log Kp=""(1—¢) log

N

Since Re[rm,/Kn,, Kn,+17m+1], We have

2.4) (rp/a)(l0g #mi+1—10g ¥mo) S 1 S dt

log 77, —log Kn, log R (FpR?
ﬁ(zf_ﬂg»)(l—s)(log rmi+1—10g ¥ n)
log K, +1+108 ¥m 41 ’
By (1.2), (1.3)
(2.5) log Kn,=o(log ) (m— c0).

Using (2.3) and (2.5), we deduce from (2.4) that
1 At 7oy
ngS > (1—¢)

Fppt

(2.6) TP (14 e)>
(64

for all sufficiently large Re \U [#mn/Kmn, KnitFmesd -
mzmg

Next suppose that K s17m,+1SR <t s1/Kme1 (1 =me). In this case

S a_ $ {TP—IOg K, —2 log Km}%—log/“R

Fprl  m=mg mq+1¥my+1

Since R<#n,+1/Km,+1, We have
1 dt _ (rp/e)1og (rm+i/rmo)+log R—log rm+s.

lbgikrg(Fl)RT lOg R

<1 A=re/a)logrmes | (A—7p/a)logrmn
log R log r;7l1+1_10g Km1+1 ’

On the other hand, since R>Kpn +17m, 41

71 ‘S g > _(rp/a)(l—e) 1og (Tm1+1/7’zv) —Hog (R/Km1+ﬂ’m1+1)
log R Jerpp t log R

_ log R—log Kmi+1— {1—(1—¢)yp/a)}log rmie1—(1—e)(yp/a) log vy
- log R

lOg Ymy+1

—1— (m; — ).
log Konj+1 ¥mys1

>1—o()— {1—(1—¢e)yp/a}

Thus for all sufficiently large Re \U [Kni1"me1, Ymi1/Kme1]
mzmg

1 a_70 4 q—
logRS < a +el=rp/a).

Fpp t

2.7 TP (1—ey<
(44
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Combining (2.6) and (2.7), we have

S _d_t<7{p_+e

(Fpp t o

7o 2
« (I=e)*< 10gR

for all sufficiently large R. Hence
70 (1-e)*<log dens F<Tog dens i< ' e
Since ¢ is an arbitrary positive number, we deduce that
log dens Fi=yp/a .

The proof of log dens Fo=1—yp/« is quite similar to the above one.
3. Define y(¢)(¢t=0) by (1.4). It follows from Lemma 1 that
S”MQ:_HS r”(t)—dz<
1 t 1

Hence

< zy(t) a’t}

(3.1) w@= | tog| 1+ | asn=Re{[ ;22

is subharmonic in the finite plane (See [4, Theorems 4.1 and 4.27.). Clearly

v(t)

3.2) Mr, w)=r S” oyt

By Lemma 1 and (3.2), po(u)=p(u)=p.

LEMMA 3. Suppose that z=re'?, Then if u(z) is defined by (3.1), we have
the following estimates.

(3.3) lu(z)—a%cos ant| < 0(( 'Oiff ny K Lo )
(Knrm=<r=<rn/Kn),
3.4) (u<z>—§£%;cos 80| < 0(( loﬁ(]mfi"-qu k)

(KntmnSv=tmii/Kn),

where B= ,kiin Bn=apl—7)/(a—7p).

Proof. We prove only (3.3). By (3.1)
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v =Rele] iy =Rl

3.5 et S (;
+Re{zsr t(;.‘)fl—)z) dt}+Re{er ’ﬁ%dt}zlﬁ—lz—l—ls, say .
For t<r,, we have |z/(t+2)|=Zr/—rn)ZKn/(K,—1)<2, so that

v(t)

Tp-1

[I(2)|=2

S m v(t) X gi<o 2 v(r,) log K},

dt= 225’

< 2log K}, lzr <2(log K)o, 3 4+ =28 (log K jy_,)

(3.6) A= 1—4-¢

%rﬁ (log K'p)= %(rm/mam»(r) (log K'y_1)

< %K;“MV(r) (log K1) < %Kin”u(r) (log K'p-1) .

Assume next that r,=<t<r,. Then, we have v(t)=r%%mtem, Hence from Lemma
1 in [3] we have for |0|<=

2 2

()
anim T 1= anKiom

sinTan,

3.7 I(z)— cos am(i\ <{ }v(r) :

Finally for t=rq, [(t+2)/t| =(rn—7r)/rmn=1—1/K,=1/2, so that
[15(2)] <2rS°T v(t)/t%dt .

m

Since u(t)/t* decreases for all {, we deduce that

< u(t) = y(r)gee 1 v(r)
Sr'm = S'r' y@o l‘z 7= reo(l—ay) (rm)t= 0 ’
Hence
2 a 2K 501
3.9 @) | 22 () g 2R
0 m 0

Combining (3.5)—(3.8), we obtain (3.3) for |0]|<=.

. . ret? | . .
Now, we consider the case |[#|==z. Since log‘l—l— . is a decreasing

L) (0< 0 <) with

g log(1+— dy(t)<co, the monotone convergence theorem shows that hm u(re*?)

-7 —

=011m+u(re“9)—u( r). Hence (3.3) is valid also for |8|=m=.
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Assume now that K,r,<r=<rn/K.(m=m,). We deduce from Lemma 3 that

M, u):{ z +0(1°gK":+ L )}»(r),

sinzan, K K%
and that
[T COS Tm log K, 1
mr, u)-—{ sinzan, O( K,f ot K"{_%)}v(r) )
Here we choose an,=a-+ lza (1+log* log*m)~t. Then
m*r, u) - 1 1 logr
Mir, w) =8 ”“”+O(1ogm T log m)2<1-ao>/p)+0( o(r) )

1
(log m)2i-ad/e

= cos nam—l—O( logl - -+ )<cos T+ 0(at,—a)<cos wa .

Hence for all sufficiently large rF;
3.9 m*(r, u)<cos ma M(r, u).

Next assume that K 7n<r=<rnp.:/Kn(m=m,). By (1.1) and the definition
of B, an—a=0(B—pn)(m— o). Hence

m*(r, u) _ 1 1 _ log »
Mir, w) =C08 ©hn O(logm t (1ogm>2<1—ﬁw) of () )

=208 T fn—0(an—a)=c0S 7, —0(B—Pn)>cos T8.

Thus for all sufficiently large r<F,
(3.10) m*(r, u)>cos wBM(r, u)>cos zpM(r, u)>cos raM(r, u).
4. Define E by (3). Then by (3.9) and (3.10)
Fyn[Ro, 00) CTEC[L, co\FiN[Ry, o)
for a large positive constant R,. Hence

log dens F, <log dens F <log dens E <1—log dens F;.

From this and Lemma 2 we deduce that logdens E=1—yp/a. This completes
the proof of Theorem 1.

§2. Proof of Theorem 2.

5. Put

—ul _
(5.1) - (5%;’# © L,
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and

_ Ao
5.2) s=SEL

The choice of 8 and A implies a<y<1l and 0=0<pu. Define two sequences
{rm}s, {rm}s as follows:

(5‘3) }’0:1 ) }/1:3 ’ rm+1:r£n(ﬂ—~y)/(ﬁ—,u2) (m:]-; 2: '“) ’

(54) rq/n:rgf—w)/(ﬁ—ﬂl) (7’]1:1, 2’ )

It is easy to see that 7, <rmn<rms: m=l, 2, --).
Now, we define y(f) so that

v)=0 0=t<1), rn)=rs (m=0,1,2, ),
(5.5) {

yO=rETE (raSt=rp; m21), vO)=ribt rn=t<rme; mz1).
We deduce from (5.1)—(5.5) that v(¢)(=1) is a continuous increasing function.

LEMMA 4. u(t) has order p and lower order p.

Proof. We note that v(rp)=r# and v(@rn)=0rR)(m=1, 2, ---). Hence it
suffices to show that t*<y()=<t°(rn=<t<rms; m=1, 2, ---). Assume first that
rm<t<rn. From (5.5) we have v(t)/t*=(t/r»)""#=1. On the other hand, we deduce
from (5.5), (5.4) and (5.1) that v(2)/t0=r& 7= Kyl 1(ph V=0 =p T+ B- G-p)1B-12
=¢%=1. Assume next that 7, <t<rms;. By (5.5) v({t)/tr=ms/1)* %=1, and
from (5.2)—(5.5) we have

v(t)/tp:r#—_‘_ﬁltc?—pgr/;tn—fl(’,;Jﬁ—p:},;'{i—-ﬁ)X(,3~/l)/(ﬂ—;12)+(ﬂ-,u)(5—;0)/(13—/11):7,2”—_—1 .

6. We set K,,=7rpn+1/rn(m=1, 2, ---) and define

(6.1) Kn=(log Kn)¥*.

In view of (5.3), (5.4) and (6.1), we have rp/Kn>Knrm and v,/ Kn>Knth
(m=m,). Define two sets F; and F, by (2.2). Then the same reasoning as in
the proof of Lemma 2 gives the following.

LEMMA 5. logdens Fy=pu/8, logdens Fy=2y/f, logdens F,=1—2y/p,
log dens Fy=1—p/B.

7. Define v(¢t) by (5.5). Then from Lemma 4 we deduce that

o= g 1 -2

is subharmonic in the finite plane. Clearly
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Ay,

7.2) Mr, u):rglﬁtrr)

Here we prove the following
LEMMA 6. p(u)=p, pu)=p.

Proof. As noted in the proof of Lemma 4, t*=vy()=<t?(t=1). From this
and (7.2) it is easy to see that pu=pu(u)=pu)=p. We proceed to show that

o(u)=p. For this purpose, note that N(r):SIv(t)t‘ldi has the same order as

v(r), and so by Lemma 4 it has order p. Further by the subharmonic from of
Jensen’s Theorem

M, u)g»—l—fg” w(ret®)dd =Nr).
27‘[’ -7

Thus we have p(u)=p. It remains to prove that u(u)<u. By (7.2)

: — Tmo (=)
Clearly
A=y
Computing as in (3.6), we have
4 42—-1)B
74 S log Ky = 0 et 10g
(7.4) ]_#r og . #1(13—#)1 og r

Since u(#)/t" decreases for all ¢, we have

2§rmr V(:) Aty v(rm) % Sm tr2dt
(7.5) ot Vm Jrm
‘Av(rm) o
I S T

Combining (7.3)—(7.5), we obtain

M@, )SOGL logry) (m— o).
Hence
.., log M@y, u)
< me PAm B <
g(u):hnr{iblonf log 7y =u
8. We first suppose that A>p/p¢. By (5.2) §>0. In this case the same
arguments as in the proof of Lemma 3 give
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log K7
8.1) |uta~ ZL(r—;cos 18] < O((F& 2™+ i 40)
(z=re?, Kptrm<r=rhn/Kmn, m=my),
and
8.2) |u@)— 225 ( ) 5005 30| < 0 -ligkg—ur i )

(z=re', Kprt <r<rm1/Kn, m=m,).
Since a<yr<1, we deduce from (8.1) that
(8.3) m*(r, u)<cos raM(r, u) (rekF;, r=R,).
Similarly, by (8.2) and the fact that 0<d<a
8.4) m*(r, u)>cos raM(r, u) (rekF,, r=R,).
From (8.3) and (8.4) it follows that
Fen[R,, )T ECLL, co)\(FiN\[Ry, ©0))

for a large positive constant R,. Hence

(8.5) log dens F; < log dens £ < 1—log dens F;,
and
(8.6) log dens F, <log dens £ < 1—1log dens F; .

Combining (8.5), (8.6) with Lemma 5, we have
log dens E=1—2u/8, log dens E=1—p/B.

Next, we suppose that 2=p/p. It is easy to see that (8.1) remains truejin
this case. We estimate u(re?) for Knrm<r<tm+1/Kn (m=m,). We write

(8.7 u(z)=Re {(SI"‘_;_ S:: + S::ﬂ n S;H) t.(ztv_f)z) dt}

=[,+1,+1;+1, say.
For t<r,,

7, (z)1<2§ m® gy

Hence by (7.4)

82— Dﬁ _ 8QA=DBB—LA i s-piv s
(8.8) [(z)] < l(ﬁ rh log rp= W(B— ) ripP B-e P 10g ¥ty -
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Next,

8.9) |1,(2)] <2§ n ”(t) dt= zgzmrg;fﬂ‘-ldm %rl;;f(r;n)fz—i—rgm .

Since u(#)/t" is a decreasing function, we have

”(“ dt<21'S Ty

Tm+1

IL=2-\"
(8.10) 2] rSr 1

_rerhih o he
1—r (1-7)Kn

Finally, for |argz|<=

+z
I ReS TS 1 ‘ Tmar_ Tt
$(2) =¥ P Z) =rpm log oz

—_—réjm{log;% +log ' 14(rn/2) ‘}

1+(z/7m+)
Hence
LG8,
(8.11) 13(2)—'7’ +1 IOg é by log lgk_léKm

Combining (8.7)—(8.11) we deduce that for |6 | <~

=0 (Km71n<r<r7n+1/Km)

8.12) ‘u(re”’)w (1og )ré’nﬂ

However as noted in 4, hm u(ret?)= hm u(re”’) u(—r), so that (8.12) holds

-7 —

also for |@|=m.
Since a<y<1, we obtain from (8.1) that

(8.13) m*(r, u)<cos raM(r, u) (reF, r=R,).
On the other hand, (8.12) gives
(8.14) m*(r, u)>cos raM(r, u) (rekF, r=R,).
Combining (8.13), (8.14) with Lemma 5, we have

log dens E=1—2y/B,  log dens E=1—p/f.

This completes the proof of Theorem 2.
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