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§ 0. Introduction.

As is well known, there are many homogeneous Einstein spaces having
fibred structures, for example, the total spaces of Hopf fibrations S2n+1 -> CPn,
S41l+S -> HP71 and the complex projective spaces CP2n+1 -> HP71, where the base
spaces and the fibres of these fibrations are also Einsteinian. Jenzen [3] and
Ziller [5] constructed non-canonical homogeneous Einstein metrics on these stan-
dard homogeneous Einstein spaces by varing metrics homothetically along fibre
directions. Following Berard-Bergery and Bourguignon [1], this type of metric
variation will be called a canonical variation (See §3, for the canonical varia-
tion). Then, in this paper, we describe how a new Einstein metric can be
found by the canonical variation in a fibred Riemannian space, whose total space
is Einsteinian and not necessarilly homogeneous, and obtain the following theorem
which will be proved in § 4.

THEOREM. Let π: M->B be a fibred Riemannian structure with totally
geodesic fibres where the total space is complete. Suppose the total space, base
space and fibres are Einsteinian. Then the canonical variation at the parameter
value equal to

s^_ i(sB sF\

//U j)
gives another Einstein metric to the total space if the parameter value is positive
not one, where b and f are respectively dimension of the base space B and the
fibres, sB and sF respectively the scalar curvature of the base space and the fibres.

The author wishes to thank Professor S. Ishihara and Dr. K. Sakamoto for
their encouragements and helpful suggestions.

§ 1. Structure tensors of a fibred Riemannian structure.

Let π: M -> B be a fibred Riemannian structure with totally geodesic fibres.
We denote by < , > the metric of the total space and by 7 the Levi-Civita con-
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nection determined by the metric < , >. Following O'Neill [4], we define in M
the tensors T and A for arbitrary vector fields E and F by

TEF=

and

ΛEF=

where ^VE and ME denote the vertical and horizontal parts of vector fields E
respectively. The tensor T vanishes since fibres are totally geodesic submanifolds.
The tensor A is called the structure tensor and has the properties stated in the
following lemmas:

LEMMA 1.1. The tensor AE is skew-symmetric operator on the tangent space
of M reversing vertical and horizontal subspaces.

LEMMA 1.2. The tensor AE is horizontal i.e.

LEMMA 1.3. The structure tensor A is alternative for horizontal vector fields
X and Y i. e.

Proofs of these lemmas are, for example, found in O'Neill [4].
By Hermann [2], completeness of the total space implies that the fibres are

isometric each other, then, in the fibred Riemannian structures the Ricci tensor
and the scalar curvature of the fibres make senses.

§ 2. Einstein condition and the structure tensor.

We denote by Ric the Ricci tensor of the Riemannian space (M, < , ». Let
{Zly •••, Zb}, where b=άim B, be a local orthonormal basic vector fields in M
i. e. unique horizontal vector fields projected to a local orthonormal frame of the
base space B by π*. Then, we have

PROPOSITION 2.1. For vertical vectors U, V and horizontal ones X and Y,

Ric tfK=RicgV+ i±<AZiU, AZ.U> ,

Σ

. = Ric5-r~2Σ<i4z<Z, Az.Yy,
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where RicF and Ricβ denote the Rica tensor of the fibres and the base space res-
pectively.

Proof. Let {U1} •••, Uf} be a local orthonormal vertical vector fields in M,
where / is the fibre dimension of the fibre. Then, by O'Neill's formula of cur-
vature tensor, we obtain the first and the second identities and

R i c χ r = R i c i y - 3 Σ < i 4 z < Z , AZiY>+Έ<AxUj9 AγU3y.

But, using next computations, we can rewrite this into the form stated in the

proposition: we have, by Lemmas 1.1, 1.2 and 1.3,

Σ <AXUJ9 AyUj}
3 = 1

= Σ Σ<AIU), ztχArU}, z»>=- Σ Σ,<U}, Ax
J = l 1 = 1 3 = 1 1 = 1

= - Σ Σ <AyAxZu Zτ> = Σ <AxZt, AγZιy
3 = 1 1 = 1 2 = 1

= Σ <AZiX, AZiY> Q.E.D.

COROLLARY 2.2. // M, B and the fibres are Einsteiman, then we obtain,

b

ι = l

δ

z=l

Proof. Since the assumptions imply that

R i c =7+Γ < >

SF

Proposition 2, 1 implies directly this corollary. Q. E. D.
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§ 3. Canonical variation.

We define new metrics < , }t on the total space with positive parameter t

for arbitrary vectors E and F.

LEMMA 3.1. The Levi-Civita connection Vί determined by the metric < , }t

given by the formulas

for vertical vector fields U, V and horizontal vector fields X, Y. Then, the stru-
cture tensor A1 of the new fibred Riemanman structure is given by

Aι

xV=tAxV, AXY=AXY.

Proof. The first and fourth formulas are trivial. To prove the second
formula, we need the following computations:

, Y}t

=u<x, γ>t+x<u, γyt-

+ <[£/, X\ Y>t+<\Ύ, lΓ\X>t+<U, IX, YΊ>t

=u<x, γ>+<ιu, xi r>+<[7, ί/], xy

ί-l)<ί/, -AXY>

=2<VuX+(t-l)AxU,Y>.

Then we have

Having

by similar computation, we obtain the second formula. The third formula is
obtained by the same way as the second. Q. E. D.
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LEMMA 3.1 implies that the ίibration π: (M, < , )t) -> B gives a fibred
Riemannian structure with totally geodesic fibres.

LEMMA 3.2. Let RicJ denote the Ricci tensor of the Riemannian space
(M, < , >,). Then,

Thus Ridbx vanishes whenever Ricj/x vanishes.

Proof. Lemma 1.2 and 3.1 imply

so the second formula of Proposition 2.1 and the definition of < , }t imply the
lemma. Q. E. D.

§ 4. Proof of Theorem.

By Proposition 2.1, Corollary 2.2 and Lemmas 3.1, 3.2, we have

Ricbv=γ<U, F ) + Σ W Al

ZlVyt

= Jf<u> V>t+t2Σ<AZίU, AZιV>

*Σλ<Aι

ZiX, A<ZiY>t

= j<X, Y>t-2fΣ<AZiX, AZiY}

Consequently, if

tf '

then < , >ί gives Einstein metric. By solving this equation of t, we have two
solutions, i. e.
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Therefore the theorem is proved. Q. E. D.

§ δ. Examples.

For the Hopf flbring Sin+'3 —> HP71, the fibres are isometric to the ordinary
sphere S3 and

sF sB

j = 2, ~=4(n+2).

Then

f/\b fJ~2n+3
Sr //SB 5 F \ _ 1

\J~7)~2n+3'

This is Jenzen's example [3]. For the fibration CP2n+1 -> HP71, the fibres are

isometric to the sphere S2(4) with constant sectional curvature 4 and

sF_ sB_

f ' b

Then

sF //sB sF\ 1

This is Ziller's example [5].
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