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ON THE GROWTH OF MEROMORPHIC FUNCTIONS

By MITSURU OzAWA

§1. Introduction. By making use of Fourier series method Miles and Shea
[4], [5] recently obtained a better estimate for the x(1) and related results. It
seems to the present author that the method contains more. In this paper we
shall discuss some of them. -

For completeness we shall list up several known results, which will be used
later. For a meromorphic function f(z) we define m,(r, f) by

malr, 1= 5| Clog flret®)|):d0

In what follows we only consider entire or meromorphic functions of the follow-
ing form:

f@=T1E( q)

or

f@=TE(< q) /TE(- q).

E(x, gg=0—x)exp (x+x%/2+ - +x%q), ¢=[A]

where

and A is the order of f(z), A<,
Let ¢,(r) be the m-th Fourier coefficient:

cm(r):TlirS:”(Iog | f(rei®) e da .
Then
ms(r, f)2=m§‘iw|cm(r)|2-
Edrei and Fuchs [1] had shown that, with »,=|z,| and s,=|w,],
Tt G I G N A G R CON
for m=1 and, for m=q+1,
ewn==5, {21V -2(0) +2E)-2(7)}-
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Obviously ¢,(r)=C¢_n(r) for m=<—1 and ¢,(r)=N(r, 0, f/)—N(, oo, f). Further

ICm(I’)]§2T(7’, f)_N(T’, O; f)_N(V, o, f)énZZ(r: f) .
For m=g¢-+1

— A+ 2 ()

=N(r, )—'Q‘SO N(tt 2 (%)mdt— 2;15:[,1\7,(?;70),,(_;_)"‘&

and for m=gq

a1
0 O () e

§2. Discussion of results. Our first result is the following

THEOREM 1. Let f(2) be the canonical product formed by {z,}, which satisfies
2z t=0c0, Zlz| <00
for a positwe integer q and

larg z,| Sw, 0=w=(r—e)/2¢, 0<e=m.

Then

— N(, 0, f) 1

1 e

2 e, 1) = Alg, @)
and

m(r, f) _ 1

- o —2*2 Al @)

where

cos (g+1w singw }1/2

4.
Alg, w)= { +14 sinw

Since my(r, /)=N(, 0, f) for entire functions with f(0)=1,

— N@, 0, 1)
lim -~ f————<B

Toeo m2(7’ f) -
loses its effectivity when B=1. We shall prove that the estimate given in
Theorem 1 loses its efficiency when ¢=1 and w==/2. Further for entire f

o= N, 0, f) N(r, 0, f)
1,«1_{2 me(7, f) lrl-mo 2m(r, [)—N(, 0, /)— o)y
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_1=00, /)

1460, f)

This estimate is effective when (0, f)>0. In this direction Kobayashi [2] had
shown the following

THEOREM A. Under the same assumptions as in Theorem 1 with w=n/2(g+1)
80, /)>0.
If w>n/2(q+1), then there 1s an entire function such that 6(0, f)=O0.

If 0<e<m/(g+1), then (x—e)/2¢>=/2(q+1). Therefore (0, f/)=0 does not
always imply the inefficiency of our Theorem 1. The opening of w in Theorem
1 is equal to the one of the following result due to Kobayashi [3].

THEOREM B. Under the same assumptions as in Theorem 1
gEp=21=q+1,

where 2 and p are the order and the lower order of f, respectively. This 1s best
possible.

Theorem 1 can be extended to a wider opening if ¢=2. For example, if
¢g=2 and w=(xr—¢)/2 (¢>0), then

my(r, )=o) |242]c,(r)]?
=N, 0, H*(1+2sine).

This gives an estimate of desired type.

THEOREM 2. Let f(z) be the canonical product formed by the set of zeros
{a,, —a.,}. Assume that

2la,| =00,  Fla,|"?' <00,

larg a,|=w, O0=w=(r—e)/2q, e>0.
Then
ey N(ry 0) f) <_1_
lim my(r, f) — A’
where

_cos ([¢g/2]+wsin[q/2]w
sin2w ’

2. q.
a1+ 4]+
This theorem has its meaning only if ¢g=2.

THEOREM 3. Let f(z) be a meromorphic function being representable as
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f1(2)/fo(2), where f, and f, are canonical products formed by {a,} and {b.},

respectively. Assume that

Slanl"t=00,  B|balt=c0, Tlaa| T +Z|ba| ¢ <00
and
larg a,|=w, |r—arg b, | <w
with 0=w=(r—e¢)/2q. Then

N(r, 0, f)+N(r, o, f)
=

ll/\

?T
where

sind(s+1w

= <
Ssindey @ S—max{plzpt+l=g}.

Ar=s+1+
In [5] Miles and Shea indicated that mu(r, F)<4+'q+1m(r, f), if f is entire,
of finite genus ¢ with only positive zeros. More precisely,

ma(r, 1P=8(g+sm(r, f)*—=8(g+sm(r, fIN(r, 0, )+Q2g+2s+1)N(r, 0, f)*

=8(g+sgm(r, f)%,
where

~+ 1 e 0 (- B )

4 +1+ )
It is very easy to prove ¢+1<s,<g-+2.

Let f be the canonical product of genus ¢g. When does the estimate
mao(r, S Km(r, f), 0<K<oo, hold? Of course this does not hold in general.
Let us denote

f@=TE( q), FO=TE([, ;. 9)-

If the Valiron deficiency A(0, F) of F satisfies A0, F)<1, then my(r, )< Km(r, f)
and (1—AQ0, F)—e)m(r, F)<N(, 0, F)=N(r, 0, f)<m(r, f) give the result. Since
my(r, F)< km(r, F) holds without any condition, A(0, F)<1 is not a necessary
condition. So it is hoped to give a more appropriate condition for the above
problem.

In the above results we do not make use of the concept of Pdlya peaks of
any kind. Under the assumptions of Theorem 1 we can prove

N(r, 0, 1) 1 g 2 2
Llﬂoom-_*jqﬁ{ , A=1+2?(?%m—2) cos*mw

by making use of Pélya peaks of the second kind, order p, for N(r, 0, f). We
can also prove similar results corresponding to Theorem 2 and Theorem 3 quite
similarly.
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Let M, be the class of meromorphic functions f(z) of order p defined by
f1(2)/f1(—z) with the canonical product

fl(z):IIE( az,, , q), g=Lp].

Let F(z) be F,(z)/F,(—z) with
F@=TE( [~ q).
THEOREM 4. Let f(2) belong to M,. Then my(r, f)=my(r, F) ana

N0, /) V2 cosmp/2]
e Ma(7, f) \/n'p (rp— Slnyrp)”2 ‘

This is best possible.

THEOREM 5. Under the same assumptions as in Theorem 3 with w=0

iV 0, )N, o, ) 242 |cos zp/2

P malr, f) \/np (rp—sinzp)'/?
This 18 best possible.

§3. Proof of Theorem 1. For 1=m=gq

()

z,=r,e"v, o =w.

Hence
Rentr)z g0, S{(7) (7)) eos mo
—cos mw[N(r 0, H+ 5{( Zy" ( ! )”‘}M?%th
=N(r, 0, f)cos mw.
Thus

mo(r, [)*ZN(, 0, f)2<1+27§10052mw>

cos (¢+1)w singw
sinw

=N, 0, Fr(g+1+°

This gives the first desired result. By m,(r, f)=2m(r, f)—N(r, 0, f) we have
the second desired result.
If w=0, the A(q, 0)°>=2¢-+1 and
— N(r, 0, f) 1
11'1—1}; ma(r, f) \/2q+1 :
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§4. Proof of Theorem 2. In this case for 2s+1=q c¢y+,(r)=0. Further

reu= o 3 {(L=(5))

=52 L)

where 3 means the summation over all @, but not over any —a,. Hence

layisr

r

Rewlr)zeos 250 NG, 0, )+ {(5)"( % Y NG, tO_Q »
=N(r, 0, f)cos 2sw .

Therefore

[q/2]
ma(r, f)Zg{Hz ) cos223w}N(r, 0, f)?

_ g7 cos ([g/2]+Dwsin[g/2]w :
—{1+[2]+ sin 2w b, 0, 1.

This gives the desired result.
If w=0 holds, then we can prove that

mao(r, [)P=42se—2+2s)(m(r, f)*—m(r, /IN(r, 0, f))
+(230—1+23q)N(7’, O) f)2 ’
where s,=min {s|2s=¢-+1} and

sq:sﬁg‘b(sﬁ—j)‘z.

§5. An example. Let a, be
9710

Let f(2) be the canonical product formed by {a,, —a,},-1,... with their multi-
plicities a2 Evidently for ¢>0

j (l"; < —t
—L=c0, E‘EJ’?:E(ZJ <o,
Hence the exponent of convergence of the given series is equal to p. Assume
that 1<p<2. Then f(z) is of the first genus. In the present case

2\ a®

f@=1(1~-5)".

J=1 Cl?

Let n(r) be the number of zeros of f(z)in |z|=r and N(r) the counting function
of zeros of f(z) there. Then for ¢,<r<ap:
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n(r)=2 f} af
J=1

and

=2 pZ-)l log ak“ E a?+2 log —- 2 at.

Now we put »,=(a,a%%)"%. Then
N(rp)~a% log (az'a%4),

which is very easy to prove. Let M(», f) and m*(», f) be the maximum modulus
and the minimum modulus of f(z) on |z|=7. Then

log M(r, f)=log|fGr)|,

log m*(r, f)=log|f(r)|
Then we can prove that

IOg M(?’p, f)’\’a‘lz’) IOg (ap ap+1)
and
log m*(rp, f)~a4 log (az'a%¥) .

Therefore along the sequence {r,}

me(r, f)~log M(r, f)~log m*(r, f)~N(r, 0, f).
Hence
5= N0y 0, ) e N 0, ) )

I =, F) Zam = o )

Thus we have the desired non-effectivity of estimations in Theorem 1 for ¢=1,
w=r/2 and in Theorem 2 for ¢=1, w=0.

§6. Proof of Theorem 3. In this case for 2p+1=q

s LSS () eos 210,

__luzsr{(v%/)zpﬂ-_( l;f >2p+1}cos @p+1)0,,

-‘RCsz(r)Z

where |0,|Zo, |7—¢,|Sw. Hence

Reap(r)Z(N(r, 0)+N(r, o)) cos 2p—1w .

Further with s=max {p|2p+1=g}
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2 s‘\ 2
ma(7, f) 22%: [62p+1(7')|

Z2N(r, 0)+Nir, 09)* S cos*(2p+ 1w

sin4(s+1)w )

=(N(r, 0)+NGr, oo))*(s+ 1+ o

This is the desired result.

§7. Proof of Theorem 4. In this case c¢;,(»)=0 and for 2p+1=g

esmnit S 551 B ()" | =rmatr

and for 2p+1=q¢+1

l Czp+1(7’) | = 2)#1—1-—1 [Tyz,;(*:j)zpﬂ+Tzs)r(’:jv‘>2p+l} = sz+1(7’) .

Hence

malr, =2 3 |eapes(r)?

<2 3 Fapalr=mulr, FI.

Therefore it is sufficient to prove the result for F instead of f. Then we can
make use of the integral representation of 7,,-,(»). Let {t,} be a sequence of
Pélya peaks of the first kind, order p, for N(»)=N(», 0). Then

NG =N,  0<tsts

NN )te*e, t,<t<oo.
Then we have

ore@p—l—e) .
sz_](tn)§2N(tn) (217—1—6)2_,02 ’ 2[) lg(]—r‘l
and
N —1<
Pt SENGY— f700 ., 20150,
Hence
nlz(tm F)2§8N(tn)2|: ;)21 {k(ip_—-si()f:(ez)p—l)z }2

A e Sl

If ¢ tends to zero, then the term in the bracket tends to

s$+1
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& (et
=1 {(p/2)*—(p—1/2)%*
which is equal to ‘

1 mp—sinzp =
8 2P

COSZ—ZE‘O

This gives the desired result:

' T
=N 0, ) _v2  (52F

§8. Proof of Theorem 5. Firstly we have
my(r, f)P=22| 52p+1(7”)|2 .

Let us put N@#)=N(r, 0, f)+N(@, oo, f). We can make use of the integral
representation of ¢,p4,(r). Let {f,} be a sequence of Pdlya peaks of the second
kind, order p, for N(r). Let {s,} and {S,} be the associated sequences such
that s,—oo, t,/s,—00, S, /t,—co and

N =0 4-o0(1)(t/ta)? Nitn)

for 5,=t=<S,. Similarly as in the proof of Theorem 4
o p2
2> 2
mitn, 22N 2 (g

Hence we have the desired result.

Y+ow.

§9. In this section we shall give an extension of Theorem 4. Let f(z) be
the canonical product formed by zeros {r,e*’»} and g(z) be the canonical product
formed by zeros {r,e*%»*®} where « is a constant satisfying 0<a<n. Let

1
lem(M)|=—5—

F(z) be f(z)/g(z). Then
I OGN

S Tt Co R OB

Again by making use of Pdlya peaks of the first kind, order p, for N(»)=N(r, 0, f),
we have

2 4
IPRLUERS

e N(r)?

& 4
< — e
=16m2=1(1 COs ma) (i

This is best possible. Especially, if a«==, then we have Theorem 4.
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§10. Let F(2) be f(z)g(z), where f and g are defined in §9. Then

: Tyzér{< :,, )m_<’§f’)m}’(l%—e‘ma)g—moy

len()|=——
=L erocosmaye s {(5)" ("))

2m
2m TYST Yy
Hence by the same method as in §9

. 7712(7' F) 4
lff?o NG, F)2 =1+ Z} (1-+cos ma)( p2)2 .

Especially for a==

lim mo(r, F)*_ 1 np(np—f—smn'p)
7= N(r, 0, F)* = 8 sin erp

Of course this is best possible. The last part is due to the following identities:

ot 1 np(np—}-cos Tp sinwp)
1.}.23\_‘1 (o* —m) 2 sin®rp ’
il 0 _l_ﬂn'p(n'p 51n7rp)
2 —p—1 4

4

2 cos® 2p

§11. Let f(z) be the canonical product formed by zeros {r,} and g(z) the
canonical product formed by zeros {s,e*®}, where « is a constant satisfying
0=Za=r. Let F(2) be f(2)g(z). Let fi(2) be the canonical product formed by
zeros {r,, s,} and fi.(z) be the canonical product formed by zeros {r,e'®, s,e*¢}.
Let Fi(z) be fi(2)f1.(2). Then

len(r; F)|=|An+Bne ™™ .
It is very easy to prove that

2| An+Bre ™| Z | Ap+ Byt (An+Brle e .
This gives
dmy(r, F)Pz=my(r, F)?.
By making use of Pllya peaks of the second kind, order p, for N(r, 0, F)
=2N(r, 0, F), we have
. N, 0, F)*
1:’1:2 m2(r’ )2 -

<1+ 2 (1+cos ma)( ¢ 2)2> 1/2.

Especially for a=n=

N 4
i N@, 0, F) 2V 2 ’Sln>2'p|
= My(7, F) \/ﬂp(n'p—l-smnp)
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Again this is best possible.
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