Y. KAKIHARA KODAI MATH. J. 6 (1983), 289-300

ON A HILBERT MODULE OVER AN OPERATOR ALGEBRA AND ITS APPLICATION TO HARMONIC ANALYSIS

By Yûichirô Kakihara

1. Introduction.

We study a left A-module with an A-valued inner product where A is an operator algebra. Such a space has been investigated by many authors: Kaplansky [7], Saworotnow [14], Paschke [12], Rieffel [13], Ozawa [11], Itoh [5], Kakihara and Terasaki [6] and others.

Let A be a von Neumann algebra. Then a Hilbert A-module is defined to be a left A-module with an A-valued inner product respecting the module action, called a Gramian, which is complete with respect to (w.r.t.) the norm induced from the Gramian. Our main object is harmonic analysis on a topological group in the Hilbert A-module context. Especially, a Stone type and a Bochner type theorems are formulated and proved.

Basic definitions of a Hilbert A-module are given in section 2. In section 3, A-valued positive definite kernels are considered in connection with reproducing kernel Hilbert A-modules which are analogous to Aronszajn's reproducing kernel Hilbert spaces [1]. Section 4 deals with Gramian unitary representations of a topological group and Gramian *-representations of a L^1 -group algebra on a Hilbert A-module. Results stated in sections 3 and 4 hold when A is a (unital) C*-algebra. In section 5, we prove our main result which is a Stone type theorem for a continuous, in an appropriate sense, Gramian unitary representation of a locally compact abelian group. As a corollary we give a proof to a Bochner type theorem for a weakly continuous A-valued positive definite function. Section 6 is devoted to Hilbert A-module valued processes over a locally compact abelian group. Such a formulation of processes is closely related to Banach space valued stochastic processes (cf. Cobanjan and Weron [2], Weron [19] and Miamee [8]).

Acknowledgments: The author would like to express his hearty thanks to Professor H. Umegaki for his valuable suggestions and encouragement in the course of preparing this paper.

2. Hilbert A-modules.

Throughout this paper A stands for a von Neumann algebra with the norm Received June 4, 1982

 $\|\cdot\|$. We denote the *action* of A on a left A-module X by $(a, x) \to a \cdot x$, $a \in A$, $x \in X$. We assume that all such modules treated below have a vector space structure compatible with that of A in the sense that $\alpha(a \cdot x) = (\alpha a) \cdot x = a \cdot (\alpha x)$ for $x \in X$, $a \in A$ and a complex number α .

2.1. DEFINITION. A (*left*) pre-Hilbert A-module is a left A-module for which there is a map $[\cdot, \cdot]: X \times X \to A$ such that for $x, y, z \in X$ and $a \in A$ (1) $[x, x] \ge 0$, and [x, x]=0 iff x=0; (2) [x+y, z]=[x, z]+[y, z]; (3) $[a \cdot x, y]=a[x, y]$; (4) $[x, y]^*=[y, x]$. The map $[\cdot, \cdot]$ is called a *Gramuan* on X. We sometimes denote it explicitly by $[\cdot, \cdot]_X$.

If X is a right A-module, then we can define (right) pre-Hilbert A-module structure for X in a similar manner as above except that the condition (3) is replaced by (3') $[x \cdot a, y] = [x, y]a$. Since there is no essential difference between right and left A-modules, we restrict our attention to left A-modules.

In a pre-Hilbert A-module X define $||x||_x = ||[x, x]||^{1/2}$, $x \in X$. Then by [12, 2.3 Proposition], $||\cdot||_x$ becomes a norm on X and we have for x, $y \in X$ and $a \in A$

$$||a \cdot x||_{X} \le ||a|| \cdot ||x||_{X}, \qquad ||[x, y]|| \le ||x||_{X} \cdot ||y||_{X}.$$
(2.1)

2.2. DEFINITION A pre-Hilbert A-module X which is complete w.r.t. the norm $\|\cdot\|_X$ is called a *Hilbert A-module*.

Examples of (right) Hilbert A-modules are seen in [12] where A is a C^* -algebra.

2.3. DEFINITION. Let X be a Hilbert A-module. We define the Gramman orthogonal complement of a subset Y of X by $Y^* = \{x \in X; [x, y] = 0, y \in Y\}$. A subset Y is called a submodule if it is a left A-module and is closed w.r.t. $\|\cdot\|_X$. In this case Y is itself a Hilbert A-module. Denote by $\mathfrak{S}(Y)$ the submodule generated by a subset Y. It is seen that for each subset Y its Gramian orthogonal complement Y^* is a submodule and the relation $\mathfrak{S}(Y) \subset (Y^*)^*$ holds.

2.4. DEFINITION. Let X and Y be two Hilbert A-modules with Gramians $[\cdot, \cdot]_X$ and $[\cdot, \cdot]_Y$, respectively. B(X, Y) denotes the Banach space of all bounded linear operators from X into Y. $\mathfrak{A}(X, Y)$ denotes the set of all operators $S \in B(X, Y)$ for which there is an operator $T \in B(Y, X)$ such that $[Sx, y]_Y = [x, Ty]_X$, $x \in X$, $y \in Y$. It is seen that T is unique if it exists, so that we denote it by S* and call it the *Gramian adjoint* of S. An operator $U \in B(X, Y)$ is said to be *Gramian unitary* if it is onto and satisfies that $[Ux, Ux']_Y = [x, x']_X$, $x, x' \in X$. It can be seen that each Gramian unitary operator $U \in B(X, Y)$ belongs to $\mathfrak{A}(X, Y)$ and satisfies $U^*U = I_X$, the identity operator on X. We write B(X) = B(X, X) and $\mathfrak{A}(X) = \mathfrak{A}(X, X)$. An operator $P \in B(X)$ is called a *Gramian projection* if $P \in \mathfrak{A}(X)$ and $P^2 = P^* = P$. Two Hilbert A-modules X and Y are said to be *isomorphic*, in symbols $X \cong Y$, if there is a Gramian unitary operator in

 $\mathfrak{A}(X, Y).$

For $a \in A$ define $\pi(a)$ by $\pi(a)x = a \cdot x$, $x \in X$, X being a Hilbert A-module. Then, by (2.1), $\pi(a) \in B(X)$. A kind of functionals on a Hilbert A-module is defined in the following (cf. [7, 12, 14]).

2.5. DEFINITION. Let X be a Hilbert A-module. Denote by X^* the set of all bounded module maps $\tau: X \to A$. That is, τ satisfies $\tau(a \cdot x + b \cdot y) = a\tau(x) + b\tau(y)$, $x, y \in X$, $a, b \in A$, and there is some $\alpha > 0$ such that $\|\tau(x)\| \leq \alpha \|x\|_X$, $x \in X$. Each $x \in X$ gives rise to a map $\hat{x} \in X^*$ defined by $\hat{x}(y) = [y, x]$, $y \in X$. X is said to be self-dual if $X^* = \hat{X}(=\{\hat{x}; x \in X\})$.

2.6. Remark ([12]). Let X be a Hilbert A-module. Then X^* becomes a self-dual Hilbert A-module in which X can be embedded as a submodule. Moreover, each operator in $\mathfrak{A}(X)$ can be uniquely extended to an operator in $\mathfrak{A}(X^*)$. If X is self-dual, then we have $\mathfrak{A}(X) = \{S \in B(X); S\pi(a) = \pi(a)S, a \in A\}$. That is, $\mathfrak{A}(X)$ consists of all bounded module maps from X into itself. Furthermore, there is a collection $\{p_i; i \in \mathfrak{F}\}$ of (not necessarily distinct) nonzero projections in A such that $X \cong \text{UDS}\{Ap_i; i \in \mathfrak{F}\}$, the ultraweak direct sum of self-dual Hilbert A-modules $Ap_i, i \in \mathfrak{F}$. For each $i \in \mathfrak{F}$ the Gramian on Ap_i is defined by $[ap_i, bp_i]_i = ap_ib^*$, $a, b \in A$. As a consequence of this decomposition, for any self-dual submodule Y of X, we have that $X = Y \oplus Y^*$, the direct sum, and that there is a Gramian projection of X onto Y.

3. Positive definite kernels.

We consider A-valued positive definite kernels on $\Omega \times \Omega$, Ω being a set, and construct reproducing kernel Hilbert A-modules.

3.1. DEFINITION. An A-valued function Γ on $\Omega \times \Omega$ is called a *positive* definite kernel (PDK) if for every finite $\{\omega_1, \dots, \omega_n\} \subset \Omega$ and $\{a_1, \dots, a_n\} \subset A$ it holds that $\sum_{i,j} a_i \Gamma(\omega_i, \omega_j) a_j^* \geq 0$. Every PDK Γ on $\Omega \times \Omega$ satisfies that $\Gamma(\omega, \omega') = \Gamma(\omega', \omega)^*, \omega, \omega' \in \Omega$.

For each A-valued PDK Γ on $\Omega \times \Omega$ we can associate a Hilbert A-module $\Omega \otimes_{\Gamma} A$ by the method similar to that of Umegaki [17]. To this end, let $F(\Omega; A)$ be the set of all A-valued functions on Ω with finite supports. For $f, g \in F(\Omega; A)$ and $a \in A$ define $(a \cdot f)(\cdot) = af(\cdot)$, $[f, g]_{\Gamma} = \sum_{\omega, \omega'} f(\omega) \Gamma(\omega, \omega') g(\omega')^*$ and $\|f\|_{\Gamma} = \|[f, f]_{\Gamma}\|^{1/2}$. Then $[\cdot, \cdot]_{\Gamma}$ satisfies conditions of a Gramian except that $[f, f]_{\Gamma} = 0$ implies f=0. Put $N_{\Gamma} = \{f \in F(\Omega; A); [f, f]_{\Gamma} = 0\}$ and let $\Omega \otimes_{\Gamma} A$ be the completion of the quotient space $F(\Omega; A)/N_{\Gamma}$ w.r.t. the norm $\|\cdot\|_{\Gamma}$. Then $\Omega \otimes_{\Gamma} A$ is a Hilbert A-module. Moreover, it is closely related to the reproducing kernel Hilbert A-module of Γ defined below.

3.2. DEFINITION. Let Γ be an A-valued PDK on $\Omega \times \Omega$ and X be a Hilbert A-module consisting of A-valued functions on Ω . Then X is said to be the reproducing kernel (RK) Hilbert A-module of Γ if

(1) for each $\omega \in \Omega$, $\Gamma(\omega, \cdot) \in X$;

(2) for each $\omega \in \Omega$ and $x \in X$, $x(\omega) = [x(\cdot), \Gamma(\omega, \cdot)]$.

The PDK Γ is called the *reproducing kernel* (*RK*) for X.

3.3. PROPOSITION. For each A-valued PDK Γ on $\Omega \times \Omega$ there is a unique, up to isomorphism, Hilbert A-module X_{Γ} admitting Γ as a RK. Moreover, the relation $X_{\Gamma} \cong \Omega \otimes_{\Gamma} A$ holds.

Proof. The proof mimics that of [9, 2.5. Lemma] and we only give the outline. Let X_0 be the set of all A-valued functions on Ω of the form

$$x(\cdot) = \sum_{i=1}^{n} a_{i} \Gamma(\omega_{i}, \cdot), \quad a_{i} \in A, \ \omega_{i} \in \mathcal{Q}, \ 1 \leq i \leq n$$

with *n* finite. Define for $x(\cdot) = \sum a_i \Gamma(\omega_i, \cdot), y(\cdot) = \sum b_j \Gamma(\omega'_j, \cdot) \in X_0$ and $a \in A$

$$(a \cdot x)(\cdot) = \sum_{i} a a_{i} \Gamma(\omega_{i}, \cdot), \qquad [x, y]_{0} = \sum_{j,j} a_{i} \Gamma(\omega_{i}, \omega_{j}) b_{j}^{*}$$

Then X_0 becomes a pre-Hilbert A-module with an action and a Gramian defined as above. Moreover, for $x \in X_0$ and $\omega \in \Omega$ the reproducing property $x(\omega) = [x(\cdot), \Gamma(\omega, \cdot)]_0$ holds. Hence we have $||x(\omega)|| \le ||x||_0 \cdot ||\Gamma(\omega, \cdot)||_0$ where $||y||_0 = ||[y, y]_0|^{1/2}$, $y \in X_0$.

Let $\{x_n\}$ be a Cauchy sequence in X_0 w.r.t. the norm $\|\cdot\|_0$. It follows from the above inequality that for every $\omega \in \Omega$ there exists some $x(\omega) \in A$ such that $\|x_n(\omega) - x(\omega)\| \to 0$. Denote by X_{Γ} the set of all A-valued functions x on Ω obtained in this way. For $x, y \in X_{\Gamma}$ define $[x, y] = \lim_{n \to \infty} [x_n, y_n]_0$ where $\{x_n\}$

and $\{y_n\}$ are Cauchy sequences in X_0 determining x and y, respectively. Then we can check that X_{Γ} is actually a Hilbert A-module with the Gramian $[\cdot, \cdot]$. Furthermore, the reproducing property of Γ can also be checked and, therefore, Γ is a RK for X_{Γ} . The uniqueness of X_{Γ} and the isomorphism $X_{\Gamma} \cong \mathcal{Q} \otimes_{\Gamma} A$ are readily verified.

4. Gramian unitary reresentations and Gramian *-representations.

We first consider Gramian unitary representations of a topological group on a Hilbert A-module and their relation to A-valued positive definite functions on the group.

4.1. DEFINITION. Let G be a topological group and X be a Hilbert A-module. An A-valued function Γ on G is said to be *positive definite* (PD) if for every finite $\{a_1, \dots, a_n\} \subset A$ and $\{s_1, \dots, s_n\} \subset G$ it holds that $\sum_{i,j} a_i \Gamma(s_j^{-1}s_i)a_j^* \ge 0$. Putting $\tilde{\Gamma}(s, t) = \Gamma(t^{-1}s)$, $s, t \in G$, Γ is PD iff $\tilde{\Gamma}$ is a PDK on $G \times G$. Γ is said to be

continuous if it is norm continuous on G. A Gramian unitary representation (GUR) of G on X is a homomorphism $s \to U(s)$ from G into $\mathfrak{A}(X)$ for which U(s) is Gramian unitary for every $s \in G$. A GUR $s \to U(s)$ is said to be continuous if for every $x \in X$ the function $s \to U(s)x$ is norm continuous on G. A vector $x_0 \in X$ is said to be cyclic for a GUR $s \to U(s)$ if $\mathfrak{S}\{U(s)x_0; s \in G\} = X$.

Then we can prove the following.

4.2. PROPOSITION. Let G be a topological group and $\Gamma: G \to A$ be PD. Then there exist a Hilbert A-module X, a GUR $s \to U(s)$ of G on X and a cyclic vector $x_0 \in X$ such that $\Gamma(s) = [U(s)x_0, x_0], s \in G$. It also holds

$$\|\Gamma(s)\| \le \|\Gamma(e)\|, \qquad \|\Gamma(s) - \Gamma(t)\|^2 \le 2\|\Gamma(e) - \Gamma(s^{-1}t)\| \cdot \|\Gamma(e)\|$$
(4.1)

for s, $t \in G$ where e is the identity of G. Furthermore, Γ is continuous if and only if so is $s \to U(s)$.

Proof. Put $\tilde{\Gamma}(s, t) = \Gamma(t^{-1}s)$, $s, t \in G$ and let X be the RK Hilbert A-module of $\tilde{\Gamma}$ with the Gramian $[\cdot, \cdot]$ (cf. 3.3. Proposition). Then we have $\Gamma(s) = \tilde{\Gamma}(s, e)$ $= [\tilde{\Gamma}(s, \cdot), \tilde{\Gamma}(e, \cdot)], s \in G$. Let X_0 be the set of all A-valued functions on G of the form $\sum_{i=1}^{n} a_i \Gamma(s_i, \cdot), a_i \in A, s_i \in G, 1 \leq i \leq n$ with n finite. For $s \in G$ define U(s) on X_0 by $U(s) \sum a_i \Gamma(s_i, \cdot) = \sum a_i \Gamma(ss_i, \cdot)$. Then it is easy to see that for $x, y \in X_0$ the equality [U(s)x, U(s)y] = [x, y] holds. Hence U(s) can be uniquely extended to a Gramian unitary operator on X since X_0 is dense in X. Thus $s \to U(s)$ is a GUR of G on X. Putting $x_0 = \tilde{\Gamma}(e, \cdot) \in X$, it is readily seen that x_0 is a cyclic vector for $s \to U(s)$ and that the equality $\Gamma(s) = [U(s)x_0, x_0]$ holds for $s \in G$. Two inequalities in (4.1) follow from this equality as in the case of scalar valued PD functions (cf. [18]). The last assertion is not hard to check.

In the remainder of this section let G be a locally compact group with a left Haar measure ds and consider the space $L^1(G; Z_A)$ of all Z_A -valued Bochner integrable functions on G w.r.t. ds where Z_A is the center of A, i.e., $Z_A = \{a \in A; ab = ba, b \in A\}$. $L^1(G; Z_A)$ is a Banach *-algebra whose multiplication, involution and norm are respectively defined by $(fg)(t) = \int_G f(s)g(s^{-1}t) ds$, $f^*(t) = \Delta(t)^{-1}f(t^{-1})^*$ and $||f||_1 = \int_G ||f(s)|| ds$ for each $f, g \in L^1(G; Z_A)$ and $t \in G$ where Δ is the modular function of G. Define $(a \cdot f)(\cdot) = af(\cdot)$, $a \in A$, $f \in L^1(G; Z_A)$ and denote by $\mathfrak{L}^1(G; Z_A)$ the left A-module generated by $L^1(G; Z_A)$. Now we consider Gramian *-representations of $L^1(G; Z_A)$ on a Hilbert A-module in connection with GURs of G.

4.3. DEFINITION. Let X be a Hilbert A-module. Then a map $f \to T(f)$ from $\mathfrak{L}^1(G; \mathbb{Z}_A)$ into B(X) is called a Gramian *-representation (G*R) of $L^1(G; \mathbb{Z}_A)$ on

X if the restriction of T to $L^1(G; Z_A)$ is $\mathfrak{A}(X)$ -valued and if $T(a \cdot f + b \cdot g) = \pi(a)T(f) + \pi(b)T(g)$, $T(f^*) = T(f)^*$ and T(fg) = T(f)T(g) for each f, $g \in L^1(G; Z_A)$ and a, $b \in A$ where $\pi(a)x = a \cdot x$, $x \in X$. A G*R $f \to T(f)$ is said to be nondegenerate if $\mathfrak{S}\{T(f)x; f \in L^1(G; Z_A), x \in X\} = X$.

Given a continuous GUR $s \to U(s)$ of G on a Hilbert A-module X, define T(f) for $f \in L^1(G; Z_A)$ by

$$T(f)x = \int_{\mathcal{G}} U(s)(f(s) \cdot x) ds , \qquad x \in X, \qquad (4.2)$$

where the right hand side is a well-defined Bochner integral. If X is self-dual, then we can show that $f \to T(f)$ is a G*R of $L^1(G; Z_A)$ on X.

Let \mathfrak{V}_G be the Borel σ -algebra of G and $M(G; Z_A)$ be the set of all Z_A valued countably additive (CA) measures, in the norm, on \mathfrak{V}_G of bounded variations. For μ , $\nu \in M(G; Z_A)$ and $a, b \in A$ define $(a \cdot \mu + b \cdot \nu)(B) = a\mu(B) + b\nu(B)$, $\mu^*(B) = \mu(B^{-1})^*$ and $(\mu\nu)(B) = \mu \times \nu(B')(B' = \{(s, t); st \in B\})$ for $B \in \mathfrak{V}_G$, and $\|\mu\| =$ the total variation of μ . Then $M(G; Z_A)$ becomes a Banach *-algebra. $\mathfrak{M}(G; Z_A)$ denotes the left A-module generated by $M(G; Z_A)$. By a Gramian *-representation of $M(G; Z_A)$ on a Hilbert A-module X we mean a map $\mu \to T(\mu)$ from $\mathfrak{M}(G; Z_A)$ into B(X) whose restriction to $M(G; Z_A)$ is $\mathfrak{A}(X)$ -valued and which satisfies that $T(a \cdot \mu + b \cdot \nu) = \pi(a)T(\mu) + \pi(b)T(\nu)$, $T(\mu^*) = T(\mu)^*$ and $T(\mu\nu) = T(\mu)T(\nu)$ for $\mu, \nu \in M(G; Z_A)$ and $a, b \in A$. $L^1(G; Z_A)$ is a Banach *-subalgebra of $M(G; Z_A)$ by identifying $f \in L^1(G; Z_A)$ with $f(s)ds \in M(G; Z_A)$. By similar proofs of [3, 13.3.1. and 13.3.4. Propositions] we can show the following.

4.4. PROPOSITION. Let X be a self-dual Hilbert A-module. Given a continuous GUR $s \rightarrow U(s)$ of G on X, define for $\mu \in M(G; Z_A)$

$$T(\mu)x = \int_{\mathcal{G}} U(s)\pi(\mu(ds))x , \qquad x \in X.$$

Then $T(\mu)$ is a well-defined operator on X and $\mu \to T(\mu)$ is a G^*R of $M(G; Z_A)$ on X whose restriction to $L^1(G; Z_A)$ is nondegenerate.

If $f \to T(f)$ is a nondegenerate G^*R of $L^1(G; Z_A)$ on X, then there is a unique continuous $GUR \ s \to U(s)$ of G on X such that (4.2) holds.

5. A Stone type and a Bochner type theorems.

In this section we assume that G is a locally compact abelian group. Denote by A_* the predual of A and by A_*^+ its positive part. For a Hilbert A-module X we define the Gramian σ -weak topology on $\mathfrak{A}(X)$ (or B(X)) to be the topology determined by the family of seminorms

$$S \in \mathfrak{A}(X)$$
 (or $B(X)$) $\rightarrow |\rho([Sx, y])|$, $x, y \in X, \rho \in A_*^+$.

We prove a Stone type spectral representation theorem for a Gramian σ -weakly

continuous GUR of G on some self-dual Hilbert A-module. As a consequence we give a proof to a Bochner type integral representation theorem of an A-valued weakly continuous PD function on G. For the scalar valued case we refer to Nakamura and Umegaki [10] and Umegaki [18].

Before we proceed we need some preparations. Let $\mathfrak{V}_{\hat{G}}$ be the Borel σ -algebra of the dual group \hat{G} of G and X be a Hilbert A-module.

5.1. DEFINITION. A map $P: \mathfrak{V}_{\hat{G}} \to \mathfrak{A}(X)$ is called a *Gramuan spectral measure* on \hat{G} if P is Gramian projection valued and if, for each $\rho \in A_*^+$ and $x, y \in X$, $\rho([P(\cdot)x, y])$ is a regular measure on \hat{G} .

Take $\rho \in A_*^*$ and define a semi-inner product on X by $(x, y)_{\rho} = \rho([x, y]), x, y \in X$. Put $N_{\rho} = \{x \in X; (x, x)_{\rho} = 0\}$ and define X_{ρ} to be the completion of the quotient space X/N_{ρ} w.r.t. $(\cdot, \cdot)_{\rho}$. Then X_{ρ} is a Hilbert space where we denote the inner product and the norm by $(\cdot, \cdot)_{\rho}$ and $\|\cdot\|_{\rho}$, respectively. Write $x_{\rho} = x + N_{\rho} \in X/N_{\rho}$ for $x \in X$. Note that the inequality $\|x_{\rho}\|_{\rho} \leq \|\rho\|^{1/2} \cdot \|x\|_X$ holds for $x \in X$. Let $s \to U(s)$ be a Gramian σ -weakly continuous GUR of G on X. For each $s \in G$ define an operator $U_{\rho}(s)$ on X/N_{ρ} by $U_{\rho}(s)x_{\rho} = (U(s)x)_{\rho}, x \in X$. Then $U_{\rho}(s)$ is well-defined, maps X/N_{ρ} onto itself and is isometry on X/N_{ρ} . Hence $U_{\rho}(s)$ can be uniquely extended to a unitary operator, still denoted by $U_{\rho}(s)$, on X_{ρ} . Moreover, $s \to U_{\rho}(s)$ is a weakly continuous unitary representation of G on the Hilbert space X_{ρ} by the Gramian σ -weak continuity of $s \to U(s)$. By Stone's theorem there is a regular spectral measure P_{ρ} on \hat{G} such that $U_{\rho}(s) = \int_{\hat{G}} \overline{\langle s, X \rangle} P_{\rho}(dX), s \in G$ where $\langle \cdot, \cdot \rangle$ is the duality pair of G and \hat{G} (cf. [18, The-

Now let x, $y \in X$ and $B \in \mathfrak{B}_{\hat{G}}$ be fixed and consider the functional Λ on A_{*}^{+} defined by

$$A(\rho) = (P_{\rho}(B)x_{\rho}, y_{\rho})_{\rho}, \qquad \rho \in A_{*}^{+}.$$
(5.1)

We first show that Λ can be uniquely extended to a bounded linear functional on A_* .

5.2. LEMMA. The functional Λ on A_*^+ defined by (5.1) is uniquely extended to a bounded linear functional on A_* .

Proof. It suffices to prove that if $\rho_1, \dots, \rho_n \in A_*^+$ and complex numbers $\alpha_1, \dots, \alpha_n$ are such that $\sum_{j=1}^n \alpha_j \rho_j = 0$, then $\sum_{j=1}^n \alpha_j \Lambda(\rho_j) = 0$. Put $m_j(\cdot) = (P_{\rho_j}(\cdot) x_{\rho_j}, y_{\rho_j})_{\rho_j}, 1 \le j \le n$ and define $m = |m_1| + \dots + |m_n|$ where $|m_j|$ is the variation of m_j . Then m is a finite positive regular measure on \hat{G} and the linear span of G, regarded as the dual group of \hat{G} , is dense in $L^1(\hat{G}, m)$. It follows that for any $\varepsilon > 0$ there exist some $s_1, \dots, s_l \in G$ and complex numbers β_1, \dots, β_l such that

orem 7.1]).

$$\int_{\hat{G}} \left| 1_B(\chi) - \sum_{k=1}^l \beta_k \overline{\langle s_k, \chi \rangle} \right| m(d\chi) < \frac{\varepsilon}{n} (\max_{1 \le j \le n} |\alpha_j|)^{-1}$$

where 1_B is the characteristic function of B. Hence we have

$$\left| \sum_{j} \alpha_{j} \Lambda(\rho_{j}) - \sum_{j} \alpha_{j} \int_{\hat{G}} \sum_{k} \beta_{k} \overline{\langle s_{k}, \chi \rangle} m_{j}(d\chi) \right|$$
$$\leq \sum_{j} \left| \alpha_{j} \int_{\hat{G}} \{ 1_{B}(\chi) - \sum_{k} \beta_{k} \overline{\langle s_{k}, \chi \rangle} \} m_{j}(d\chi) \right|$$
$$\leq \sum_{j} |\alpha_{j}| \int_{\hat{G}} |1_{B}(\chi) - \sum_{k} \beta_{k} \overline{\langle s_{k}, \chi \rangle} |m(d\chi) < \varepsilon$$

On the other hand, it follows from the assumption that

$$\sum_{j} \alpha_{j} \int_{\widehat{G}} \sum_{k} \beta_{k} \overline{\langle s_{k}, \chi \rangle} m_{j}(d\chi) = \sum_{j} \alpha_{j} \sum_{k} \beta_{k} \langle U_{\rho_{j}}(s_{k}) x_{\rho_{j}}, y_{\rho_{j}} \rangle_{\rho_{j}}$$
$$= \sum_{j} \alpha_{j} \sum_{k} \beta_{k} \rho_{j} ([U(s_{k})x, y]]) = \sum_{j} \alpha_{j} \rho_{j} (\sum_{k} \beta_{k} [U(s_{k})x, y]]) = 0.$$

Consequently, $|\sum \alpha_j \Lambda(\rho_j)| < \varepsilon$. Since ε is arbitrary, we have $\sum \alpha_j \Lambda(\rho_j) = 0$, as desired. The boundedness of Λ on A_* is easily verified.

It follows from 5.2. Lemma that there is a unique element $P_{x,y}(B) \in A$ such that $A(\theta) = \theta(P_{x,y}(B)), \ \theta \in A_*$ and, in particular, $(P_{\rho}(B)x_{\rho}, y_{\rho})_{\rho} = \rho(P_{x,y}(B)), \ \rho \in A_*^+$. If B varies over $\mathfrak{V}_{\hat{\sigma}}$, the function $P_{x,y}(\cdot)$ defines an A-valued σ -weakly CA measure on \hat{G} . Then we have the following.

5.3. LEMMA. (1) For each x, $y \in X$ the relation

$$[U(s)x, y] = \int_{\hat{G}} \overline{\langle s, \chi \rangle} P_{x, y}(d\chi), \qquad s \in G$$
(5.2)

holds where the integral is in the σ -weak topology of A.

(2) For each x, y, $z \in X$ and $a \in A$ the equalities $P_{a \cdot x, y}(\cdot) = aP_{x, y}(\cdot)$, $P_{x+y, z}(\cdot) = P_{x, z}(\cdot) + P_{y, z}(\cdot)$ and $P_{x, y}(\cdot) = P_{y, x}(\cdot)^*$ hold.

(3) For each $B \in \mathfrak{B}_{\hat{G}}$ and $y \in X$ the function $x \to P_{x,y}(B)$ from X into A is a bounded module map, i.e., $P_{\cdot,y}(B) \in X^*$.

Proof. (1) Let x, $y \in X$. For every $\rho \in A_*$ it holds that

$$\rho(\llbracket U(s)x, y \rrbracket) = (U_{\rho}(s)x_{\rho}, y_{\rho})_{\rho} = \int_{\hat{G}} \overline{\langle s, \chi \rangle} (P_{\rho}(d\chi)x_{\rho}, y_{\rho})_{\rho}$$
$$= \int_{\hat{G}} \overline{\langle s, \chi \rangle} \rho(P_{x, y}(d\chi)) = \rho(\int_{\hat{G}} \overline{\langle s, \chi \rangle} P_{x, y}(d\chi))$$

This is enough to prove (5.2).

(2) Let x, $y \in X$ and $a \in A$, and take $\rho \in A_*^+$. By $[U(s)(a \cdot x), y] = a[U(s)x, y]$

we have $\int_{\hat{G}} \overline{\langle s, \chi \rangle} \rho(P_{a \cdot x, y}(d\chi)) = \int_{\hat{G}} \overline{\langle s, \chi \rangle} \rho(aP_{x, y}(d\chi))$ for $s \in G$. Since $\rho(P_{a \cdot x, y}(\cdot))$ and $\rho(aP_{x, y}(\cdot))$ are regular, they coincide. This is enough to show that $P_{a \cdot x, y}(\cdot) = aP_{x, y}(\cdot)$. Other equalities can be checked in a similar manner.

(3) Let $B \in \mathfrak{B}_{\hat{G}}$ and $y \in X$. It follows from (2) that $x \to P_{x,y}(B)$ is a module map. To see the boundedness, let $\rho \in A_{*}^{+}$. Then we have that $|\rho(P_{x,y}(B))| =$ $|(P_{\rho}(B)x_{\rho}, y_{\rho})_{\rho}| \leq ||x_{\rho}||_{\rho} \cdot ||y_{\rho}||_{\rho} \leq ||\rho|| \cdot ||x||_{X} \cdot ||y||_{X}$ for $x \in X$. Thus $||P_{x,y}(B)|| \leq$ $4||x||_{X} \cdot ||y||_{X}$, $x \in X$. Therefore $P_{\cdot,y}(B)$ is bounded.

Assume that X is self-dual. Then it follows from 5.3. Lemma (3) that for each $y \in X$ and $B \in \mathfrak{B}_{\hat{\sigma}}$ there is a unique $z \in X$ such that $P_{x,y}(B) = [x, z], x \in X$. Define z = P(B)y. Then P(B) is a well-defined operator in B(X) and $P(\cdot)$ is a B(X)-valued Gramian σ -weakly CA measure on \hat{G} such that $U(s) = \int_{\hat{G}} \overline{\langle s, X \rangle} P(dX)$, $s \in G$ where the integral is in the Gramian σ -weak topology. All we have to do is to show that $P(\cdot)$ is a Gramian spectral measure.

5.4. LEMMA. $P(\cdot)$ is a Gramian spectral measure on \hat{G} .

Proof. Let $B \in \mathfrak{V}_{\hat{G}}$ be fixed. It follows from 5.3. Lemma (2) that $[x, P(B)y] = P_{x,y}(B) = P_{y,x}(B)^* = [y, P(B)x]^* = [P(B)x, y]$ for $x, y \in X$. Hence $P(B) \in \mathfrak{A}(X)$ with $P(B)^* = P(B)$. Now we show that $P(B)^2 = P(B)$. First we see that $(x_{\rho}, (P(B)y)_{\rho})_{\rho} = \rho([x, P(B)y]) = \rho(P_{x,y}(B)) = (x_{\rho}, P_{\rho}(B)y_{\rho})_{\rho}$ for $x, y \in X$ and $\rho \in A_{\pm}^*$. Hence $(P(B)y)_{\rho} = P_{\rho}(B)(P_{\rho}(B)y_{\rho}, y \in X, \rho \in A_{\pm}^*$. Consequently we have $(P(B)y)_{\rho} = P_{\rho}(B)^2 y_{\rho} = P_{\rho}(B)(P_{\rho}(B)y_{\rho}) = P_{\rho}(B)(P(B)y)_{\rho} = (P(B)^2y)_{\rho}$ for $y \in X$ and $\rho \in A_{\pm}^*$. Therefore $P(B)^2 = P(B)$, as desired. It is clear that $\rho([P(\cdot)x, y])$ is a regular measure on \hat{G} for each $x, y \in X$ and $\rho \in A_{\pm}^*$. Thus $P(\cdot)$ is a Gramian spectral measure.

We summarize these discussions in the following theorem.

5.5. THEOREM. Let X be a self-dual Hilbert A-module and $s \rightarrow U(s)$ be a Gramman σ -weakly continuous GUR of G on X. Then there is a Gramman spectral measure P on \hat{G} such that

$$U(s) = \int_{\hat{\sigma}} \overline{\langle s, \chi \rangle} P(d\chi), \qquad s \in G$$

where the integral is in the Gramian σ -weak topology.

Now we can prove a Bochner type theorem as follows.

5.6. COROLLARY. For an A-valued weakly continuous PD function Γ on G there is an A-valued σ -weakly CA measure F on \hat{G} such that

$$\Gamma(s) = \int_{\hat{G}} \overline{\langle s, \chi \rangle} F(d\chi) , \qquad s \in G$$

where the integral is in the σ -weak topology of A.

Proof. It follows from 4.2. Proposition that there exist a Hilbert A-module X_{Γ} , a GUR $s \to U_0(s)$ of G on X_{Γ} and a cyclic vector $x_0 \in X_{\Gamma}$ such that $\Gamma(s) = [U_0(s)x_0, x_0]_{\Gamma}$, $s \in G$ where $[\cdot, \cdot]_{\Gamma}$ is the Gramian on X_{Γ} . Again by 4.2. Proposition Γ is σ -weakly continuous since weak and σ -weak topologies coincide on bounded subsets of A. Hence we can see that $s \to U_0(s)$ is Gramian σ -weakly continuous. Then $s \to U_0(s)$ can be uniquely extended to a Gramian σ -weakly continuous GUR $s \to U(s)$ of G on the self-dual Hilbert A-module X_{Γ}^* . Consequently, by 5.5. Theorem, there is a Gramian spectral measure P on \hat{G} such that $U(s) = \int_{\hat{\sigma}} \overline{\langle s, \mathcal{X} \rangle} P(d\mathcal{X})$, $s \in G$. Putting $F(\cdot) = [P(\cdot)x_0, x_0]$ where $[\cdot, \cdot]$ is the Gramian on X_{Γ}^* , we have that F is an A-valued σ -weakly CA measure on \hat{G} and that, for $s \in G$,

$$\Gamma(s) = [U(s)x_0, x_0] = \left[\int_{\hat{\sigma}} \overline{\langle s, \chi \rangle} P(d\chi)x_0, x_0\right] = \int_{\hat{\sigma}} \overline{\langle s, \chi \rangle} [P(d\chi)x_0, x_0]$$
$$= \int_{\hat{\sigma}} \overline{\langle s, \chi \rangle} F(d\chi).$$

6. Hilbert A-module valued processes.

Let G be a locally compact abelian group and X be a Hilbert A-module. We consider X-valued processes over G.

6.1. DEFINITION. (1) An X-valued process $\{x(t)\}$ over G is a map $t \to x(t)$ from G into X.

(2) The covariance function Γ of a process $\{x(t)\}$ is defined by $\Gamma(s, t) = [x(s), x(t)]$, s, $t \in G$. Γ is an A-valued PDK on $G \times G$.

(3) A process $\{x(t)\}$ is said to be *stationary* if its covariance function $\Gamma(s, t)$ depends only on st^{-1} and, putting $\Gamma(s, t) = \Gamma(st^{-1})$, if Γ is an A-valued weakly continuous function on G.

(4) For a process $\tilde{x} = \{x(t)\}$ the time domain $\mathfrak{H}(\tilde{x})$ and an observation space $\mathfrak{H}(\tilde{x}; D)$ of a subset D of G are defined as submodules by $\mathfrak{H}(\tilde{x}) = \mathfrak{S}\{x(t); t \in G\}$ and $\mathfrak{H}(\tilde{x}; D) = \mathfrak{S}\{x(t); t \in D\}$, respectively.

(5) Let $\tilde{x} = \{x(t)\}$ be an X-valued process and $\tilde{y} = \{y(t)\}$ be a Y-valued process, Y being a Hilbert A-module. Then \tilde{x} and \tilde{y} are said to be *equivalent* if there exists a Gramian unitary operator $U: \mathfrak{H}(\tilde{x}) \to \mathfrak{H}(\tilde{y})$ such that Ux(t) = y(t), $t \in G$.

Then the following is easily proved.

6.2. PROPOSITION. (1) For any A-valued PDK Γ on $G \times G$ there is some Hilbert A-module valued process with the covariance function Γ .

(2) Let \tilde{x} be an X-valued process with the covariance function Γ . Then we have, for each subset D of G, $\mathfrak{H}(\tilde{x}; D) \cong D \otimes_{\Gamma} A$ and, in particular, $\mathfrak{H}(\tilde{x}) \cong G \otimes_{\Gamma} A$ where $D \otimes_{\Gamma} A$ was constructed in section 3.

(3) Let \tilde{x} be an X-valued process and \tilde{y} be a Y-valued process, Y being a Hilbert A-module. Then \tilde{x} and \tilde{y} are equivalent if and only if their covariance functions are identical.

(4) Stationarity is invariant within equivalence. More precisely, let \tilde{x} and \tilde{y} be as in (3) above. If they are equivalent and \tilde{x} is stationary, then \tilde{y} is also stationary.

(5) Let $\{x(t)\}$ be an X-valued stationary process with the covariance function

 Γ . Then there exist an X*-valued CA orthogonally scattered measure ξ and an A-valued CA measure F on \hat{G} such that

$$x(t) = \int_{\hat{G}} \overline{\langle t, \chi \rangle} \xi(d\chi) , \qquad \Gamma(t) = \int_{\hat{G}} \overline{\langle t, \chi \rangle} F(d\chi) , \qquad t \in G$$

where the orthogonal scatteredness of ξ means that $[\xi(A), \xi(B)]=0$ for every disjoint pair A, $B \in \mathfrak{V}_{\hat{G}}$.

Let $(\mathcal{Q}, \mathfrak{B}, \mu)$ be a probability measure space and E be a Banach space with the dual space E^* . An E-valued function x on \mathcal{Q} is said to be of weak second order if it is weakly measurable and $f^*(x(\cdot)) \in L^2(\mathcal{Q}, \mu)$ for every $f^* \in E^*$. For each such function x there is an operator $T_x: E^* \to L^2(\mathcal{Q}, \mu)$ such that $(T_x f^*)(\cdot)$ $= f^*(x(\cdot)), f^* \in E^*$. If E is separable, then $T_x^*: L^2(\mathcal{Q}, \mu) \to E \subset E^{**}$ (cf. [19, 2.2. Proposition]). Putting $H = L^2(\mathcal{Q}, \mu)$ and $L = E^*$, we define an E-valued process over G of weak second order to be a B(L, H)-valued process over G where B(L, H) is the Banach space of all bounded linear operators from L into H. The case where L is a Hilbert space was studied by Gangolli [4]. In this case B(L, H) is a (right) Hilbert B(L)-module as was noted by Gangolli. Susiu and Valsescu [16] considered in this view point (see also Saworotnow [15]). The case where L is an arbitrary Banach space was studied by several authors such as Cobanjan and Weron [2], Weron [19] and Miamee [8] (cf. [9]).

Let $\{x(t)\}$ be an *E*-valued process of weak second order, i.e., $\{x(t)\}$ is a $B(E^*, H)$ -valued process. When *E* is separable or reflexive, the *adjoint process* $\{x(t)^*\}$, which is $B(H, E^{**})$ -valued, becomes a B(H, E)-valued process. The space B(H, E) is a (right) Hilbert B(H)-module if we define a module action and a Gramian by $x \cdot a = xa$ and $[x, y] = y^*x$ for $x, y \in B(H, E)$ and $a \in B(H)$, respectively. Hence our theory is available in this respect.

References

- [1] ARONSZAJN, N., Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
- [2] COBANJAN, S.A. AND WERON, A., Banach space valued stationary processes and

their linear prediction, Dissertationes Math. 125 (1975), 1-45.

- [3] DIXMIER, J., C*-algebras, North-Holland, Amsterdam, 1977.
- [4] GANGOLLI, R., Wide-sense stationary sequences of distributions on Hilbert space and the factorization of operator valued functions, J. Math. Mech. 12 (1963), 893-910.
- [5] ITOH, S., A note on dilations in modules over C*-algebras, J. London Math. Soc.
 (2) 22 (1980), 117-126.
- [6] KAKIHARA, Y. AND TERASAKI, T., Hilbert B(H)-modules with applications I, Res. Rep. Inst. Inf. Sci. Tech. (Tokyo Denki Univ.) 5 (1979), 23-32.
- [7] KAPLANSKY, I., Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
- [8] MIAMEE, A.G., On B(X, K)-valued stationary stochastic processes, Indiana Univ. Math. J. 25 (1976), 921-932.
- [9] MIAMEE, A.G. AND SALEHI, H., On the square root of a positive B(3, 3*)-valued function, J. Multivar. Anal. 7 (1977), 535-550.
- [10] NAKAMURA, M. AND UMEGAKI, H., A remark on theorems of Stone and Bochner, Proc. Japan Acad. 27 (1951), 506-507.
- [11] OZAWA, M., Hilbert B(H)-modules and stationary processes, Kodai Math. J. 3 (1980), 26-39.
- [12] PASCHKE, W.L., Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
- [13] RIEFFEL, M.A., Induced representations of C*-algebras, Advances Math. 13 (1974), 176-257.
- [14] SAWOROTNOW, P.P., A generalized Hilbert space, Duke Math. J. 35 (1968), 191-197.
- [15] SAWOROTNOW, P.P., Abstract stationary processes, Proc. Amer. Math. Soc. 40 (1973), 585-589.
- [16] SUSIU, I. AND VALSESCU, I., A linear filtering problem in complete correlated actions, J. Multivar. Anal. 9 (1979), 599-613.
- [17] UMEGAKI, H., Positive definite function and direct product Hilbert space, Tôhoku Math. J. 7 (1955), 206-211.
- [18] UMEGAKI, H., An operator method for harmonic analysis on locally compact abelian group, MRC Tech. Summary Rep. #725, Madison, Wisconsin, 1967.
- [19] WERON, A., Prediction theory in Banach space, Lecture Notes in Math. No. 472, pp. 207-228, Springer-Verlag, New York, 1975.

Department of Mathematical Science Tokyo Denki University Ishizaka, Hatoyama-machi, Hiki-gun Saitama-ken 350-03, Japan