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ON A HILBERT MODULE OVER AN OPERATOR

ALGEBRA AND ITS APPLICATION TO

HARMONIC ANALYSIS

BY YUICHIRO KAKIHARA

1. Introduction.

We study a left A-module with an A-valued inner product where A is an
operator algebra. Such a space has been investigated by many authors : Kaplansky
[7], Saworotnow [14], Paschke [12], Rieffel [13], Ozawa [11], Itoh [5], Kaki-
hara and Terasaki [6] and others.

Let A be a von Neumann algebra. Then a Hubert ^4-module is defined to
be a left ^4-module with an A-valued inner product respecting the module action,
called a Gramian, which is complete with respect to (w. r.t.) the norm induced
from the Gramian. Our main object is harmonic analysis on a topological group
in the Hubert ^-module context. Especially, a Stone type and a Bochner type
theorems are formulated and proved.

Basic definitions of a Hubert ^-module are given in section 2. In section 3,
A-valued positive definite kernels are considered in connection with reproducing
kernel Hubert yl-modules which are analogous to Aronszajn's reproducing kernel
Hubert spaces [1]. Section 4 deals with Gramian unitary representations of a
topological group and Gramian ^representations of a ZΛgroup algebra on a
Hubert A-module. Results stated in sections 3 and 4 hold when A is a (unital)
C*-algebra. In section 5, we prove our main result which is a Stone type the-
orem for a continuous, in an appropriate sense, Gramian unitary representation
of a locally compact abelian group. As a corollary we give a proof to a Bochner
type theorem for a weakly continuous /L-valued positive definite function. Section
6 is devoted to Hubert ^-module valued processes over a locally compact abelian
group. Such a formulation of processes is closely related to Banach space valued
stochastic processes (cf. Cobanjan and Weron [2], Weron [19] and Miamee [8]).

Acknowledgments: The author would like to express his hearty thanks to
Professor H. Umegaki for his valuable suggestions and encouragement in the
course of preparing this paper.

2. Hubert ^-modules.

Throughout this paper A stands for a von Neumann algebra with the norm
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|| ||. We denote the action of A on a left ^4-module X by (a, x)-+ a-x,
x^X. We assume that all such modules treated below have a vector space
structure compatible with that of A in the sense that a(a'x)=(aa)-x = a-(ax)
for χ(=X, a^A and a complex number a.

2.1. DEFINITION. A (left) pre-Hilbert A-module is a left ^-module for which
there is a map [ , •] : XxX->A such that for x, y, z^X and a<=A (1) [x, x~]
^0, and[x, xl=0 iff x=0; (2) lx + y, zl = lx, zl + ly, zl; (3)[α x, ;y] = α[x, yl;
(4) [x, 3Γj*=[;y, x]. The map [ , •] is called a Gramian on X We sometimes
denote it explicitly by [ , ]χ

If X is a right ^4-module, then we can define (right) pre-Hilbert ^-module
structure for I in a similar manner as above except that the condition (3) is
replaced by (30 [x α, jy] = [x, y~\a. Since there is no essential difference between
right and left .A-modules, we restrict our attention to left ^4-modules.

In a pre-Hilbert Amodule X define ||x|| * = !![>, x] | | 1 / 2, x e X . Then by [12,
2.3 Proposition], || ||χ becomes a norm on X and we have for x, y<=Xand a^A

l|α * | | ^ | | α | H I * l l * , II[x, yl\m\χ\\χ'\\y\\χ. (2.1)

2.2. DEFINITION A pre-Hilbert ^-module X which is complete w.r. t. the
norm || ||χ is called a Hilbert A-module.

Examples of (right) Hilbert ,4-modules are seen in [12] where A is a C*-
algebra.

2.3. DEFINITION. Let Z b e a Hilbert ^4-module. We define the Gramian
orthogonal complement of a subset Y of X by P = { x e Z ; [_χ, yl=Q, ^ e F } . A
subset Y is called a submodule if it is a left ^4-module and is closed w. r. t. || |lx
In this case Y is itself a Hilbert /L-module. Denote by <&(Y) the submodule
generated by a subset Y. It is seen that for each subset Y its Gramian ortho-
gonal complement F # is a submodule and the relation (δ(F)C(F # ) # holds.

2.4. DEFINITION. Let X and Y be two Hilbert A-modules with Gramians
[ , ]χ and [ , ]r, respectively. B(X, Y) denotes the Banach space of all
bounded linear operators from X into Y. 2ί(X, Y) denotes the set of all opera-
tors S^B{X, Y) for which there is an operator T(ΞB(Y, X) such that [Sx, y~]γ
— 1%, Ty~]x, I G I , y^Y. It is seen that T is unique if it exists, so that we
denote it by S* and call it the Gramian adjoint of 5. An operator U(ΞB(X, Y)
is said to be Gramian unitary if it is onto and satisfies that [Ux, Ux'~]γ — [_x, xf~]χ,
x, x'^X. It can be seen that each Gramian unitary operator U<^B(X, Y) belongs
to 2l(X, Y) and satisfies U*U=IX, the identity operator on X. We write B(X)
= B(X, X) and 2ί(X) = 5ί(Z, X). An operator PEΞB(X) is called a Gramian pro-
jection if P<Ξ2I(Z) and P2=P*=P. Two Hilbert ^-modules X and Y are said
to be isomorphiCy in symbols X^Y, if there is a Gramian unitary operator in
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, Y).

For a<=A define π(a) by π{a)x — a-x, X G I , X being a Hubert τ4-module.
Then, by (2.1), π(a)eB(X). A kind of functionals on a Hubert ^4-module is
defined in the following (cf. [7, 12, 14]).

2.5. DEFINITION. Let X be a Hubert A-module. Denote by Z* the set of
all bounded module maps τ\ X-+A. That is, τ satisfies τ{a x-^-b-y) = aτ(x) +
bτ{y), x, J G I , a, b^A, and there is some α > 0 such that | |τ(x)| |^α| |x| |χ, x^X.
Each xGΞXgives rise to a map i E l * defined by x{y) — [_y, x], j e l X is said
to be self-dual if X*=X(={x; x

2.6. femαr^ ([12]). Let X be a Hubert ^-module. Then X* becomes a
self-dual Hubert A-module in which X can be embedded as a submodule. More-
over, each operator in 9ί(X) can be uniquely extended to an operator in %{X*).
If X is self-dual, then we have W(X)={S£ΞB(X); Sπ(a) = π(a)S, a^A}. That
is, 3ί(X) consists of all bounded module maps from X into itself. Furthermore,
there is a collection {pt; Z'GΞS} of (not necessarily distinct) nonzero projections
in A such that X=ΌΌS{Apι; I G S } , the ultraweak direct sum of self-dual Hu-
bert A -modules Apt, / G S . For each z e 5 the Gramian on Apx is defined by
[.apt, bpι~]ι — apιb^, a, freΛ As a consequence of this decomposition, for any
self-dual submodule Y of X, we have that X—YQY*, the direct sum, and that
there is a Gramian projection of X onto Y.

3. Positive definite kernels.

We consider A-valued positive definite kernels on ΩxΩ, Ω being a set, and
construct reproducing kernel Hubert ^4-modules.

3.1. DEFINITION. An Λ-valued function F on ΩxΩ is called a positive
definite k e r n e l (PDK) if f o r e v e r y finite {ωlf •••, ω n } ( Z Ω a n d {alt •••, a n } ( Z A i t
holds that Σ aiΓ(ωif ω^af^O. Every PDK Γ on ΩxΩ satisfies that Γ{ω, ω')

=Γ(ω', ω)*, ω, ω ' e β .

For each ^4-valued PDK .Ton ΩxΩ we can associate a Hubert A -module
Ω<g)ΓA by the method similar to that of Umegaki [17]. To this end, let F{Ω A)
be the set of all A-valued functions on Ω with finite supports. For /, g^F(Ω A)
and a<ΞA define (α /)( ) = fl/( ), [/, £ > = Σ Πa>)Γ(ω, ω')g{ωf)* and | | / | | Γ =

HE/, /]rlΓ / 2 Then [ , ] r satisfies conditions of a Gramian except that [/, f]Γ

- 0 implies / = 0 . Put NΓ={f^F(Ω; A); [/, / > = 0 } and let Ω®ΓΛ be the
completion of the quotient space F(Ω; A)/NΓ w. r. t. the norm || |]r. Then
Ω®rA is a Hubert ^4-module. Moreover, it is closely related to the reproducing
kernel Hubert /1-module of Γ defined below.
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3.2. DEFINITION. Let Γ be an A-valued PDK on ΩxΩ and I b e a Hubert
.4-module consisting of A-valued functions on Ω. Then X is said to be the
reproducing kernel (RK) Hubert A-module of Γ if

(1) for each ω^Ωy Γ(ω, ) e X ;
(2) for each ω^Ω and X E Z , x(ω) = [*(•), Γ(ω, •)].

The PDK Γ is called the reproducing kernel (RK) for X

3.3. PROPOSITION. For each A-valued PDKΓon ΩxΩ there is a unique, up to
isomorphism, Hilbert A-module Xp admitting Γ as a RK. Moreover, the relation

holds.

Proof. The proof mimics that of [9, 2.5. Lemma] and we only give the
outline. Let Xo be the set of all A-valued functions on Ω of the form

1 = 1

with n finite. Define for x t O ^ Σ β Λ , •), y(')~yΣibjΓ(ωf

j, -)^X0 and

(a-x)( )=TίaaiΓ(ωu •), [*, y']o=ΣaiΓ(ωif ώjb*.
l 3,3

Then Xo becomes a pre-Hilbert A-module with an action and a Gramian defined
as above. Moreover, for I G Z 0 and O J E S the reproducing property x(ω) —
[_x(-),Γ(ω, )]o holds. Hence we have | |x(ω)||^| |x| |0 \\Γ(ω, )llo where ||jy||0=

Let {xn} be a Cauchy sequence in XQ w. r.t. the norm || ||0. It follows from
the above inequality that for every ω^Ω there exists some x(ώ)^A such that
\\xn(ω)—x(ω)\\ ->0. Denote by XΓ the set of all Avalued functions x on Ω
obtained in this way. For x, y^Xr define [x, 3^]=lim[xn, j n ] 0 where {xn}

and {3;̂ } are Cauchy sequences in Xo determining x and y, respectively. Then
we can check that Xp is actually a Hilbert Amodule with the Gramian [ , •]•
Furthermore, the reproducing property of Γ can also be checked and, therefore,
Γ is a RK for Xp. The uniqueness of Xp and the isomorphism XΓ^Ω®ΓA
are readily verified.

4. Gramian unitary reresentations and Gramian ^representations.

We first consider Gramian unitary representations of a topological group on
a Hilbert ^4-module and their relation to ^-valued positive definite functions on
the group.

4.1. DEFINITION. Let G be a topological group and X be a Hilbert y4-module.
An A-valued function Γ on G is said to be positive definite (PD) if for every
finite {al9 •••, an}dA and {su •••, sn}CZG it holds that Σ aiΓ(sjtst)af^0. Putt-

ι3

ing f(s, t)=Γ(t-1s), s, ίGG, Γ is PZ> iff f is a PDK on GxG. Γ is said to be
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continuous if it is norm continuous on G. A Gramian unitary representation
(GUR) of G on X is a homomorphism s -> U(s) from G into $l(X) for which
U(s) is Gramian unitary for every s^G. A GUR s—>U(s) is said to be contin-
uous if for every x e l the function s->U{s)x is norm continuous on G, A
vector % o e ^ is said to be cyclic for a GUR s —> U(s) if ©{i/(s)x0; s e G } = X

Then we can prove the following.

4.2. PROPOSITION. Let G be a topological group and Γ:G-> Abe PD. Then
there exist a Hilbert A-module X, a GUR s —» U{s) of G on X and a cyclic vector
xo<E:X such that Γ(s) = \ΊJ(s)x0, xQ~], s^G. It also holds

\\Γ(s)\\^\\Γ(e)\\, \\Γ(s)-Γ(tW^2\\Γ(e)-Γ(s-H)\\ \\ne)\\ (4.1)

for s, t^G where e is the identity of G. Furthermore, Γ is continuous if and
only if so is s -^ U(s).

Proof. Put Γ(s, ί )=Πί" 1 s) , s, t^G and let X be the RK Hilbert A-module
of Γ with the Gramian [ , •] (cf. 3.3. Proposition). Then we have Γ(s) = Γ(s, e)
~[_Γ{s, •), Γ(e, )1 SΪΞG. Let Xo be the set of all A-valued functions on G of

n

the form ^ΣaιΓ{sι, •), a^A, st^G, l^i^n with n finite. For seG define
lU(s) on Xo by t/(s)Σ βfAsi, ')=ΣldiΓ(ssι> •)• Then it is easy to see that for

x, y^X0 the equality [_U(s)xy U{s)y} = [_x, y~] holds. Hence U(s) can be uniquely
extended to a Gramian unitary operator on X since Xo is dense in X. Thus
s->U(s) is a GUR of G on X. Putting xo = Γ(e, -)&X, it is readily seen that
xQ is a cyclic vector for s-^U(s) and that the equality Γ(s) = \V(s)x0, x0] holds
for s^G. Two inequalities in (4.1) follow from this equality as in the case of
scalar valued PD functions (cf. [18]). The last assertion is not hard to check.

In the remainder of this section let G be a locally compact group with a
left Haar measure ds and consider the space L\G ZA) of all Z^-valued Bochner
integrable functions on G w.r.t. ds where ZA is the center of A, i.e., Z ^ =
{flGi; ab=ba, b^A}. L\G ZA) is a Banach *-algebra whose multiplication,

involution and norm are respectively defined by (fg)(t) = \ f(s)g{s~H) ds, /* (0 r =

Γ
fit-ψ and H/L- ||/(s)||rfs for each /, g^L\G; ZA) and t^G where Δ

is the modular function of G. Define (α /)( ) = α/( ), β ^ Λ f^L\G; ZA) and
denote by S^G Z 4 ) the left A-module generated by L\G Z 4 ). Now we con-
sider Gramian ^representations of L\G ZA) on a Hilbert A-module in connec-
tion with GURs of G.

4.3. DEFINITION. Let X be a Hilbert A-module. Then a map / -> T(/) from
2\G Z J into B(X) is called a Gramian ^representation (G*R) of L2(G ZA) on
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X if the restriction of T to L\G; ZA) is 2I(Z)-valued and if T(a-f+b-g) =
π{a)T{f)+π{b)T{g\ T(/*)=T(/)* and T{fg)=T{f)T{g) for each /, g^L\G;ZA)
and a, b^A where π(a)χ — a-xy x^X. A G*R f -*T(f) is said to be nonde-
generate if @{T(/)jc; f^L\G\ ZA), I G I } - I

Given a continuous GUR s -» U(s) of G on a Hilbert yl-module X, define
T(f) for f<=L\G; Z^) by

(4.2)

where the right hand side is a well-defined Bochner integral. If X is self-dual,
then we can show that / -> T{f) is a G*R of L\G Z J on X

Let 5SG be the Borel σ-algebra of G and M(G ZA) be the set of all ZA-
valued countably additive (CA) measures, in the norm, on $ G of bounded varia-
tions. For μ,v^M(G;ZA) and a, b^A define (a-μJrb-v)(B) = aμ(B)+bv(B),
μ*(B)=μ(B-1)* and {μιή(B)=μXv(B')(B'={(s, t) st^B}) for B^%G) and \\μ\\ =
the total variation of μ. Then M(G ZA) becomes a Banach *-algebra. Ίίl(G Z^)
denotes the left yl-module generated by M(G ZA). By a Gramian ^-representa-
tion of M(G ZA) on a Hilbert ^4-module X we mean a map μ —• T(^) from
9Jl(G; Z^) into 5(Z) whose restriction to M(G; ZA) is 5ί(Z)-valued and which
satisfies that T(a μ+b-v) = π(a)T(μ) + π(b)T(v), T(μ*)=T(μ)* and T(μv)=T(μ)T(v)
for μ, V<EΞM{G ZA) and a, 6 G A L\G Z^) is a Banach *-subalgebra of M(G ZA)
by identifying f^L\G; ZA) with f(s)ds^M(G; ZA). By similar proofs of [3,
13.3.1. and 13.3.4. Propositions] we can show the following.

4.4. PROPOSITION. Let X be α self-dual Hilbert A-module. Given a continuous
GUR s->U(s) of G on X, define for μ^M(G; ZA)

= \ U(s)π(μ(ds))x ,
J G

Then T(μ) is a well-defined operator on X and μ-+ T(μ) is a G*R of M(G ZA)
on X whose restriction to L\G\ ZA) is nondegenerate.

If f -»T(f) is a nondegenerate G*R of L\G;ZΛ) on X, then there is a
unique continuous GUR s —> U(s) of G on X such that (4.2) holds.

5. A Stone type and a Bochner type theorems.

In this section we assume that G is a locally compact abelian group. Denote
by A* the predual of A and by A% its positive part. For a Hilbert 74-module
X we define the Gramian σ-weak topology on 9I(X) (or B(X)) to be the topology
determined by the family of seminorms

\p(ίSx, yl)\ , x,

We prove a Stone type spectral representation theorem for a Gramian cr-weakly
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continuous GUR of G on some self-dual Hubert ^4-module. As a consequence
we give a proof to a Bochner type integral representation theorem of an Λ-
valued weakly continuous PD function on G. For the scalar valued case we
refer to Nakamura and Umegaki [10] and Umegaki [18].

Before we proceed we need some preparations. Let %$G be the Borel <7-algebra
of the dual group G of G and X be a Hubert /1-module.

5.1. DEFINITION. A map P: $£ -> 5SC(Z) is called a Gramian spectral measure
on G if P is Gramian projection valued and if, for each p^.A% and x, y^X,
ρ(ίP(*)x> yl) is a regular measure on G.

Take p<=Ai and define a semi-inner product on X by (x, y)p — p{[_x> y]), x,
J G I Put Np={χeX; (#, x)lO=0} and define Xp to be the completion of the
quotient space X/Np w. r.t. ( , ) p . Then Xp is a Hubert space where we denote
the inner product and the norm by ( , -)p and \\'\\p, respectively. Write xp — x
+NPΪΞX/NP for I G I Note that the inequality \\xP\\Pύ\\p\\1/2'\\x\\x holds for
X G I Let s —> U(s) be a Gramian σ-weakly continuous GUR of G on X. For
each s e G define an operator ί/p(s) on X/Np by Up(s)xp=(U(s)x)p, x^X. Then
ί/̂ Cs) is well-defined, maps X/Np onto itself and is isometry on X/Np. Hence
Z7p(s) can be uniquely extended to a unitary operator, still denoted by Up(s), on
Xp. Moreover, s —> Up(s) is a weakly continuous unitary representation of G on
the Hubert space Xp by the Gramian σ-weak continuity of s -> U(s). By Stone's
theorem there is a regular spectral measure Pp on G such that Up(s) =

, XyPp(dX), SΪΞG where < , •> is the duality pair of G and G (cf. [18, The-

orem 7.1]).

Now let x, J / G I and BG%$G be fixed and consider the functional Λ on Λi
defined by

Λ(p)=(Pp(B)xp, y P ) P , ptaAi. (5.1)

We first show that A can be uniquely extended to a bounded linear functional
on τ4*.

5.2. LEMMA. The functional A on A% defined by (5.1) ts uniquely extended
to a bounded linear functional on A*.

Proof. It suffices to prove that if pu •••, pn^A% and complex numbers
n n

•••, cvn are such that Σ α ^ j = 0 , then Σ α j ^ ί ( ^ ) = 0 . Put mj(') = (PPj( )xPj,

l ^ / ^ w and define m = | m i | + ••• +|wznl where Im l̂ is the variation of
p j p j ^

m3. Then m is a finite positive regular measure on G and the linear span of
G, regarded as the dual group of G, is dense in L\G, m). It follows that for
any ε > 0 there exist some slt •••, Si^G and complex numbers /9j, •••, βL such that
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where 1B is the characteristic function of B. Hence we have

j JG k

J JG k

On the other hand, it follows from the assumption that

yPj)
Pj

Consequently, \yΣaJΛ(pj)\<ε. Since ε is arbitrary, we have ΣccjΛ(pj)=Ot as
desired. The boundedness of Λ on A* is easily verified.

It follows from 5.2. Lemma that there is a unique element PXty(B)^Λ such
that Λ(θ) = θ(Px,y(B)\ Θ<=A* and, in particular, {Pp{B)xpy yP)P=p(PXtV(B)), /?e
A*. If B varies over %$G, the function Px>y( ) defines an ^-valued σ-weakly CA
measure on G. Then we have the following.

5.3. LEMMA. (1) For each i ,

lU(s)x, y1=

the relation

(5.2)

holds where the integral is in the σ-weak topology of A.
(2) For each x , y , z^X and a<=A the equalities Pa.x y( ) = aPx y ( ), Pχ+y *(•)

= / V . ( ) + / Y * ( ) and PXtV( )=PVtX( )* hold,
(3) For each B^^βG and y^X the function x —> PXy y(B) from X into A is

a bounded module map, i.e., P.>y(B)<^X*.

Proof. (1) Let x, y^X. For every

p(ίU(s)x, yl)=(Up(s)xp, yP)P

it holds that

, y P ) P

This is enough to prove (5.2).
(2) Let x, y e Z a n d a<EA, and take %. By \V(s)(a-x), y~] = a[U{s)x, y~]
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we have \Zs~T>p(Pa.x,y(dX)) = \Xs~~T>p{aPx,y{dX)) for s^G. Since p(Pa.χ,y( ))
J G j G

and ρ{aPXty{-)) are regular, they coincide. This is enough to show that Pa.x,y(-)
= aPXty('). Other equalities can be checked in a similar manner.

(3) Let BΪΞΪSG and j i ε l It follows from (2) that x-^Px,y(B) is a module
map. To see the boundedness, let p^A%. Then we have that \p(PXty(B))\ =
\ ( P P ( B ) x p , y p ) p \ ^ \ \ x p \ \ p \\yp\\p^\\p\\>\\x\\χ.\\y\\x f o r x^X. T h u s \\Px,y{B)\\^

Therefore P.,y(B) is bounded.

Assume that X is self-dual. Then it follows from 5.3. Lemma (3) that for
each J / G I and B^%$G there is a unique Z G ! such that Px>y(B) = [x, z], X E I
Define z=P(B)y. Then P{B) is a well-defined operator in B(X) and P( ) is a

5(X)-valued Gramian σ-weakly CA measure on G such that ί/(s) = L<s, X}P(dX),

where the integral is in the Gramian σ-wesk topology. All we have to
do is to show that P( ) is a Gramian spectral measure.

5.4. LEMMA. P(-) IS a Gramian spectral measure on G.

Proof. Let Bt=%$e be fixed. It follows from 5.3. Lemma (2) that [JC, P(B)yl
=Px,y(B)=Py,x(B)* = \:y, P(B)xl* = lP(B)x, y^ for x, j ε l Hence P(B)tΞW(X)
with P(B)*=P(B). Now we show that P(B)2=P(B). First we see that
(*„ (P(B)y)p)p = p(lx, P(B)yl) = p(PXιV(B)) = (xp, PP(B)yp)p for x, y^X and ptΞ
A%. Hence (P(B)y)p=Pp(B)yp, J G I , p^A%. Consequently we have (P(B)y)p

=Pp(B)*yp=Pp(B)(Pp(B)yp)=Pp{B){P{B)y)p = (P(B)*y)p for y^X and p^At
Therefore P(B)2=P(B), as desired. It is clear that p{[_P{-)x, y~]) is a regular
measure on G for each x, j e l and ρ^A%. Thus P( ) is a Gramian spectral
measure.

We summarize these discussions in the following theorem.

5.5. THEOREM. Let X be a self-dual Hubert A-module and s -> U(s) be a
Gramian σ-weakly continuous GUR of G on X. Then there is a Gramian spectral
measure P on G such that

U(s) = \ <s, X>P(dX),
JG

where the integral is in the Gramian σ-weak topology.

Now we can prove a Bochner type theorem as follows.

5.6. COROLLARY. For an A-valued weakly continuous PD function Γ on G
there is an A-valued σ-weakly CA measure F on G such that
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where the integral is in the σ-wsak topology of A.

Proof. It follows from 4.2. Proposition that there exist a Hubert ^4-module
Xr, a GUR s—>U0(s) of G on Xp and a cyclic vector xQ^.Xp such that Γ(s)
= \Vo(s)xOf Xolr, s e G where [ , ] r is the Gramian on XΓ. Again by 4.2.
Proposition Γ is α -weakly continuous since weak and σ-weak topologies coincide
on bounded subsets of A. Hence we can see that s —> U0(s) is Gramian σ-weakly
continuous. Then s -> U0(s) can be uniquely extended to a Gramian α -weakly
continuous GUR s -» ί/(s) of G on the self-dual Hubert ^4-module Xf. Conse-
quently, by 5.5. Theorem, there is a Gramian spectral measure P on G such

that £/(s) = ί <s~X>P(dX), s e G . Putting F( ) = [P( )*o, *o] where [ , •] is the
JG

Gramian on Xf, we have that F is an ^-valued σ-weakly CA measure on G
and that, for

=\ά

6. Hubert Λ-module valued processes.

Let G be a locally compact abelian group and X be a Hubert /L-module. We
consider Ĵ Γ-valued processes over G.

6.1. DEFINITION. (1) An X-valued process {x{t)} over G is a map t->x(t)
from G into Z.

(2) The covariance function Γ of a process {#(£)} is defined by Γ(s, t) —
[*(s), x(ί)], s, ίeG. Γ i s an ^-valued PDK on GxG.

(3) A process {x(t)} is said to be stationary if its covariance function Γ(s, t)
depends only on st'1 and, putting Γ(s, ί) = -Γ(sί~1), if T7 is an ^4-valued weakly
continuous function on G.

(4) For a process ic= {#(£)} the time domain φ(x) and an observation space
ξ)(x; D) of a subset D of G are defined as submodules by i>(£)=©{x(0; t^G}
and $(£; D)=@{x(0; ίeD}, respectively.

(5) Let x={x(t)} be an X-valued process and y—{y(t)} be a F-valued pro-
cess, Y being a Hubert A-module. Then x and j ; are said to be equivalent if
there exists a Gramian unitary operator U: &(x)-*$(y) such that Ux(t)=y(t),

Then the following is easily proved.

6.2. PROPOSITION. (1) For any A-valued PDK Γ on GxG there is some
Hilbert A-module valued process with the covariance function Γ.
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(2) Let x be an X-valued process with the coυanance function Γ. Then we
have, for each subset D of G, ξ)(x D)^D®ΓA and, in particular, ${x) = G<g>rA
where D®ΓA was constructed in section 3.

(3) Let x be an X-valued process and y be a Y-valued process, Y being a
Hubert Λ-module. Then x and y are equivalent if and only if their covanance
functions are identical.

(4) Stationarity is invariant within equivalence. More precisely, let x and y
be as in (3) above. If they are equivalent and x is stationary, then y is also
stationary.

(5) Let {x(t)} be an X-valued stationary process with the covanance function

Γ. Then there exist an X*-valued CA orthogonally scattered measure ξ and an
A-valued CA measure F on G such that

where the orthogonal scatteredness of ξ means that [_ζ{A), ξ{B)~]—Q for every dis-
joint pair A,

Let (Ω, $, μ) be a probability measure space and E be a Banach space with
the dual space E*. An ^-valued function x on Ω is said to be of weak second
order if it is weakly measurable and f*{x(-))^L2(Ω, μ) for every / * G £ * . For
each such function x there is an operator Tx : £ * -> L\Ω, μ) such that (Tx/*)(-)
=/*(*( ) ) , / * e £ * . If E is separable, then 7 * : L\Ω, μ) -± EC£** (cf. [19,
2.2. Proposition]). Putting H—L2(Ω, μ) and L—E*, we define an E-valued process
over G of weak second order to be a B(L, ϋO-valued process over G where
B(L, H) is the Banach space of all bounded linear operators from L into H.
The case where L is a Hubert space was studied by Gangolli [4]. In this case
B(L, H) is a (right) Hubert £(L)-module as was noted by Gangolli. Susiu and
Valsescu [16] considered in this view point (see also Saworotnow [15]). The
case where L is an arbitrary Banach space was studied by several authors such
as Cobanjan and Weron [2], Weron [19] and Miamee [8] (cf. [9]).

Let {x(t)} be an ^-valued process of weak second order, i.e., {x(t)} is a
B(E*, //)-valued process. When E is separable or reflexive, the adjoint process
{*(*)*}, which is B(H, £**)-valued, becomes a B{H, £)-valued process. The
space B(H, E) is a (right) Hubert j3(#)-module if we define a module action and
a Gramian by x-a — xa and [x, y2=y*x for x, y^B(H, E) and a^B(H), res-
pectively. Hence our theory is available in this respect.
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