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NORM THEOREM ON SPLITTING FIELDS OF
SOME BINOMIAL POLYNOMIALS

By SUGURU HAMADA

Let K be a finite algebraic number field and let M/K be a finite Galois ex-
tension. Let Knot (M/K) be the factor group {e=K*, a is a local norm every-
where} /{a=K*, a is a global norm}. Hasse’s norm theorem asserts that if M/K
is a cyclic extension then Knot(M/K)=1. H. HASSE ([4]) showed that the
norm theorem not always holds for arbitrary abelian extension by giving a
counter example : M=@Q (v/—39, ~/—3) and K=@Q, where @ is the field of rational
numbers.

And related theories are in [17, [2], [3], [6], and [7]. In this paper we
prove the following:

THEOREM. Let p be an odd prime number, { a primitwe p'-th root of unity
(r=1), K a fimte algebraic number field, L=K({) and M=L(a'"") (a€K).

If f(X)=X?"—aqa 1sirreducible in L[ X7 then Knot(M/K)=1. When ~/—1K
the same assertion holds also for p=2.

In Remark, by examples, we shall show that in Theorem if we replace p"
by a number which is not a power of an odd prime number or by 27 (»=2 and
+/—1& K) then the conclusion is not always valid.

In §1, we shall prove Theorem and Remark by determing Knot(M/K) ex-
plicitely by the following Lemma:

LEMMA. Let I, n be positive integers and let G be a group of order In gen-
erated by two elements ¢, T whose fundamental relations are o'=t"=1, tor'=0c™
(1=m<l and m"—1 1s a multipler of I). Then H¥G, Z)=Z/dZ where d=(1+
m+ - +m™ L L, (m*—1)/l, m—1) and Z is the ring of rational integers on which
G operates trivially.

In §2, we shall give a proof of the Lemma as a corollary of a proposition
in [47.

§1. Proofs of Theorem and Remark.

In the following the notations are same as those in our Theorem. Let G=
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Gal(M/K) be the Galois group of M/K, M* the multiplicative group of M, Jy
the idéle group of M, and C, the idéle class group of M.
Then the exact sequence

1-—)MX-—>]M—>CM—*1
gives an exact sequence
—> HXG, Cy) —> H(G, M*) —> H*(G, Jy) —> H*(G, Cy) —> -+

By Tate’s Theorem, we have H YG, Cy)=H*G, Z). In the following, by
Lemma we show that H*(G, Z)=0 then we have an exact sequence 1-H°(G, M*)
—H(G, Ju).

Therefore, the canonical map K*/Ny,xM”— Jx/Ny;x Ju is injective and we
have Theorem. Now we show that H3*G, Z)=0 by Lemma then H %G, Z)=0
follows because in general H¥(G, Z)=H*G, Z).

First let p#2, [L: K]=n, 6=a"?" and p a rational integer such that p
mod p” generates the units group of Z/p"Z. By assumption, M/L is a cyclic
Kummer extension of degree p” and L/K is also a cyclic extension of degree n.
Let o, be the elements of G such that ¢(8)=60(, o()=; =(6)=80, = )=L™,
where mEp@(PT)/" mod p” (¢ is Euler’s function and 1=m<p").

Then G=<o, 75, 6?"=7t"=1, tot'=0¢™ and G is a group of the type in
Lemma. Therefore, we have H¥G, Z)=Z/dZ where d=1+m—+ --- +m™™, p7,
(m"—1)/p7, m—1). We show that d=1.

Now, d+#1 if and only if m=1 mod p, n=0 mod p and (m"—1)/p"=0 mod p.
While if n=0 mod p, we have m"=p?®" mod p™*' and p??P %1 mod p7*!, be-
cause in fact n is a divisor of ¢(p") and n=0 mod p implies »=2. Therefore
we have (m™—1)/p"#0 mod p and d=1.

Next let p=2, «/—1€K and [L: K]=n. If r=2 we have the result im-
mediately, so let »=3. Since v/ —1€K, Gal(L/K) is also a cyclic group generated
by z, such that z,({)=C™ where m=5%""" mod 2" and 1<m<2".

And G={o, v> (a(0)=0¢, o(Q)=C; (6)=0, 7({)=C™), 6 =7"=1 and tor~'=
o™ Now if n=0 mod2 we have m"=5""? mod 2+, and 5 °%1 mod 27+
Therefore H3G, Z)=0 follows just as the case p#2.

Thus the proof of Theorem is completed.

Remark. In Theorem, if we replace p™ by a number which is not a power
of an odd prime number, or by 27 (r=2, +/—1< K) then our Theorem not always
holds.

To show this, we use the following well known theorem ([1] p. 198). Let K
be a finite algebraic number field and let M/K be a finite Galois extension with
Galois group G=G(M/K). For each prime divisor p of K, we fix a prime divisor
B of M lying above p and let Gy be the decomposition group of . Let F be
the subgroup of H ¥ G, Z) generated by all cor (H*Gg, Z)) where p runs over
all prime divisors of K and cor is the correstriction homomorphism from H*(Gg, Z)
into H %G, Z). Then the theorem asserts that Knot(M/K)=~H*G, Z)/F.
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In the following Examples, {, is a primitive ¢-th root of unity.

EXAMPLE 1. Let L=@Q), {={,, and let K be the subfield of L which cor-
responds to the subgroup {(z,» of Gal(L/Q), where ,({)=C*. Then we have
Knot(M/K)=Z/3Z where M= L(883'/%),

Proof. 883 is a prime number and 833=1 mod (21)>. We have Gal(M/K)=
o, > (6(0)=0C, oc(0)={; ©(0)=0 and =({)={* where §=883"%"), ¢*=7°*=1 and
rot '=¢*. By Lemma, we have H*G, Z)=Z/3Z. On the other hand, for any
prime divisor $ of M the decomposition group Gy is cyclic. For the proof, we
may consider only P which is above 883, 3 or 7. When P is above 883, Gp&
Gal(M/L)=<o) because the prime of K under P splits completely in L. When
B is above 3 or 7 the prime of L under P splits completely in M, because X*'=
883 mod 3% or mod 7% has a solution X=1. Hence the order of Gy is =3 and Gg
is cyclic. Therefore for any B, H 3G, Z)=0 and by the above theorem we
have Knot(M/K)=Z/3Z.

EXAMPLE 2. Let K=Q, L=Q((,)=Q(+/=1),and M= L(17"/%), then Knot (M/K)
~Z)2Z.

Proof. Gal(M/K)={o, t>, o*=7*=1 and ror '=0¢°. By Lemma, we have
H¥G, Z)=Z/2Z. On the other hand, just as Example 1, we see that for any
prime divisor B of M, Gy is cyclic and Knot (M/K)=Z/2Z.

Remark. As we have seen in the proof of Theorem, we have a slightly
generalized theorem as follows; let p be an odd prime number and let M/K be
a finite Galois extension. If Gal(M/K)={a, >, 6? =1t"=1 (n|e(p"), {o>N{e>=1,
ror'=¢™ and m mod p” has order n in the unit group of Z/p"Z, then Knot
(M/K)=1. We have also a similar generalization for p=2.

2. A Proof of Lemma.

Let G be a group of the type in Lemma: G is a group of order /n, generated
by two elements ¢, ¢ with fundamental relations ¢'=c"=1, tor '=0¢™ where
1<m</ and m"—1 is a multipler of /. In the following, let N=1+o¢+ - +o'7},
4d=1—0¢, S=14+0+ - +0o™Y, T,=77'SY, N,=1+T+ - +T?!, 4,=1—T, and

lLN+1)—1 .
LFL—%—- —, where /=0 and /,=(m™—1)/I.
For a left G-module A, in [4], by giving a free resolution of G, we determined
cohomology groups H(G, A) as follows:

N 0

), M,=|4, —4) and for q=1
0 N,

4

PROPOSITION. Let Mlz( y
0
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N 0:
0
dosy  —4:
, Mygyy=] -oveeeeermereeeionenne ,
N, :
0 — L, . My,
0 :
where 0 means that all elements in the places are 0. Then
HI(G: A): {a}/{Mlb} (l:]v 2’ )’
where {a} ={a=(ay, -, a,+1)"(column vector)|a,€ A and M,.,a=0} and {M;b} =

{All(bb Tty bl)thJEA}'

Now we prove our Lemma by above Proposition. Since G operates trivially
on Z, we have, for reZ, Nr=lr, dor=_1—m"r, dr=4w=0, Npr=pr (u=1+m
4ot Y), Lir=ly, dr=1—m)r and Noyr=nr.

By Proposition, H*(G, Z)= {a}/{M;b} and direct computations give {a}=
{x(ro, —so)lx€Z} where p=ds,, (=do (S0, 7o=1)) and {M;b} = {(1—m)y—Iz,
Ly+p)tly, z€Z} ={(diy+doz)(re, —S0)'|y, z€Z}, where d,=(m—1,1,). (For
convenience if m—1=/,=0 we set d,=0.)

Hence {M;b} = {dx(r,, —so)t|x=Z}, where d=(d,, d,). Consequentely we
have H¥G, Z)=Z7Z/dZ, where d=1+m+ - +m"™ %, [, (m*—1)/I, m—1).
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