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ALMOST COMPLEX SUBMANIFOLDS OF
A 6-DIMENSIONAL SPHERE

By KOUEI SEKIGAWA

1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two
typical classes: one is the class of almost complex submanifolds, and the other
is the class of totally real submanifolds. A Rigmannian submanifold N(M, ¢) (or
briefly M) of an almost Hermitian manifold (M, J, {,>) (or briefly M) is called
an almost complex submanifold provided that Jyy((d¢)p(X))E(dh)p(T (M) for
any XeT (M), peM. The most typical example of nearly Kaehlerian manifolds
is a 6-dimensional sphere S°® In fact, Fukami and Ishihara [3] proved that there
exists a nearly Kaehlerian structure on a 6-dimensional sphere S°® by making use
of the properties of the Cayley division algebra. We shall call it the canonical
nearly Kaehlerian structure on S° In this paper, we shall study almost complex
submanifolds of a 6-dimensional unit sphere S® with the canonical nearly Kaehlerian
structure. First of all, Gray [1] proved that with respect to the canonical nearly
Kaehlerian structure, S® has no 4-dimensional almost complex submanifolds.
We shall prove the following Theorems and some related results. In the follow-
ing Theorems, we assume that M=(M, ¢) is an almost complex submanifold of S°®.
Then it follows that dim M=2. We denote by K the Gaussian curvature of M.

THEOREM A. If (M, ¢) is not totally geodesic, then the degree of ¢ is 3.
THEOREM B. If K is constant on M, then K=1 or 1/6 or 0.

THEOREM C. Assume that M is compact. If K>1/6 on M, then K=1 on M,
and if 1/6=K<1 on M, then K=1/6 on M.

In the last section of this paper, we shall give some examples of almost
complex submanifolds of S® corresponding to the cases, =1, 1/6 and 0 in
Theorem B. We note that the result of Theorem B is a special case of the
result obtained by Kenmotsu under more general situation ([6]).
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2. Riemannian submanifolds

Let (M {,>) (or briefly M ) be a Rlemanman manifold and (M, ¢) (or brieflv
M) be a Riemannian submanifold of M with isometric immersion gb Let V (resp.
V) be the Riemannian connection on M (resp. M) and R (resp. R) be the cur-
vature tensor of M (resp. M ). We denote by ¢ the second fundamental form
of M i in M. Since ¢ is locally an imbedding, we may identify peM with
gb(p)eM locally, and T ,(M) with the subspace (d¢),(T ,(M)) of T¢(p)(M) Then,
the Gauss formula, Weingarten formula are given respectively by

(2.1) G(X, Y):ﬁXY—‘va )
2.2) Veb=—AX+V%E, X, YeX¥WM),

where & is a local field of normal vector to M and —A:X (resp. Vié) denotes
the tangential part (resp. normal part) of Vz&.

The tangential part A.X is related to the second fundamental form o as
follows:

2.3) o(X, Y), H=CA4:X, Y), X YeX(M).

We denote by R* the curvature tensor of the normal connection, i.e., R*(X, V)=
[V%, V$#1—Vir,y. Then, the Gauss, Codazzi and Ricci equations are given re-
spectively by

(2.4) (RX, Y)Z, Zy=(R(X, V)Z, Z">+<a(X, Z'), (Y, Z)>

_<0(X) Z); O-(Yy Z/)> )
(2.5) (ﬁ(X, MZ2)r=N%o)Y, Z)—(Nyo) X, Z),
(2.6) R(X, V)& pp=(R X, V)& p>—<[A: A,1X, YD,

for X, Y, Z, Z’eX(M), where (Vxo)¥, Z)=VN%0(Y, Z)—o(NxY, Z)—o(Y, VxZ)
and &,  are local fields of normal vectors to M.
In the sequel, the following convention for the notations will be used unless

otherwise specified :
‘X} Y; Zy Tty Eﬁ(M>) U: V) IV, R E%(M)

agd X(M) (resp. 36(1\71)) denotes the set of all tangential vector fields to M (resp.
M).
For the definition of the degree of the isometric immersion ¢, we refere to

[81.
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3. 6-dimensional nearly Kaehlerian manifolds

In this section, for the sake of later uses, we shall recall some elementary
formulas in a 6-dimensional nearly Kaehlerian manifold and furthermore the
canonical nearly Kaehlerian structure on a 6-dimensional unit sphere S® Let M
be an almost Hermitian manifold with the almost Hermitian. structure (J, {,>).
We denote by N the Nijienhuis tensor of J and by V the Riemannian connection
of M. It is known that the tensor field N satisfies

~

&1 N(JU, V)=NU, JV)=—=]JNU, V), U, VeXM).

Especially, if Mis a nearly Kaehlerian manifold (i.e., (VyJ)U =0, for any U e%(ZVI )
then the tensor field N is written in the following form (cf. [13]):

(3.2) NU, V)=—4J0, )V, U, Vei).
From (3.2), we get
(3.3) (NWU, V), Wy=—(NWU, W), V>, U, V, WeX(M).

An almost complex submanifold M of an almost Hermitian manifold M is
called to be a o-submanifold if the second fundamental form ¢ is complex linear,
ie.,

(3.4) o(JX, Y)=0(X, JY)=]Jo(X,Y), for X YeXM),

(cf. [12]). From (3.4), any o-submanifold is necessarily minimal. Vanhecke [12]
proved that if Mis a nearly Kaehlerian manifold, any almost complex submani-
fold is a o-submanifold and is also a nearly Kaehlerian manifold. W now assume
that M is a 6-dimensional non-Kaehlerian, nearly Kaehlerian manifold. Then the
followings hold in M (cf. [7], [9]):

(3.5) V(e )W) =gy W — (T ) )T W)

= U, VIJW U, WyJV+(V, WHU),

(3.6) o)W =2 U, VWU, WyV

U, V, Wex(M ), where S denotes the scalar curvature of M.
From (3.2), (3.5) and (3.6), we get

BT GaNXV, W)= 23 (U, VoW U, WV IV, WU,

3.8) NU, NV, W)=16(0y])(Vy W
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=SS W, VWU, WV U, V3 JW—=JU, W]V,
(3.9) (N, V), NU’, Vy=—16<V, (Vo )Vg IV
=85, U, vo—w, v, U

HJU, UV, Vo=JU, VOJU’, V),

U, u, v, Vv, wexM).

We shall now recall the canonical nearly Kaehlerian structure on a 6-dimen-
sional sphere S°. Let C be the Cayley division algebra generated by {e,=1,
e,(1=:<7)} over real number field R and C. be the subspace of C consisting of
all purely imaginary Cayley numbers. We may identify €, with a 7-dimensional
Euclidean space R’ with the canonical inner product (,) (i.e., (e, ¢,)=0;,, 1=z,
7=7). The automorphism group of C is the compact simple Lie group G, and
the inner product (,) is invariant under the action of the group G.. A vector
cross product for the vectors in €,=R" is defined by

(3.10) xXy=(x, y)ey+xvy, x, yEC» .

Then the multiplication table is given by the following:

RN
1 i 0 ¢; —e, es —ey e; —e;
2 | —e 0 e, ¢s —e; —e, o5
3 { ey —e; 0 —e —e 25 A
e, Xey= 4  —e; —og e 0 e e —ey
5 | e e, es —e,; 0 —ey —e
6 5—97 e —es —ey 25 0 e,
7 e —e —en e @ —e 0

Considering S® as {x=C,; (x, x)=1}, the canonical almost complex structure
J on S® is defined by

(3.11) JU=xXxXU,

where x=S°® and U=T ,(S% (the tangent space of S°® at x).

The above almost complex structure J together with the induced Riemannian
metric <,> on S® from the inner product (,) on C,=R" gives rise to a nearly
Kaehlerian structure on S®. The group G, acts on S° transitively as the group
of automorphisms of the nearly Kaehlerian structure (/, <,») (cf. [3]). It is
well known that S® does not admit any Kaehlerian structures.



178 KOUEI SEKIGAWA

4. Proofs of Theorems A, B and C

Let M be an almost complex submanifold of a 6-dimensional unit sphere
M=S® with the canonical nearly Kaehlerian structure (J, <,»). Then it follows
that dim M=2 and hence M is a Kaehlerian manifold of complex dimension 1
with respect to the induced structure from S®. We denote by K the Gaussian
curvature of M. Then, from (2.4) and (3.4), we get

lall®

4.1) K=1— 5

where | o| denotes the length of the second fundamental form o.
Codazzi equation (2.5) implies in particular

(4.2) Vyo)Y, 2)=(Nyo)X, Z).

From (2.1), (2.2) and (3.2), we get

4.3) Vi Jo(X, Y)):%]N(Z, o(X, YN+ J(—Asx.nZ+V20(X, 1)),
vZ(U(Xy ]Y)):-'Ac;‘(X,JY)Z—I_véU(Xv jY) .

From (4.3), taking account of (3.1), (3.3) and (3.4), we get

(4.4) %]N(Z, o(X, Y)=(z0)X, JY)—]JNz0)(X, Y).

Since dim M=2, from (3.1) and (3.4), we get easily

(4.5) N(Z, o(X, Y)=N, o(X, Z)).

Let M'={peM; c+0 at p}. Then M’ is an open set of M.

We now assume that M’+#0 (i.e., M is not totally geodesic in S°®. Let
{X:;, X,=JX,} be a local field of orthonormal frame on a neighborhood of a point
peM in M. If we put

(4.6) Ve X= 2 BipXe, 15,52,
then we get

4.7 B,,y»=—B,,, 1=, 3, k=2.
Taking account of (3.1), (3.3), (3.4) and (3.9), we may put
(4.8) (Vi 0)( Xy, XD)=a0(X,, X)+bo(X,, X,)

d
+- N, 0(Xs, X))+ TN, o(Xi, X)),
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(Vi20)(Xy, XD)=a'o(X;, X)+b'0(X;, X,)
’ dl
+-5- N, 0(X, X))+ N X, o(Xs, X2).

Then, from (4.8), taking account of (2.5), (3.1), (3.4) and (4.4), we get

(4.9) a'=—b, b=a, =d, d'=—c—1.
Thus, from (4.8), taking account of (3.3), (3.4) and (4.9), we get
1 1
(4.10) a=—-Xial, b=— —-Xaf.
ol el

From (4.6), (4.7) and (4.10), we get
[X, Xe]lol=Xi(Xslol)—X(Xilleo])
=—Xi(bllel)—Xu(allal)

=—(Xb+Xea)lal,
and hence

(4.11) Xoa+Xb+aBis+bBy1,=0.
Taking account of (3.4), (4.6) and (4.7), we get easily

(412) gl(V:XO'XXu Xl):() .

From (4.8) with (4.9), taking account of (2.5), (3.1), (3.3)~(3.6) and (4.12), we get

(4.13) IToli=_ %, (Txo)X, X, (T o)Xy X))

=4V, 0)( Xy, X1), (Vi 0)( Xy, Xi)
HL{(V,0)( X, X3), (Vo) (X, X02)
=Q2(a®+b)+2(c*+c+d)+Dlol®.
From (4.10) and (4.13), we get

(4.14) a’*+b*=|grad(log o],

2 2__ 1 72 2__ 2
(4.15) ctc+d —~2m;(llv oll*—2|igradfe||l*—lal®) .
We put

F=|grad (log|la|DII*
and

1

G=—"—
2|ell®

(IV'ol*—2ligrad|all[*—lla|®) .
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Then, from (4.15), we have easily
LEMMA 4.1. Gg—% on M.

From (2.6), taking account of (2.1), (2,2), (3.1)~(3.4), (3.7), (3.8), (4.1), (4.5)~
(4.9), we get

— S ol =CRA X, X)o(X,, X, 0(Xs, X

_lol®
4

+2(Xle IZ_XZBI 12_31213112+B2123212))

(Xla_Xzb_bB121+aBZlZ_ZG'_l

:—-”0-” (Xla“Xzb—bBlzl+aBZlZ—l—ZG—_ZK) ’

4
and hence
(4.16) Xia—Xob—bB1o+aB,y,=2G+3K.
Similarly, we get
4.17) X1d—Xoc=32¢+1)B15,—6d By 1,—2ad —(2¢+1)b,
(4.18) Xic+Xod=—6d B2 —3(2¢+1)Bs12+2bd—(2c+1)a .

LEmMA 4.2. A(logllel)=2G+3K on M.

Proof. From (4.6), (4.7), (4.10) and (4.16), we get
Allol=X(X:|lo])+Xo(Xell o)+ Br s Xoll o |+ Bz 1o Xs | o |
=|ol(X,a—X:b—bB; s+ a Byt a-+b?)
=|o|(F+2G+3K),
and hence
A(logle)=(1/leDAlle||—lgrad(loglla[DI*
=2G+3K. Q.E.D.

Let {E,, E,=JE,;} be an orthonormal basis of T,(M), pM’ and 7,=7.(t.)
(1<7/<2) be the geodesics in M’ such that

dr.

r0)=p and dt,

O=E,, 1=i52.

Then, we may easily see that there exists an orthonormal frame field {X;, X,=
JX.} near p in M’ such that
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(4.19) X,=E, (1=:=2) at p,
and
_dn N _dr,
X,= ai, along 7., X,= a, along 7,.
From (4.19), we get
(4.20) B,,,=0 along 7, and B,;;,=0 along 7..

From (4.17) and (4.18), taking account of (4.19) and (4.20), we get
4.21) E(Xd)—E(Xyc)=—Q@c+1)E,d—2dEa
—6dEB;.;—20E,c—20E\d,
Eyf(Xi0)+Ef(Xod)=—Q@c+1)E,a+adELb
—6dE,Bys—2aE,c+20E.d .

From (4.21), taking account of (4.11), (4.16) and (4.20), we get

4.22) d=—4dG—2aE,d+2bE,d—2bE,c—2aFE;c .

Similarly, we get

(4.23) c=—22¢+1)G+2bE,d+2aE,d—2aEc+2bE,c .

On one hand, from (4.17), (4.18) and (4.20), we get

(4.24) (Ei0)*=—(Eyc)(Eyd)—(2c+1)aFE ;c+2bdE;c,
(Eyc)?=(Ey ) Ed)+2adExc+Q2c+1)bEsc,
(E1d)*=(Eyc)(E d)—2adE;d—Q2c¢+1)bE\d,
(Eod)!=—(Ec)Eyd)—Qc+1)aE,d+2bdEyd .

From (4.17), (4.18) and (4.24), we get

(4.25) 20(Ec)(Eqrd)—(Ec)(Eqd))

=—FAGH+1D+(E0)* +H(E0) +(Ed)*+(E,d)* .
Thus, from (4.21)~(4.25), we get
(4.26) AG=2—(F+G)4G+1)—2aE,G+2bE,G
H(E10) +(Es0)*+(Ed)*+(E.d)”) .
LEMMA 3. The following holds on M'.
4.27) A(4G+1)*=24(4G+1)(—(4G+1)*G+6llgrad G|?) .

181
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Proof. By the definition of the function G, we get
(4.28) E.G=Q2c+1)E«c+2dEd, 1=i52.
From (4.17), (4.18) and (4.28), we get
(4.29) (AG+1DEc=Q2c+1)E,G—2dE,G+2bd(4G+1),
(AG+1)Ewc=2dE,G+(2c+1)E.G+2ad(4G+1),
(4G+1)Ed=2dE,G+@2c+1)E,G—(2c+1)b(4G+1),
4GH+1)Ed=—Q2c+1)E\GH+2dE.G—2c+1)a(4G+1).
From (4.29), taking account of the definitions of the functions F and G, we get
(4.30) (AG+DX(Eic)*+(Eqoc)*+(Ed) +(E,d)*)
=2(4G+1)((4G+1)*F+|grad G||*
+a4G+1E,G—b(A4G+1)E,G).

Thus, from (4.26) and (4.30), we have finally (4.27). Q.E.D.

We are now in a position to prove Theorems A, B and C. First, we shall
prove Theorem A. We denote by v% the k-th normal space and by o¢% the k-th
fundamental form of the isometric immersion ¢ at peM’. Then from (4.8) with
(4.9), we see that v} and v} are generated respectively by {c3(E,, E;)=0(E;, E)),
c3(Ey, E))=0(Ey, E2)} and {o}(E,, E;, E))=(c/4)N(E,, 0(Ey, ED)+(d/4)N(Es,
d(Ey, EY), 03(Ey, Ey, E))=(d/4)N(E;, 0(E,, E\))—(c+1)/4)N(E,, 0(E,, E,))}, where
E,=JE,.

If G(p)#0, then it follows that dimy,=2, dimy3=2, and hence the degree
of the immersion ¢ is 3. So, we assume that G=0 on M’. Let p be any point
of M’ and define E by

[(TzoXE, )= Max [(Txo)X, X).
P

1xi=1

Let {X;, X,=/Xi} be an orthonormal frame field near p satisfying the condi-
tion (4.19) for the basis {E,=E, E,=JE} at p. Then, we may easily see that
d=0 (and hence ¢*+c¢=0) at p. We may assume that c=—1 at p. We put

(= $ N, a(X, X))+ SN, 0(X,, X)) near p.

Then, taking account of (3.1), (3.7), (3.8), (4.2), (4.8), (4.9), (4.20) and (4.29), we
get
(4.31) 0‘;)(E1; El, E,, El):’—(Ezd‘l‘a)Cp

=—-2G(p){,=0.
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Similarly, we get
(4.32) o)(Es Ey, Ey E)=0.

Thus, from (4.31) and (4.32), taking account of (4.12) and the symmetricity
of o}, we have finally 63=0, and hence the degree of ¢ is 3. This completes
the proof of Theorem A. Next, we shall prove Theorem B. We assume that
the Gaussian curvature K of M is constant and K#1. From (4.1), we get
lel?=2(1—K), and hence from (4.10) and (4.14)

(4.33) F=0 on M=M.

Thus, from (4.33) and Lemma 4.2, we get

(4.34) G:—%K on M.

From (4.34) and Lemma 4.3, it follows that G4G+1)=0. If 4G+1=0, then,
from (4.34), we have K=1/6, and otherwise, we have K=0. This completes the
proof of Theorem B.

Lastly, we shall prove Theorem C. We suppose that M is compact and
M’#0. Then || takes its maximum at some point pM’. Then, from (4.10),
we have F(p)=0. Thus, from Lemmas 4.1 and 4.2, we have

(4.35 0=(Alogllol)(p)Z— 5 +3K(p),

and hence K(p)=<1/6.

Thus, if M is compact and K>1/6 on M, from (4.35), it follows that M’'=0,
and hence the first half of Theorem C is proved. The latter half of Theorem C
is immediately followed by using Lemmas 4.1 and 4.2, and Green’s theorem.
From Lemmas 4.2 and 4.3, taking account of Green’s theorem and Gauss-Bonnet
theorem, we have the following

THEOREM D. Assume that M 1s compact and K<1 on M. If the function G
satisfies the inequality —1/4<G=0 on M, then G=0 or —1/4 on M, and fur-
thermore M is diffeomorphic to a 2-dimensional torus (resp. a 2-dimensional sphere)
in the case where G=0 on M (resp. G=—1/4 on M).

We remark that the equality G=0 (resp. G=—1/4) on M’ is equivalent to
(4.36) Alog(1—K)=6K, on M’

(resp. (4.37) Alog(1—K)=—1+6K on M)
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5. Some examples

EXAMPLE 1. Let M={xS*%;, x=x.e,+x4,+xees}, and ¢ be the inclusion
map from M into S° Then, we may easily see that (M, ¢) is a 2-dimensional
almost complex and totally geodesic submanifold of S°.

ExXAMPLE 2. Let M=S5},={(y1, Yy ys)ER?; yi+yi+y3=6} and ¢, be a C~
map from M into S® defined by

(5.1 Sbo(yh Yo Vs)
=(—‘%6- (Zy?—3y1y%—3y1y§)>el+(%§ (3y§y3—y§)>ez

/15

ut

.
+(_2Z (4y%ya—yéys—y%))eﬁ(}g%o(yly%—ylyz))ee

1
(y%—Zyzyé))eﬁ(ﬁ (4y§yz—y%—y2y§))e4

+(%%Qy1y2ya)e7, for (yl: Ve, ys)ES?/e,

Then, we may easily check that (S, ¢) is a 2-dimensional almost complex
submanifold of S°® and furthermore, any almost complex submanifold (S%, ¢) of
S¢ is obtained by ¢=a-¢, for some acG,.

ExAMPLE 3. Let M=R? be a 2-dimensional Euclidean space with the can-
onical metric and ¢ be a C* map from R* into S°® defined by

(5.2) P(u, v)=\/:32:(cos «/:g u)((sin \/%v)a,——(cos «/gv)bl)
+\/ fg<sin \/ g— u)((sin \/ Ag v)az-(cos \/ —g v)bz)
—i—(x/:l; cos «/’Z’u)aa-l-(x/%h—sinx/z'u)ba,
for (u, v)e R? where a,, b;=C,=R" such that (a,, a;)=0;,, (a,, b;)=0, (b;, b;)=0,,
1=, j=<3, and
a, Xby=—bs, asXa,;=b,, asXb,=—a,,
ayXby=bs, a;Xay=b;Xby=—asXb,.

For example, (a;, a,, as, by, bs, bs)=(e5, —e,, €5, —e,, ¢, ¢,) satisfies the rela-
tions in (5.2). We may easily check that (R? ¢) is a 2-dimensional almost com-
plex submanifold of S
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The above immersion ¢ induces an immersion ¥": T*=R?/I"—S® in the

natural way, where I" denotes the lattice group in R? generated by {2\/ 21, 0),
5
o0/ 5 70, 1)}.
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