ON A HILBERT MODULE OVER AN OPERATOR ALGEBRA AND ITS APPLICATION TO HARMONIC ANALYSIS

By YÛichirô Kakihara

1. Introduction.

We study a left A-module with an A-valued inner product where A is an operator algebra. Such a space has been investigated by many authors : Kaplansky [7], Saworotnow [14], Paschke [12], Rieffel [13], Ozawa [11], Itoh [5], Kakihara and Terasaki [6] and others.

Let A be a von Neumann algebra. Then a Hilbert A-module is defined to be a left A-module with an A-valued inner product respecting the module action, called a Gramian, which is complete with respect to (w.r.t.) the norm induced from the Gramian. Our main object is harmonic analysis on a topological group in the Hilbert A-module context. Especially, a Stone type and a Bochner type theorems are formulated and proved.

Basic definitions of a Hilbert A-module are given in section 2. In section 3, A-valued positive definite kernels are considered in connection with reproducing kernel Hilbert A-modules which are analogous to Aronszajn's reproducing kernel Hilbert spaces [1]. Section 4 deals with Gramian unitary representations of a topological group and Gramian *-representations of a L^{1}-group algebra on a Hilbert A-module. Results stated in sections 3 and 4 hold when A is a (unital) C^{*}-algebra. In section 5 , we prove our main result which is a Stone type theorem for a continuous, in an appropriate sense, Gramian unitary representation of a locally compact abelian group. As a corollary we give a proof to a Bochner type theorem for a weakly continuous A-valued positive definite function. Section 6 is devoted to Hilbert A-module valued processes over a locally compact abelian group. Such a formulation of processes is closely related to Banach space valued stochastic processes (cf. Cobanjan and Weron [2], Weron [19] and Miamee [8]).

Acknowledgments: The author would like to express his hearty thanks to Professor H. Umegaki for his valuable suggestions and encouragement in the course of preparing this paper.

2. Hilbert A-modules.

Throughout this paper A stands for a von Neumann algebra with the norm Recerved June 4, 1982
$\|\cdot\|$. We denote the action of A on a left A-module X by $(a, x) \rightarrow a \cdot x, a \in A$, $x \in X$. We assume that all such modules treated below have a vector space structure compatible with that of A in the sense that $\alpha(a \cdot x)=(\alpha a) \cdot x=a \cdot(\alpha x)$ for $x \in X, a \in A$ and a complex number α.
2.1. Definition. A (left) pre-Hilbert A-module is a left A-module for which there is a map $[\cdot, \cdot]: X \times X \rightarrow A$ such that for $x, y, z \in X$ and $a \in A$ (1) $[x, x]$ $\geqq 0$, and $[x, x]=0$ iff $x=0$; (2) $[x+y, z]=[x, z]+[y, z]$; (3) $[a \cdot x, y]=a[x, y]$; (4) $[x, y]^{*}=[y, x]$. The map $[\cdot, \cdot]$ is called a Gramaan on X. We sometimes denote it explicitly by $[\cdot, \cdot]_{x}$.

If X is a right A-module, then we can define (right) pre-Hilbert A-module structure for X in a similar manner as above except that the condition (3) is replaced by (3^{\prime}) $[x \cdot a, y]=[x, y] a$. Since there is no essential difference between right and left A-modules, we restrict our attention to left A-modules.

In a pre-Hilbert A-module X define $\|x\|_{X}=\|[x, x]\|^{1 / 2}, x \in X$. Then by [12, 2.3 Proposition], $\|\cdot\|_{X}$ becomes a norm on X and we have for $x, y \in X$ and $a \in A$

$$
\begin{equation*}
\|a \cdot x\|_{X} \leqq\|a\| \cdot\|x\|_{X}, \quad\|[x, y]\| \leqq\|x\|_{X} \cdot\|y\|_{X} \tag{2.1}
\end{equation*}
$$

2.2. Definition A pre-Hilbert A-module X which is complete w.r.t. the norm $\|\cdot\|_{X}$ is called a Hilbert A-module.

Examples of (right) Hilbert A-modules are seen in [12] where A is a C^{*} algebra.
2.3. Definition. Let X be a Hilbert A-module. We define the Gramaan orthogonal complement of a subset Y of X by $Y^{\#}=\{x \in X ;[x, y]=0, y \in Y\}$. A subset Y is called a submodule if it is a left A-module and is closed w.r.t. $\|\cdot\|_{X}$. In this case Y is itself a Hilbert A-module. Denote by $\subseteq(Y)$ the submodule generated by a subset Y. It is seen that for each subset Y its Gramian orthogonal complement $Y^{\#}$ is a submodule and the relation $\subseteq(Y) \subset\left(Y^{\#}\right)^{\#}$ holds.
2.4. Definition. Let X and Y be two Hilbert A-modules with Gramians $[\cdot, \cdot]_{X}$ and $[\cdot, \cdot]_{Y}$, respectively. $B(X, Y)$ denotes the Banach space of all bounded linear operators from X into $Y . \mathfrak{U}(X, Y)$ denotes the set of all operators $S \in B(X, Y)$ for which there is an operator $T \in B(Y, X)$ such that $[S x, y]_{Y}$ $=[x, T y]_{X}, x \in X, y \in Y$. It is seen that T is unique if it exists, so that we denote it by S^{*} and call it the Gramian adjoint of S. An operator $U \in B(X, Y)$ is said to be Gramıan unitary if it is onto and satisfies that $\left[U x, U x^{\prime}\right]_{Y}=\left[x, x^{\prime}\right]_{X}$, $x, x^{\prime} \in X$. It can be seen that each Gramian unitary operator $U \in B(X, Y)$ belongs to $\mathfrak{U}(X, Y)$ and satisfies $U^{*} U=I_{X}$, the identity operator on X. We write $B(X)$ $=B(X, X)$ and $\mathfrak{A}(X)=\mathfrak{A}(X, X)$. An operator $P \in B(X)$ is called a Gramian projection if $P \in \mathfrak{A}(X)$ and $P^{2}=P^{*}=P$. Two Hilbert A-modules X and Y are said to be isomorphic, in symbols $X \cong Y$, if there is a Gramian unitary operator in
$\mathfrak{A}(X, Y)$.
For $a \in A$ define $\pi(a)$ by $\pi(a) x=a \cdot x, x \in X, X$ being a Hilbert A-module. Then, by (2.1), $\pi(a) \in B(X)$. A kind of functionals on a Hilbert A-module is defined in the following (cf. [7, 12, 14]).
2.5. Definition. Let X be a Hilbert A-module. Denote by X^{*} the set of all bounded module maps $\tau: X \rightarrow A$. That is, τ satisfies $\tau(a \cdot x+b \cdot y)=a \tau(x)+$ $b \tau(y), x, y \in X, a, b \in A$, and there is some $\alpha>0$ such that $\|\tau(x)\| \leqq \alpha\|x\|_{X}, x \in X$. Each $x \in X$ gives rise to a map $\hat{x} \in X^{*}$ defined by $\hat{x}(y)=[y, x], y \in X . \quad X$ is said to be self-dual if $X^{*}=\hat{X}(=\{\hat{x} ; x \in X\})$.
2.6. Remark ([12]). Let X be a Hilbert A-module. Then X^{*} becomes a self-dual Hilbert A-module in which X can be embedded as a submodule. Moreover, each operator in $\mathfrak{A}(X)$ can be uniquely extended to an operator in $\mathfrak{H}\left(X^{*}\right)$. If X is self-dual, then we have $\mathfrak{A}(X)=\{S \in B(X) ; S \pi(a)=\pi(a) S, a \in A\}$. That is, $\mathfrak{A}(X)$ consists of all bounded module maps from X into itself. Furthermore, there is a collection $\left\{p_{2} ; i \in \mathfrak{J}\right\}$ of (not necessarily distinct) nonzero projections in A such that $X \cong \operatorname{UDS}\left\{A p_{2} ; \imath \in \mathfrak{J}\right\}$, the ultraweak direct sum of self-dual Hilbert A-modules $A p_{\imath}, i \in \mathfrak{J}$. For each $\imath \in \Im$ the Gramian on $A p_{2}$ is defined by $\left[a p_{2}, b p_{2}\right]_{2}=a p_{2} b^{*}, a, b \in A$. As a consequence of this decomposition, for any self-dual submodule Y of X, we have that $X=Y \oplus Y^{\#}$, the direct sum, and that there is a Gramian projection of X onto Y.

3. Positive definite kernels.

We consider A-valued positive definite kernels on $\Omega \times \Omega, \Omega$ being a set, and construct reproducing kernel Hilbert A-modules.
3.1. Definition. An A-valued function Γ on $\Omega \times \Omega$ is called a positive definite kernel $(P D K)$ if for every finite $\left\{\omega_{1}, \cdots, \omega_{n}\right\} \subset \Omega$ and $\left\{a_{1}, \cdots, a_{n}\right\} \subset A$ it holds that $\sum_{i, j} a_{i} \Gamma\left(\omega_{i}, \omega_{j}\right) a_{j}^{*} \geqq 0$. Every PDK Γ on $\Omega \times \Omega$ satisfies that $\Gamma\left(\omega, \omega^{\prime}\right)$ $=\Gamma\left(\omega^{\prime}, \omega\right)^{*}, \omega, \omega^{\prime} \in \Omega$.

For each A-valued PDK Γ on $\Omega \times \Omega$ we can associate a Hilbert A-module $\Omega \otimes_{\Gamma} A$ by the method similar to that of Umegaki [17]. To this end, let $F(\Omega ; A)$ be the set of all A-valued functions on Ω with finite supports. For $f, g \in F(\Omega ; A)$ and $a \in A$ define $(a \cdot f)(\cdot)=a f(\cdot),[f, g]_{\Gamma}=\sum_{\omega, \omega^{\prime}} f(\omega) \Gamma\left(\omega, \omega^{\prime}\right) g\left(\omega^{\prime}\right)^{*}$ and $\|f\|_{\Gamma}=$ $\left\|[f, f]_{\Gamma}\right\|^{1 / 2}$. Then $[\cdot, \cdot]_{\Gamma}$ satisfies conditions of a Gramian except that $[f, f]_{I}$ $=0$ implies $f=0$. Put $N_{\Gamma}=\left\{f \in F(\Omega ; A) ;[f, f]_{\Gamma}=0\right\}$ and let $\Omega \otimes_{\Gamma} A$ be the completion of the quotient space $F(\Omega ; A) / N_{\Gamma}$ w.r.t. the norm $\|\cdot\|_{\Gamma}$. Then $\Omega \otimes_{\Gamma} A$ is a Hilbert A-module. Moreover, it is closely related to the reproducing kernel Hilbert A-module of Γ defined below.
3.2. Definition. Let Γ be an A-valued PDK on $\Omega \times \Omega$ and X be a Hilbert A-module consisting of A-valued functions on Ω. Then X is said to be the reproducing kernel ($R K$) Hilbert A-module of Γ if
(1) for each $\omega \in \Omega, \Gamma(\omega, \cdot) \in X$;
(2) for each $\omega \in \Omega$ and $x \in X, x(\omega)=[x(\cdot), \Gamma(\omega, \cdot)]$. The PDK Γ is called the reproducing kernel $(R K)$ for X.
3.3. Proposition. For each A-valued $P D K \Gamma$ on $\Omega \times \Omega$ there is a unıque, up to isomorphism, Hilbert A-module X_{Γ} admıtting Γ as a $R K$. Moreover, the relation $X_{\Gamma} \cong \Omega \otimes_{\Gamma} A$ holds.

Proof. The proof mimics that of [9,2.5. Lemma] and we only give the outline. Let X_{0} be the set of all A-valued functions on Ω of the form

$$
x(\cdot)=\sum_{i=1}^{n} a_{i} \Gamma\left(\omega_{i}, \cdot\right), \quad a_{i} \in A, \omega_{i} \in \Omega, 1 \leqq \imath \leqq n
$$

with n finite. Define for $x(\cdot)=\Sigma a_{i} \Gamma\left(\omega_{i}, \cdot\right), y(\cdot)=\Sigma b_{j} \Gamma\left(\omega_{j}^{\prime}, \cdot\right) \in X_{0}$ and $a \in A$

$$
(a \cdot x)(\cdot)=\sum_{i} a a_{i} \Gamma\left(\omega_{i}, \cdot\right), \quad[x, y]_{0}=\sum_{j, j} a_{i} \Gamma\left(\omega_{i}, \omega_{j}^{\prime}\right) b_{j}^{*} .
$$

Then X_{0} becomes a pre-Hilbert A-module with an action and a Gramian defined as above. Moreover, for $x \in X_{0}$ and $\omega \in \Omega$ the reproducing property $x(\omega)=$ $[x(\cdot), \Gamma(\omega, \cdot)]_{0}$ holds. Hence we have $\|x(\omega)\| \leqq\|x\|_{0} \cdot\|\Gamma(\omega, \cdot)\|_{0}$ where $\|y\|_{0}=$ $\left\|[y, y]_{0}\right\|^{1 / 2}, y \in X_{0}$.

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X_{0} w.r.t. the norm $\|\cdot\|_{0}$. It follows from the above inequality that for every $\omega \in \Omega$ there exists some $x(\omega) \in A$ such that $\left\|x_{n}(\omega)-x(\omega)\right\| \rightarrow 0$. Denote by X_{Γ} the set of all A-valued functions x on Ω obtained in this way. For $x, y \in X_{\Gamma}$ define $[x, y]=\lim _{n \rightarrow \infty}\left[x_{n}, y_{n}\right]_{0}$ where $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in X_{0} determining x and y, respectively. Then we can check that X_{Γ} is actually a Hilbert A-module with the Gramian [., .]. Furthermore, the reproducing property of Γ can also be checked and, therefore, Γ is a RK for X_{Γ}. The uniqueness of X_{Γ} and the isomorphism $X_{\Gamma} \cong \Omega \otimes_{\Gamma} A$ are readily verified.

4. Gramian unitary reresentations and Gramian *-representations.

We first consider Gramian unitary representations of a topological group on a Hilbert A-module and their relation to A-valued positive definite functions on the group.
4.1. Definition. Let G be a topological group and X be a Hilbert A-module. An A-valued function Γ on G is said to be positive definite ($P D$) if for every finite $\left\{a_{1}, \cdots, a_{n}\right\} \subset A$ and $\left\{s_{1}, \cdots, s_{n}\right\} \subset G$ it holds that $\sum_{2, j} a_{i} \Gamma\left(s_{j}^{-1} s_{\imath}\right) a_{j}^{*} \geqq 0$. Putting $\tilde{\Gamma}(s, t)=\Gamma\left(t^{-1} s\right), s, t \in G, \Gamma$ is $P D$ iff $\tilde{\Gamma}$ is a PDK on $G \times G . \quad \Gamma$ is said to be
continuous if it is norm continuous on G. A Gramian unitary representation ($G U R$) of G on X is a homomorphism $s \rightarrow U(s)$ from G into $\mathfrak{A}(X)$ for which $U(s)$ is Gramian unitary for every $s \in G$. A GUR $s \rightarrow U(s)$ is said to be contonuous if for every $x \in X$ the function $s \rightarrow U(s) x$ is norm continuous on G. A vector $x_{0} \in X$ is said to be cyclic for a GUR $s \rightarrow U(s)$ if $\mathfrak{S}\left\{U(s) x_{0} ; s \in G\right\}=X$.

Then we can prove the following.
4.2. Proposition. Let G be a topological group and $\Gamma: G \rightarrow A$ be PD. Then there exist a Hilbert A-module $X, a G U R s \rightarrow U(s)$ of G on X and a cyclic vector $x_{0} \in X$ such that $\Gamma(s)=\left[U(s) x_{0}, x_{0}\right], s \in G$. It also holds

$$
\begin{equation*}
\|\Gamma(s)\| \leqq\|\Gamma(e)\|, \quad\|\Gamma(s)-\Gamma(t)\|^{2} \leqq 2\left\|\Gamma(e)-\Gamma\left(s^{-1} t\right)\right\| \cdot\|\Gamma(e)\| \tag{4.1}
\end{equation*}
$$

for $s, t \in G$ where e is the identity of G. Furthermore, Γ is contınuous of and only if so is $s \rightarrow U(s)$.

Proof. Put $\tilde{\Gamma}(s, t)=\Gamma\left(t^{-1} s\right), s, t \in G$ and let X be the $R K$ Hilbert A-module of $\tilde{\Gamma}$ with the Gramian $[\cdot, \cdot]$ (cf. 3.3. Proposition). Then we have $\Gamma(s)=\tilde{\Gamma}(s, e)$ $=[\tilde{\Gamma}(s, \cdot), \tilde{\Gamma}(e, \cdot)], s \in G$. Let X_{0} be the set of all A-valued functions on G of the form $\sum_{i=1}^{n} a_{\imath} \Gamma\left(s_{i}, \cdot\right), a_{i} \in A, s_{i} \in G, 1 \leqq \preceq \leqq n$ with n finite. For $s \in G$ define $U(s)$ on X_{0} by $U(s) \Sigma a_{i} \Gamma\left(s_{2}, \cdot\right)=\Sigma a_{i} \Gamma\left(s s_{i}, \cdot\right)$. Then it is easy to see that for $x, y \in X_{0}$ the equality $[U(s) x, U(s) y]=[x, y]$ holds. Hence $U(s)$ can be uniquely extended to a Gramian unitary operator on X since X_{0} is dense in X. Thus $s \rightarrow U(s)$ is a GUR of G on X. Putting $x_{0}=\tilde{\Gamma}(e, \cdot) \in X$, it is readily seen that x_{0} is a cyclic vector for $s \rightarrow U(s)$ and that the equality $\Gamma(s)=\left[U(s) x_{0}, x_{0}\right]$ holds for $s \in G$. Two inequalities in (4.1) follow from this equality as in the case of scalar valued PD functions (cf. [18]). The last assertion is not hard to check.

In the remainder of this section let G be a locally compact group with a left Haar measure $d s$ and consider the space $L^{1}\left(G ; Z_{A}\right)$ of all Z_{A}-valued Bochner integrable functions on G w.r.t. $d s$ where Z_{A} is the center of A, i.e., $Z_{A}=$ $\{a \in A ; a b=b a, b \in A\} . \quad L^{1}\left(G ; Z_{A}\right)$ is a Banach *-algebra whose multiplication, involution and norm are respectively defined by $(f g)(t)=\int_{G} f(s) g\left(s^{-1} t\right) d s, f^{*}(t)=$ $\Delta(t)^{-1} f\left(t^{-1}\right)^{*}$ and $\|f\|_{1}=\int_{G}\|f(s)\| d s$ for each $f, g \in L^{1}\left(G ; Z_{A}\right)$ and $t \in G$ where Δ is the modular function of G. Define $(a \cdot f)(\cdot)=a f(\cdot), a \in A, f \in L^{1}\left(G ; Z_{A}\right)$ and denote by $\mathfrak{R}^{1}\left(G ; Z_{A}\right)$ the left A-module generated by $L^{1}\left(G ; Z_{A}\right)$. Now we consider Gramian *-representations of $L^{1}\left(G ; Z_{A}\right)$ on a Hilbert A-module in connection with GURs of G.
4.3. Definition. Let X be a Hilbert A-module. Then a map $f \rightarrow T(f)$ from $\mathfrak{Z}^{1}\left(G ; Z_{A}\right)$ into $B(X)$ is called a Gramian *-representation $\left(G^{*} R\right)$ of $L^{1}\left(G ; Z_{A}\right)$ on
X if the restriction of T to $L^{1}\left(G ; Z_{A}\right)$ is $\mathfrak{A}(X)$-valued and if $T(a \cdot f+b \cdot g)=$ $\pi(a) T(f)+\pi(b) T(g), T(f *)=T(f)^{*}$ and $T(f g)=T(f) T(g)$ for each $f, g \in L^{1}\left(G ; Z_{A}\right)$ and $a, b \in A$ where $\pi(a) x=a \cdot x, x \in X$. A G*R $f \rightarrow T(f)$ is said to be nondegenerate if $\mathcal{S}\left\{T(f) x ; f \in L^{1}\left(G ; Z_{A}\right), x \in X\right\}=X$.

Given a continuous GUR $s \rightarrow U(s)$ of G on a Hilbert A-module X, define $T(f)$ for $f \in L^{1}\left(G ; Z_{A}\right)$ by

$$
\begin{equation*}
T(f) x=\int_{G} U(s)(f(s) \cdot x) d s, \quad x \in X \tag{4.2}
\end{equation*}
$$

where the right hand side is a well-defined Bochner integral. If X is self-dual, then we can show that $f \rightarrow T(f)$ is a $\mathrm{G}^{*} \mathrm{R}$ of $L^{1}\left(G ; Z_{A}\right)$ on X.

Let \mathfrak{V}_{G} be the Borel σ-algebra of G and $M\left(G ; Z_{A}\right)$ be the set of all $Z_{A^{-}}$ valued countably additive (CA) measures, in the norm, on \mathfrak{V}_{G} of bounded variations. For $\mu, \nu \in M\left(G ; Z_{A}\right)$ and $a, b \in A$ define $(a \cdot \mu+b \cdot \nu)(B)=a \mu(B)+b \nu(B)$, $\mu^{*}(B)=\mu\left(B^{-1}\right)^{*}$ and $(\mu \nu)(B)=\mu \times \nu\left(B^{\prime}\right)\left(B^{\prime}=\{(s, t) ; s t \in B\}\right)$ for $B \in \mathfrak{B}_{G}$, and $\|\mu\|=$ the total variation of μ. Then $M\left(G ; Z_{A}\right)$ becomes a Banach *-algebra. $\mathfrak{M}\left(G ; Z_{A}\right)$ denotes the left A-module generated by $M\left(G ; Z_{A}\right)$. By a Gramian *-representation of $M\left(G ; Z_{A}\right)$ on a Hilbert A-module X we mean a map $\mu \rightarrow T(\mu)$ from $\mathfrak{M}\left(G ; Z_{A}\right)$ into $B(X)$ whose restriction to $M\left(G ; Z_{A}\right)$ is $\mathfrak{N}(X)$-valued and which satisfies that $T(a \cdot \mu+b \cdot \nu)=\pi(a) T(\mu)+\pi(b) T(\nu), T\left(\mu^{*}\right)=T(\mu)^{*}$ and $T(\mu \nu)=T(\mu) T(\nu)$ for $\mu, \nu \in M\left(G ; Z_{A}\right)$ and $a, b \in A . L^{1}\left(G ; Z_{A}\right)$ is a Banach *-subalgebra of $M\left(G ; Z_{A}\right)$ by identifying $f \in L^{1}\left(G ; Z_{A}\right)$ with $f(s) d s \in M\left(G ; Z_{A}\right)$. By similar proofs of [3, 13.3.1. and 13.3.4. Propositions] we can show the following.
4.4. Proposition. Let X be a self-dual Hilbert A-module. Given a continuous $G U R s \rightarrow U(s)$ of G on X, define for $\mu \in M\left(G ; Z_{A}\right)$

$$
T(\mu) x=\int_{G} U(s) \pi(\mu(d s)) x, \quad x \in X .
$$

Then $T(\mu)$ is a well-defined operator on X and $\mu \rightarrow T(\mu)$ is a $G^{*} R$ of $M\left(G ; Z_{A}\right)$ on X whose restriction to $L^{1}\left(G ; Z_{A}\right)$ is nondegenerate.

If $f \rightarrow T(f)$ is a nondegenerate $G^{*} R$ of $L^{1}\left(G ; Z_{A}\right)$ on X, then there is a unique continuous $G U R s \rightarrow U(s)$ of G on X such that (4.2) holds.

5. A Stone type and a Bochner type theorems.

In this section we assume that G is a locally compact abelian group. Denote by A_{*} the predual of A and by A_{*}^{+}its positive part. For a Hilbert A-module X we define the Gramian σ-weak topology on $\mathfrak{A}(X)$ (or $B(X)$) to be the topology determined by the family of seminorms

$$
S \in \mathfrak{A}(X)(\text { or } B(X)) \rightarrow|\rho([S x, y])|, \quad x, y \in X, \rho \in A_{*}^{+} .
$$

We prove a Stone type spectral representation theorem for a Gramian σ-weakly
continuous GUR of G on some self-dual Hilbert A-module. As a consequence we give a proof to a Bochner type integral representation theorem of an A valued weakly continuous PD function on G. For the scalar valued case we refer to Nakamura and Umegaki [10] and Umegaki [18].

Before we proceed we need some preparations. Let $\mathfrak{V}_{\hat{G}}$ be the Borel σ-algebra of the dual group \hat{G} of G and X be a Hilbert A-module.
5.1. Definition. A map $P: \mathfrak{V}_{\hat{G}} \rightarrow \mathfrak{A}(X)$ is called a Gramian spectral measure on \hat{G} if P is Gramian projection valued and if, for each $\rho \in A_{*}^{+}$and $x, y \in X$, $\rho([P(\cdot) x, y])$ is a regular measure on \hat{G}.

Take $\rho \in A_{*}^{*}$ and define a semi-inner product on X by $(x, y)_{\rho}=\rho([x, y]), x$, $y \in X$. Put $N_{\rho}=\left\{x \in X ;(x, x)_{\rho}=0\right\}$ and define X_{ρ} to be the completion of the quotient space X / N_{ρ} w.r.t. $(\cdot, \cdot)_{\rho}$. Then X_{ρ} is a Hilbert space where we denote the inner product and the norm by $(\cdot, \cdot)_{\rho}$ and $\|\cdot\|_{\rho}$, respectively. Write $x_{\rho}=x$ $+N_{\rho} \in X / N_{\rho}$ for $x \in X$. Note that the inequality $\left\|x_{\rho}\right\|_{\rho} \leqq\|\rho\|^{1 / 2} \cdot\|x\|_{X}$ holds for $x \in X$. Let $s \rightarrow U(s)$ be a Gramian σ-weakly continuous GUR of G on X. For each $s \in G$ define an operator $U_{\rho}(s)$ on X / N_{ρ} by $U_{\rho}(s) x_{\rho}=(U(s) x)_{\rho}, x \in X$. Then $U_{\rho}(s)$ is well-defined, maps X / N_{ρ} onto itself and is isometry on X / N_{ρ}. Hence $U_{\rho}(s)$ can be uniquely extended to a unitary operator, still denoted by $U_{\rho}(s)$, on X_{ρ}. Moreover, $s \rightarrow U_{\rho}(s)$ is a weakly continuous unitary representation of G on the Hilbert space X_{ρ} by the Gramian σ-weak continuity of $s \rightarrow U(s)$. By Stone's theorem there is a regular spectral measure P_{ρ} on \hat{G} such that $U_{\rho}(s)=$ $\int_{\hat{G}} \overline{\langle s, \chi\rangle} P_{\rho}(d \chi), s \in G$ where $\langle\cdot, \cdot\rangle$ is the duality pair of G and \hat{G} (cf. [18, Theorem 7.1]).

Now let $x, y \in X$ and $B \in \mathfrak{B}_{\hat{\theta}}$ be fixed and consider the functional Λ on A_{*}^{*} defined by

$$
\begin{equation*}
\Lambda(\rho)=\left(P_{\rho}(B) x_{\rho}, y_{\rho}\right)_{\rho}, \quad \rho \in A_{*}^{+} . \tag{5.1}
\end{equation*}
$$

We first show that Λ can be uniquely extended to a bounded linear functional on A_{*}.
5.2. Lemma. The functional Λ on A_{*}^{+}defined by (5.1) is uniquely extended to a bounded linear functional on A_{*}.

Proof. It suffices to prove that if $\rho_{1}, \cdots, \rho_{n} \in A_{*}^{+}$and complex numbers $\alpha_{1}, \cdots, \alpha_{n}$ are such that $\sum_{j=1}^{n} \alpha_{j} \rho_{j}=0$, then $\sum_{j=1}^{n} \alpha_{j} \Lambda\left(\rho_{j}\right)=0$. Put $m_{j}(\cdot)=\left(P_{\rho_{j}}(\cdot) x_{\rho_{j}}\right.$, $\left.y_{\rho_{j}}\right)_{\rho_{j}}, 1 \leqq j \leqq n$ and define $m=\left|m_{1}\right|+\cdots+\left|m_{n}\right|$ where $\left|m_{j}\right|$ is the variation of m_{ρ}. Then m is a finite positive regular measure on \hat{G} and the linear span of G, regarded as the dual group of \hat{G}, is dense in $L^{1}(\hat{G}, m)$. It follows that for any $\varepsilon>0$ there exist some $s_{1}, \cdots, s_{l} \in G$ and complex numbers $\beta_{1}, \cdots, \beta_{l}$ such that

$$
\int_{\hat{G}}\left|1_{B}(\chi)-\sum_{k=1}^{l} \beta_{k} \overline{\left\langle s_{k}, \chi\right\rangle}\right| m(d \chi)<\frac{\varepsilon}{n}\left(\max _{1 \leqslant \jmath \leqq n}\left|\alpha_{j}\right|\right)^{-1}
$$

where 1_{B} is the characteristic function of B. Hence we have

$$
\begin{aligned}
& \left|\sum_{\jmath} \alpha_{\jmath} \Lambda\left(\rho_{j}\right)-\sum_{\jmath} \alpha_{j} \int_{\hat{G}} \sum_{k} \beta_{k} \overline{\left\langle s_{k}, \chi\right\rangle} m_{j}(d \chi)\right| \\
& \quad \leqq \sum_{\jmath}\left|\alpha_{j} \int_{\hat{G}}\left\{1_{B}(\chi)-\sum_{k} \beta_{k} \overline{\left\langle s_{k}, \chi\right\rangle}\right\} m_{\jmath}(d \chi)\right| \\
& \quad \leqq\left.\sum_{\jmath}\left|\alpha_{j}\right|\right|_{\hat{G}}\left|1_{B}(\chi)-\sum_{k} \beta_{k} \overline{\left\langle s_{k}, \chi\right\rangle}\right| m(d \chi)<\varepsilon .
\end{aligned}
$$

On the other hand, it follows from the assumption that

$$
\begin{aligned}
& \sum_{\jmath} \alpha_{j} \int_{\hat{G}} \sum_{k} \beta_{k} \overline{\left\langle s_{k}, \chi\right\rangle} m_{\jmath}(d \chi)=\sum_{\jmath} \alpha_{j} \sum_{k} \beta_{k}\left(U_{\rho_{j}}\left(s_{k}\right) x_{\rho_{j}}, y_{\rho_{j}}\right)_{\rho_{\jmath}} \\
& \quad=\sum_{j} \alpha_{\jmath} \sum_{k} \beta_{k} \rho_{j}\left(\left[U\left(s_{k}\right) x, y\right]\right)=\sum_{j} \alpha_{j} \rho_{j}\left(\sum_{k} \beta_{k}\left[U\left(s_{k}\right) x, y\right]\right)=0 .
\end{aligned}
$$

Consequently, $\left|\Sigma \alpha_{\jmath} \Lambda\left(\rho_{j}\right)\right|<\varepsilon$. Since ε is arbitrary, we have $\Sigma \alpha_{\jmath} \Lambda\left(\rho_{j}\right)=0$, as desired. The boundedness of Λ on A_{*} is easily verified.

It follows from 5.2. Lemma that there is a unique element $P_{x, y}(B) \in A$ such that $\Lambda(\theta)=\theta\left(P_{x, y}(B)\right), \theta \in A_{*}$ and, in particular, $\left(P_{\rho}(B) x_{\rho}, y_{\rho}\right)_{\rho}=\rho\left(P_{x, y}(B)\right), \rho \in$ A_{\star}^{+}. If B varies over $\mathfrak{V}_{\hat{G}}$, the function $P_{x, y}(\cdot)$ defines an A-valued σ-weakly CA measure on \hat{G}. Then we have the following.
5.3. Lemma. (1) For each $x, y \in X$ the relation

$$
\begin{equation*}
[U(s) x, y]=\int_{\hat{G}} \overline{\langle s, \chi\rangle} P_{x, y}(d \chi), \quad s \in G \tag{5.2}
\end{equation*}
$$

holds where the integral is in the σ-weak topology of A.
(2) For each $x, y, z \in X$ and $a \in A$ the equalities $P_{a \cdot x, y}(\cdot)=a P_{x, y}(\cdot), P_{x+y, z}(\cdot)$ $=P_{x, z}(\cdot)+P_{y, z}(\cdot)$ and $P_{x, y}(\cdot)=P_{y, x}(\cdot)^{*}$ hold.
(3) For each $B \in \mathfrak{B}_{\hat{G}}$ and $y \in X$ the function $x \rightarrow P_{x, y}(B)$ from X into A is a bounded module map, i.e., $P_{\mathrm{r}, \mathrm{y}}(B) \in X^{*}$.

Proof. (1) Let $x, y \in X$. For every $\rho \in A_{*}$ it holds that

$$
\begin{aligned}
\rho([U(s) x, y]) & =\left(U_{\rho}(s) x_{\rho}, y_{\rho}\right)_{\rho}=\int_{\hat{G}} \overline{\langle s, \chi\rangle}\left(P_{\rho}(d \chi) x_{\rho}, y_{\rho}\right)_{\rho} \\
& =\int_{\hat{G}} \overline{\langle s, \chi\rangle} \rho\left(P_{x, y}(d \chi)\right)=\rho\left(\int_{\hat{G}} \overline{\langle s, \chi\rangle} P_{x, y}(d \chi)\right) .
\end{aligned}
$$

This is enough to prove (5.2).
(2) Let $x, y \in X$ and $a \in A$, and take $\rho \in A_{*}^{+}$. By $[U(s)(a \cdot x), y]=a[U(s) x, y]$
we have $\int_{\hat{G}} \overline{\langle s, \chi\rangle} \rho\left(P_{a \cdot x, y}(d \chi)\right)=\int_{\widehat{G}} \overline{\langle s, \chi\rangle} \rho\left(a P_{x, y}(d \chi)\right)$ for $s \in G$. Since $\rho\left(P_{a \cdot x, y}(\cdot)\right)$ and $\rho\left(a P_{x, y}(\cdot)\right)$ are regular, they coincide. This is enough to show that $P_{a \cdot x, y}(\cdot)$ $=a P_{x, y}(\cdot)$. Other equalities can be checked in a similar manner.
(3) Let $B \in \mathfrak{B}_{\hat{G}}$ and $y \in X$. It follows from (2) that $x \rightarrow P_{x, y}(B)$ is a module map. To see the boundedness, let $\rho \in A_{\text {* }}^{+}$. Then we have that $\left|\rho\left(P_{x, y}(B)\right)\right|=$ $\left|\left(P_{\rho}(B) x_{\rho}, y_{\rho}\right)_{\rho}\right| \leqq\left\|x_{\rho}\right\|_{\rho} \cdot\left\|y_{\rho}\right\|_{\rho} \leqq\|\rho\| \cdot\|x\|_{X} \cdot\|y\|_{X}$ for $x \in X$. Thus $\left\|P_{x, y}(B)\right\| \leqq$ $4\|x\|_{X} \cdot\|y\|_{X}, x \in X$. Therefore $P_{\text {, }, y}(B)$ is bounded.

Assume that X is self-dual. Then it follows from 5.3. Lemma (3) that for each $y \in X$ and $B \in \mathfrak{B}_{\hat{G}}$ there is a unique $z \in X$ such that $P_{x, y}(B)=[x, z], x \in X$. Define $z=P(B) y$. Then $P(B)$ is a well-defined operator in $B(X)$ and $P(\cdot)$ is a $B(X)$-valued Gramian σ-weakly CA measure on \hat{G} such that $U(s)=\int_{\hat{G}} \overline{\langle s, \chi\rangle} P(d \chi)$, $s \in G$ where the integral is in the Gramian σ-weak topology. All we have to do is to show that $P(\cdot)$ is a Gramian spectral measure.

5.4. Lemma. $P(\cdot)$ is a Gramıan spectral measure on \hat{G}.

Proof. Let $B \in \mathfrak{B}_{\hat{G}}$ be fixed. It follows from 5.3. Lemma (2) that $[x, P(B) y]$ $=P_{x, y}(B)=P_{y, x}(B)^{*}=[y, P(B) x]^{*}=[P(B) x, y]$ for $x, y \in X$. Hence $P(B) \in \mathfrak{A}(X)$ with $P(B)^{*}=P(B)$. Now we show that $P(B)^{2}=P(B)$. First we see that $\left(x_{\rho},(P(B) y)_{\rho}\right)_{\rho}=\rho([x, P(B) y])=\rho\left(P_{x, y}(B)\right)=\left(x_{\rho}, P_{\rho}(B) y_{\rho}\right)_{\rho}$ for $x, y \in X$ and $\rho \in$ $A_{\text {* }}^{+}$. Hence $(P(B) y)_{\rho}=P_{\rho}(B) y_{\rho}, y \in X, \rho \in A_{*}^{+}$. Consequently we have $(P(B) y)_{\rho}$ $=P_{\rho}(B)^{2} y_{\rho}=P_{\rho}(B)\left(P_{\rho}(B) y_{\rho}\right)=P_{\rho}(B)(P(B) y)_{\rho}=\left(P(B)^{2} y\right)_{\rho}$ for $y \in X$ and $\rho \in A_{\text {+ }}^{+}$. Therefore $P(B)^{2}=P(B)$, as desired. It is clear that $\rho([P(\cdot) x, y])$ is a regular measure on \hat{G} for each $x, y \in X$ and $\rho \in A_{*}^{+}$. Thus $P(\cdot)$ is a Gramian spectral measure.

We summarize these discussions in the following theorem.
5.5. Theorem. Let X be a self-dual Hilbert A-module and $s \rightarrow U(s)$ be a Gramıan σ-weakly contınuous $G U R$ of G on X. Then there is a Gramian spectral measure P on \hat{G} such that

$$
U(s)=\int_{\hat{G}} \overline{\langle s, \chi\rangle} P(d \chi), \quad s \in G
$$

where the integral is in the Gramian σ-weak topology.
Now we can prove a Bochner type theorem as follows.
5.6. Corollary. For an A-valued weakly continuous $P D$ function Γ on G there is an A-valued σ-weakly $C A$ measure F on \hat{G} such that

$$
\Gamma(s)=\int_{\widehat{G}} \overline{\langle s, \chi\rangle} F(d \chi), \quad s \in G
$$

where the integral is in the σ-weak topology of A.
Proof. It follows from 4.2. Proposition that there exist a Hilbert A-module X_{Γ}, a GUR $s \rightarrow U_{0}(s)$ of G on X_{Γ} and a cyclic vector $x_{0} \in X_{\Gamma}$ such that $\Gamma(s)$ $=\left[U_{0}(s) x_{0}, x_{0}\right]_{\Gamma}, s \in G$ where $[\cdot, \cdot]_{\Gamma}$ is the Gramian on X_{Γ}. Again by 4.2. Proposition Γ is σ-weakly continuous since weak and σ-weak topologies coincide on bounded subsets of A. Hence we can see that $s \rightarrow U_{0}(s)$ is Gramian σ-weakly continuous. Then $s \rightarrow U_{0}(s)$ can be uniquely extended to a Gramian σ-weakly continuous GUR $s \rightarrow U(s)$ of G on the self-dual Hilbert A-module X_{T}^{*}. Consequently, by 5.5. Theorem, there is a Gramian spectral measure P on \hat{G} such that $U(s)=\int_{\hat{G}} \overline{\langle s, \chi\rangle} P(d \chi), s \in G$. Putting $F(\cdot)=\left[P(\cdot) x_{0}, x_{0}\right]$ where $[\cdot, \cdot]$ is the Gramian on X_{Γ}^{*}, we have that F is an A-valued σ-weakly CA measure on \hat{G} and that, for $s \in G$,

$$
\begin{aligned}
\Gamma(s) & =\left[U(s) x_{0}, x_{0}\right]=\left[\int_{\hat{G}} \overline{\langle s, \chi\rangle} P(d \chi) x_{0}, x_{0}\right]=\int_{\hat{\sigma}} \overline{\langle s, \chi\rangle}\left[P(d \chi) x_{0}, x_{0}\right] \\
& =\int_{\hat{G}} \overline{\langle s, \chi\rangle} F(d \chi) .
\end{aligned}
$$

6. Hilbert A-module valued processes.

Let G be a locally compact abelian group and X be a Hilbert A-module. We consider X-valued processes over G.
6.1. Definition. (1) An X-valued process $\{x(t)\}$ over G is a map $t \rightarrow x(t)$ from G into X.
(2) The covaraance function Γ of a process $\{x(t)\}$ is defined by $\Gamma(s, t)=$ $[x(s), x(t)], s, t \in G . \quad \Gamma$ is an A-valued PDK on $G \times G$.
(3) A process $\{x(t)\}$ is said to be stationary if its covariance function $\Gamma(s, t)$ depends only on $s t^{-1}$ and, putting $\Gamma(s, t)=\Gamma\left(s t^{-1}\right)$, if Γ is an A-valued weakly continuous function on G.
(4) For a process $\tilde{x}=\{x(t)\}$ the time domain $\mathfrak{y}(\tilde{x})$ and an observation space $\mathfrak{H}(\tilde{x} ; D)$ of a subset D of G are defined as submodules by $\mathfrak{F}(\tilde{x})=\mathfrak{S}\{x(t) ; t \in G\}$ and $\mathfrak{g}(\tilde{x} ; D)=\mathbb{S}\{x(t) ; t \in D\}$, respectively.
(5) Let $\tilde{x}=\{x(t)\}$ be an X-valued process and $\tilde{y}=\{y(t)\}$ be a Y-valued process, Y being a Hilbert A-module. Then \tilde{x} and \tilde{y} are said to be equivalent if there exists a Gramian unitary operator $U: \mathfrak{F}(\tilde{x}) \rightarrow \mathfrak{F}(\tilde{y})$ such that $U x(t)=y(t)$, $t \in G$.

Then the following is easily proved.
6.2. Proposition. (1) For any A-valued $P D K \Gamma$ on $G \times G$ there is some Hilbert A-module valued process with the covariance function Γ.
(2) Let \tilde{x} be an X-valued process with the covarzance function Γ. Then we have, for each subset D of $G, \mathfrak{y}(\tilde{x} ; D) \cong D \otimes_{\Gamma} A$ and, in partıcular, $\mathfrak{F}(\tilde{x}) \cong G \otimes_{\Gamma} A$ where $D \otimes_{\Gamma} A$ was constructed in section 3.
(3) Let \tilde{x} be an X-valued process and \tilde{y} be a Y-valued process, Y being a Hilbert A-module. Then \tilde{x} and \tilde{y} are equivalent of and only if their covariance functions are identical.
(4) Stationarity is invariant withon equivalence. More precisely, let \tilde{x} and \tilde{y} be as in (3) above. If they are equivalent and \tilde{x} is stationary, then \tilde{y} is also stationary.
(5) Let $\{x(t)\}$ be an X-valued stationary process with the covariance function
Г. Then there exist an X^{*}-valued $C A$ orthogonally scattered measure ξ and an A-valued $C A$ measure F on \hat{G} such that

$$
x(t)=\int_{\hat{G}} \overline{\langle t, \chi\rangle \xi}(d \chi), \quad \Gamma(t)=\int_{\widehat{G}} \overline{\langle t, \chi\rangle} F(d \chi), \quad t \in G
$$

where the orthogonal scatteredness of ξ means that $[\xi(A), \xi(B)]=0$ for every disjoint pair $A, B \in \mathfrak{B}_{\hat{G}}$.

Let $(\Omega, \mathfrak{V}, \mu)$ be a probability measure space and E be a Banach space with the dual space E^{*}. An E-valued function x on Ω is said to be of weak second order if it is weakly measurable and $f^{*}(x(\cdot)) \in L^{2}(\Omega, \mu)$ for every $f^{*} \in E^{*}$. For each such function x there is an operator $T_{x}: E^{*} \rightarrow L^{2}(\Omega, \mu)$ such that $\left(T_{x} f^{*}\right)(\cdot)$ $=f^{*}(x(\cdot)), f^{*} \in E^{*}$. If E is separable, then $T_{x}^{*}: L^{2}(\Omega, \mu) \rightarrow E \subset E^{* *}$ (cf. [19, 2.2. Proposition]). Putting $H=L^{2}(\Omega, \mu)$ and $L=E^{*}$, we define an E-valued process over G of weak second order to be a $B(L, H)$-valued process over G where $B(L, H)$ is the Banach space of all bounded linear operators from L into H. The case where L is a Hilbert space was studied by Gangolli [4]. In this case $B(L, H)$ is a (right) Hilbert $B(L)$-module as was noted by Gangolli. Susiu and Valsescu [16] considered in this view point (see also Saworotnow [15]). The case where L is an arbitrary Banach space was studied by several authors such as Cobanjan and Weron [2], Weron [19] and Miamee [8] (cf. [9]).

Let $\{x(t)\}$ be an E-valued process of weak second order, i.e., $\{x(t)\}$ is a $B\left(E^{*}, H\right)$-valued process. When E is separable or reflexive, the adjoont process $\left\{x(t)^{*}\right\}$, which is $B\left(H, E^{* *}\right)$-valued, becomes a $B(H, E)$-valued process. The space $B(H, E)$ is a (right) Hilbert $B(H)$-module if we define a module action and a Gramian by $x \cdot a=x a$ and $[x, y]=y^{*} x$ for $x, y \in B(H, E)$ and $a \in B(H)$, respectively. Hence our theory is available in this respect.

References

[1] Arovszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
[2] Cobayjan, S. A. and Werov, A., Banach space valued stationary processes and
theır linear prediction, Dissertationes Math. 125 (1975), 1-45.
[3] Dixmier, J., C*-algebras, North-Holland, Amsterdam, 1977.
[4] Gangolli, R., Wide-sense stationary sequences of distributions on Hilbert space and the factorization of operator valued functions, J. Math. Mech. 12 (1963), 893-910.
[5] ITOH, S., A note on dilations in modules over C^{*}-algebras, J. London Math. Soc. (2) 22 (1980), 117-126.
[6] Kakihara, Y. and Terasaki, T., Hilbert $B(H)$-modules with applications I, Res. Rep. Inst. Inf. Sci. Tech. (Tokyo Denki Univ.) 5 (1979), 23-32.
[7] Kaplansky, I., Modules over operator algebras, Amer. J. Math. 75 (1953), 839858.
[8] Miamee, A. G., On $B(X, K)$-valued statıonary stochastıc processes, Indiana Univ. Math. J. 25 (1976), 921-932.
[9] Miamee, A. G. and Salehi, H., On the square root of a positive $B\left(3,3^{*}\right)$-valued function, J. Multivar. Anal. 7 (1977), 535-550.
[10] Nakamura, M. and Umegaki, H., A remark on theorems of Stone and Bochner, Proc. Japan Acad. 27 (1951), 506-507.
[11] Ozawa, M., Hilbert $B(H)$-modules and statınary processes, Kodai Math. J. 3 (1980), 26-39.
[12] Paschke, W.L., Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[13] Rieffel, M. A., Induced representations of C^{*}-algebras, Advances Math. 13 (1974), 176-257.
[14] Saworotnow, P.P., A generalized Hilbert space, Duke Math. J. 35 (1968), 191197.
[15] Saworotnow, P.P., Abstract stationary processes, Proc. Amer. Math. Soc. 40 (1973), 585-589.
[16] Susiu, I. and Valsescu, I., A linear filtering problem in complete correlated actions, J. Multivar. Anal. 9 (1979), 599-613.
[17] Umegaki, H., Positive definite function and direct product Hilbert space, Tôhoku Math. J. 7 (1955), 206-211.
[18] Umegaki, H., An operator method for harmonic analysis on locally compact abelian group, MRC Tech. Summary Rep. \#725, Madison, Wisconsin, 1967.
[19] Weron, A., Prediction theory in Banach space, Lecture Notes in Math. No. 472, pp. 207-228, Springer-Verlag, New York, 1975.

Department of Mathematical Science
Tokyo Denki University
Ishizaka, Hatoyama-machi, Hiki-gun
Saitama-ken 350-03, Japan

