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The study of the problem of fluid flow past a concave body in [2, 5] raised
the question of determining which circles invert a given ellipse into a convex
curve. This question was answered by one of the authors in [6] and our purpose
here is to extend this work to more general convex curves and to consider the
same question for the surface of a convex body in Euclidean space.

I. The problem in curve theory

As is often done in the theory of plane curves we take the unit normal N
to the curve to advance the unit tangent T by x/2. Then in the Frenet equa-
tion dT/ds=kN, s arc length, the curvature £ may be positive, negative or zero
and reversal of the direction of travel along the curve changes the sign of «.

N

Fig. 1.

It is well known that a simple closed C? curve is convex if and only if &
has constant sign.
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At a point where £#0, the osculating circle is well known. At a point
where k=0 the tangent line has 2nd order contact with the curve and we call
this line the “osculating circle ”; moreover since we will be dealing only with
convex curves its “interior ” will be the half plane containing the curve.

THEOREM. Let C be a sumple closed convex C* curve. A point interior to C
1S a center of wnversion preserving convexity if and only if it lies in the inter-
section of the interiors and bonndaries of the osculating circles at the maxima of
the curvature (C traversed counterclockwise). A pont exterior to C 1s such a
center if and only if it lies in the intersection of the exteriors and boundaries of
the osculating circles at the minima of the curvature. If C s not a circle,
inversion with center on C does not preserve convexity.

The main part of the proof will be to show that a point serving as a center
of inversion preserving the convexity of the curve lies in the intersection of the
interiors (resp. exteriors) and boundaries of all the osculating circles. The fact
that it is enough to take the osculating circles at the maxima and minima of the
curvature is a consequence of the following lemma of Kneser (1912) [3].

LEMMA. Any osculating circle of an arc of a C* curve with monotonmic curva-
ture of constant sign contains every smaller osculating circle of the arc wn its
interior and is contained in the interior of every larger osculating circle of the arc.

Since the composition of two inversions with the same center is a dilation,
which, of course, preserves convexity, the radius of the circle of inversion is
immaterial in our problem. If x, denotes a center of inversion and x* the
inverse of a point x, then inversion in the unit circle about x, is given by

X— XO

X—X
AN PN

Now as x traverses € we have the following computations.

1 T 2T -(x—x,)

* — — Y (x—x,
T r—xl Ix—XJ4(x %)
, ds* 1
*x/ —_ = .
= s T x—al?
and hence
T*=T— ZYLL(,’E:,XZ") (x—x)
[ x— Xl

Differentiating this and taking the inner product with x*—x, we have

dT* ((T (x— xo)) 1) (1)

TG —xo———( —x)+2( T

Now with C being traversed counterclockwise, k=0; thus if x, is interior
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to ¢, k*=0 and the undirected angle a=<L(N, x—x)=L(N*, x*—x0)>x/2. If
x, is exterior to C, k*=0and < (N, x—x,)=<L(N*¥ x*—x,) though not necessarily
obtuse.

Fig. 2.
Thus for x, interior to C, (1) gives

0=—k|x—x,|cos a—i—Z(cosZ(a—— £)—1)

2c08 a=—k|x—x,|
or

N-(x—x)S— | 2=zl (2)
Writing in standard cartesian coordinates N=ai+bsj, x=(x, y) and setting
R:% for £+0, (2) becomes

(xo—(x+Ra))*+(yo—(y+Rb))’= R*

and hence the point x,=(x,, y,) lies in or on the osculating circle at x&¢. When
£=0, (2) becomes
a(xo—x)+b(yo—y)=0

and x, lies in the desired half plane.
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On the other hand if x, is exterior to C, £#*=<0 and a+#r/2 except at two
points and the work below extends to these points by continuity. For « acute
(1) yields

0=—k| x—x,|cos a—2 cos’a
and for a obtuse
0= —k|x—x,|cos a—2 cos’a
both of which yield
2C08Sa=—k|x— x|
or

N-(x—x)Z— 5 | =, (3)

(3) is the exterior and boundary of the disk (2). Thus x, lies on or outside the
osculating circle at x. Similarly when k=0 we have the desired half plane as
before.

Conversely if x, is a point in these intersections the reversal of the above
argument shows that x, is a center of inversion preserving the convexity.

If ¢ is a circle the set of centers of inversion preserving the convexity is
the entire plane. If C is not a circle, inversion about any point x,=C destroys
the convexity. For consider the osculating circle at x, and invert both it and
the curve with center x,; the circle inverts to a line and C inverts to a curve
which is asymptotic to the line in both directions and is therefore not convex.

II. The problem in surface theory

Turning to the 3-dimensional problem we first recall that a smooth closed
surface (compact without boundary) M in E® with non-negative Gaussian curva-
ture K is convex (Chern-Lashof [1]). For A >0 this is a classical result of
Hadamard [4].

Recall also however that a surface does not have an osculating sphere at each
point, but we do have two principal curvatures &, and x, which for K>0 have
the same sign. Thus we define the principal spheres at x=M to be the spheres

of radius Ti«—l, i=1, 2, k;#0, centered on the normal line, tangent to M at x and
1

on the side of the tangent plane containing the surface (our surfaces being
convex). If one (or both) of the &,’s vanish, we define the corresponding
“ principal sphere” to be the tangent plane and its “interior” to be the half
space containing the surface.

Finally note that when the outer normal to a closed convex surface is chosen,
the principal curvatures k, as eigenvalues of the Weingarten map (as the linear
transformation associated to the second fundamental form) are non-positive.

THEOREM. Let M be a smooth closed convex surface in E®. A point interior
to M is a center of inversion preserving convexity if and only if it lies in the
intersection of the interiors and boundaries of all the (small) principal spheres. A
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pont exterior to M 1s such a center i1f and only if 1t lies in the intersection of
the exteriors and boundaries of all the (large) principal spheres. If M is not a
sphere, inversion with center on M does not preserve convexity.

Proof. 1If M has a neighborhood of umbilics, the neighborhood is a piece
of a sphere or plane whose inverse is again a piece of a sphere or plane. Thus
we may assume that M is locally umbilic free and extend to umbilics by con-
tinuity. In particular we may choose local coordinates such that the coordinate
curves are lines of curvature; in turn then for the first and second fundamental
forms g and 2 we have g;,=h,,=0. As before we denote inversion in the unit

sphere about x, by

X—Xo
R

Now as x traverses M we have the following computations.

1 2x5(x—x)

x¥= S Xi— x—x
PN lx—x]® ( o)
g?‘=X*'x*=——1 g
J 2 J ]x_x0'4 w7
o 1 o 2x;(x—x) _ 2x:-(x—x0)
Y | x—x,]* i | x—xol* ’ | x—x,]* !

of X (x—xg)txicx, M (x—xo))(xi (x—x0)\,
2( [x—x0]* [x—x0° )(x %o).
Let n be the unit outer normal to M. The inverted normal is then given by

 2An-(x—x0)

X—Xo).
lx__x0|2 ( 0)

n*=n

\ =

Xo
Fig. 3.
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Now in preparation for finding the second fundamental form A* with respect to
an outer normal we have after some computation
1 2n-(x—x,)
epRee T R, 7
S B e 8
In particular we have A¥=0 as well as gk=0 and the principal curvatures
gf=g**h¥ (no sum).
If x, is interior to M, n* is the inner normal and we use —n* as the outer
normal. Therefore for the second fundamental form
L 2n(a—x)
|x—x,lt €Y

and hence
0=kf=—k | x—x0|2—2n-(x—x,)

or

K
n-(x—XO)Z**é | x—x0|%

Again in cartesian coordinates, setting n=a:+bj+ck, x=(x, v, z) and Rlzﬁ—l—
for k;#0, we have ’
(o= (x—a R+ (yo—(¥y—0R))+H(zo—(2—cR) =R

and hence x, lies inside the principal spheres at x.
If x, is exterior to M, n* is the outer normal and we have A¥,=x%¥ n*

Therefore

~%>IX—xol2n-(x—xo)

which is the exterior of the principal sphere. If x,=0 we have the desired half
spaces.

Conversely as in the curve theory case, a point in these intersections is a
center of inversion preserving the convexity.

Finally if M is not a sphere and x,=M, inversion about x, inverts the
principal spheres to a pair of parallel planes and M to a surface which is
asymptotic in both directions to a line in each of the planes, so, as in the curve
theory case, M is not convex.
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