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A THEOREM ON THE SPREAD RELATION
By HipEHARU UEDA

0. Introduction.

Let u=u,—u, be nonconstant, where u, and u, are subharmonic in the
plane C. For such a function u, we will write

N(r, u)=%5f:u(re”’)d0 .

Then the Nevanlinna characteristic of u=u;—u, is defined by
T=T, u)=N(r, ut)+N(r, us).
For be(—co, +o0) we define
oo, w)=1{0; ure*?)>b}| .

(Here, and throughout this note, |E| denotes the one-dimensional Lebesgue
measure of the set E. Also, # is understood to vary between —x and +z.)
In [4], Baernstein proved the following result.

THEOREM A. Suppose u=u,;—u, 1S nonconstant, where u, and u, ave sub-
harmonic tn C. Let 6 and A be numbers satisfying

4 o o \1/2
2>0,  0<é=l, sin (5) <2r.

Assume there exist r¢=0 and be(—co, 4-00) such that r=r, implies

N, un)=(1—-0)T(r, u)+0(1)

and
4 . _ 0 \1/2
(1 o7, u)<7 sin 1(§> .
Then
lim ﬂ;} %) =a
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38 H. UEDA
exists, and is positive or infinite.

Theorem A may be regarded as an analogue of Kjellberg’s definitive form

[6] of the cos zp theorem.
In this note we consider the above result under somewhat weaker assumptions.

THEOREM. Let u, 6, and A be as in Theorem A except for the condition (1).
Assume wnstead of (1) that there exists bE(—oo, +00) such that

7n,{r>1; oy, u)z% Sin‘l(g>1/2}<+oo.

where myE denotes the logarithmic measure of the set E. Then

lim- T(r;u_) =q

700

exists, and 1s positive or infinite.
From this, we immediately deduce the fellowing

COROLLARY. Let u=u,—u,, where u, and u, are subharmonic in C, and
suppose u has lower order ps(0, ). If d(c0)=d(co, u)>0, then for any fixed
be(—o0, +c0) and >0,

ml{r>1; oy(r, u)>min (Zn, %sin"1 (ﬂgiym)-—e}:—l-w.

In the above corollary, the quantities p and 0(co) ore defined by

i Jog T(r, u). = N, us)
plim s deo)=l=lim e

We remark that this corollary can be deduced also from Theorem 1 in [8].
Without loss of generality, we may prove our theorem under the following

additional conditions:
(i) u, and u, are harmonic in a neighborhood of 0,

(ii) b=0,
(iif) u(z2)=uy(z) for all z, u,(0)=u,(0)=0.
For the details, see [4, p89].

1. Lemmas.

LEMMA 1. ([3]) Let u=u;—us, be nonconstant, where u, and u, a.e 3sub-
harmonic in C. Put

w¥(re*’)=sup “l_g ure*)dow  (#>0,0<60=n),
E 27 JE



A THEOREM ON THE SPREAD RELATION 39
where the sup s taken over all sets EC[—n, +r] with |E|=26, and define
u*(re'®)=u(re*’)+Nr, us),

Then u*(z) 1s subharmonic in the upper half plane.

LEMMA 2. ([7],cf.[5, §5]) Let n be a positwve integer. Let I'=\J™M[—7], —7.],
where 0=Zr;<r|<r,n=1, 1=i=Zn, and rp1=1. Put I'*={r; —rel'}. Let u be
subharmonic in the unit disk 4, and put m*(r, u)=inf,,_,u(z), M(r, u)=max,, -, u(z),
for 0<r<1. For given 2<(0, 1), consider subharmonic functions in 4 which
satisfy

(LD m*(r, u)=cos TAM(r, u)  (rel'+—{0, 1}),
1.2) wZ1l  (ze€A).

For such a fixed I' and 2, there exists a function U(z)=U(z, I, 2) which has the
following properties:

(i) U is bounded, continuous and subharmonic in 4,

(i) U s harmonic in A—T,

(iii) limoU(z)ZI (16| <n),

g6l

(iv) U(—r)=cos zAU(r) (rel+—{1}),

(v) if u is subharmonic in A, and if u satisfies (1.1) and (1.2), then M(r, u)
<U(r) for 0<r<1,

(vi) U is the unique function which satisfies (i)-(v),

(vii) if r<[0, 1), then

U(r)=C) exp [—am,(I*N[r, 11)],

where C(2) is a positive constant which depends only on A.

LEMMA 3. ([1]) Let v be subharmonic in C, and suppose that 0<o<l. If

a=lim 20 1o, v)=max v(z))

T e
and
— * — M .
Tlim Srzﬂ(r’ v) cﬁ,saﬂg (r, v) dr=0 (m*(r, v)= inf v(2)),
1, T2=®JT] v lz2l=1
then

i M)

700 Ve

2. Preliminaries.

2.1. A function A(z). Set 8 and < as follows:



40 H. UEDA

‘B:%sin”(g)m, r:%
Then

. _ﬁz - E 1/2 l
@.1) a=7i==sin (2) <.

By assumption, there exists a positive number A such that
N, u)=(1—-0)T(r, u)+A  (rz0).

Since u(z) is nonconstant, T(», u)=T(r) is unbounded, and so there exists a

number 7,>0 such that
T >rA,=rA/(1—cos wa) .

Now, Fix R>2max (1, r,) and define
T (0=t=R)

B(t)= t
1 TR log () +T(R)  (R=t<co),

where T.(t") denotes the logarithmic derivative of the function ¢—7(7). Then
B(t) is a convex increasing function of logt, and the Poisson integral

h(z)= Bit)dt  (z=re'?)

4

1 Sw 7 sin 6

o t24r*+2tr cos 0
is harmonic in the slit plane |argz|<m, is zero on the positive axis and tends
to B(r) as 0—rx—. Further,

216
“lamw  a01<m

1=
2.2) hg(rew):—go log‘H—'

Vi
and

B(r)—h(re'’) . vy L (® r
B oL

(2.3) ho(—r)= alim_
hold, where B,(t) is the logarithmic derivative of logarithmically convex non-
decreasing function B(t), which were established in §3 of [2].
By (2.2), (iii) in §0 and (12) of [2]
R R R
nh9<7>—50 log (145, )dBA(®

R R/2
=B(R—)log S+("

o 1+ Rz 4BO

:BI(R—)log%—]—B(R)%—I—SR RIZ_ piar

o (t+R/2)
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=By(R—)+B(R)=B(Re)+B(R)=2B(Re)
S2{TW(R" =)+ T (RN} =2{T(R7e")+T(R")} =4T(R7¢"), i.e.

2.4) WESESY LN
Also, for 0<r<R,

T(r’)=B<r)=h(—r>=S:ho(r)da<nh,,(r), i.e.

.5 hatr)>—T().

2.2. A function hi(z). Let Ag={z; |z| <R} and let h,(z) be the bounded
harmonic function in Az defined by
R2—y? ]
R*+1r*—2Rr cos(ﬁ t)

Rz—r
R?*+7*—2Rr cos (0——7,‘)

wy_ L
halret )=y jT(R)

1
oy (—TCRT)-
Then

o 1 0 RZ—-r
(hy)e(re*?)= S T(R")- 06 ( R®4+72—2Rr cos (0—t) )

1 0 R*—p?
) CTR 55 (g cos (5= )

. 0 -
2.6) :,Q%SO(—T(RU)’&T( Ry —ZRrrcOS(ﬁ—l‘) >
1 cos d LS
_,__Z;I—SK T(R")~—— o ( R 12 —ZRrEOSﬁ(PiW)dt
) 4(R_7)7[ Re— Re—p? ]

Rtr—2Rreos§ | RAri2Rreosd ] S

T
Hence (4,)4(z) is also harmonic in Ar and

@) (ho(-)=2500

2.3. A function H(z). Consider the harmonic function H(z) in A%
={z; z€Ag, Imz>0} defined by

H(re*®)=h(re*?)+cos rah(re* =)+ hy(re*’)+ A(x—0) .

The boundary values of H satisfy
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H(—r)=h(—r)=T@G") 0=r<R),
(2.8) H(r)=cos rah(—r)+ Ax (0<r<R),

H(Re'")=h,(Re'?)=T(R") 0=0=n).
Now, set
v(z)=u*(z").
Then by (2.8)

v(—=r)=u*(e)=T")=H(—r) (0=Zr<R),
2.9) v(N)=uf")=N0T, u) A=0)TW")+AZH(r) (0<r<R),
v(Re')=u*(R7e"?")<T(R")< H(Re'?) ((EESOR

Hence, by Lemma 1 and (2.9)
(2.10) v(z2)£H(z) (zed?).

3. Proof of Theorem.

Set
Gi={r>1; oor, u)z28}
and
Fr1=(0, 00)—G,.
Suppose r"=F;. Since u=0 everywhere, we easily deduce that
(3.1 (=) =u¥*@Te®)=T(").
It follows from (3.1), (2.9) and (2.10) that for "€ F; (0, R7")

N 38
(3.2 Hy(—r)=Jim 070 < p=pugeren).

(Existence of the limit follows from (2.3).) Let #(re*?) denote the symmetric
decreasing rearrangement of wu(re??) (cf. [3, §3]). Then

(3.3) uf(retf)=ii(r7e*)=0 rreFy).
Hence, by (3.2) and (3.3), He(—r)=0, ie.
ho(—7)+(h)o(—r)=cos maho(r)+A  (TEF;N(0, R").
If a<1/2, then by (2.6)
(3.4) ho(—r)+(h)o(—r)— A< cos mal ho(r)+(hi)e(r)—AL]
(rreFan(0, RM).
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If «=1/2, then by assumption N(r, u,) is bounded. This implies that u, is
harmonic, in which case N(r, u,)=u,(0)=0. Hence (2.10) holds with A=0.

Then, arguing as above, we obtain

ho(—7)+(h)e(—71)=0  (T€F,N(0, k7).

This shows that (3.4) is true also for a=1/2 with A;=A (an arbitrary positive

number).
Here, we consider the functioin %(z) defined by

_ ho(Rz/2)+(h)o(Rz/2)— A,

HO= R he(Ri2—A, D

(Note that the denominator is positive by (2.5) and the choice of R.)
of (2.2), (2.3) and (2.6), %k(z) is subharmonic in 4 and

771*(7’ k)'_ hﬁ(_Rr/z)"i'(h])o(—‘RT’/Z)—Al
C T he(R/2)H(hy)o(R/2)— A,

ho(Rr/2)+(hy)o(Rr/2)— A,
ho(R/2)+(hs)o(R/2)— Ay

(3.5)

1 M(r, k)=

Combining (3.4) and (3.5), we have

(3.6) m*(r, k)<cos waM(r, k)  (Rr/2Y'€F;N(0, (R/2))).

As is easily verified, m*(r, k)—cos raM(r, k) is upper semicontinuous.
E.={re(0, 1); m*(», k)—cos raM(r, k)<0}

is open. It is clear that

m*(r, k)<cos raM(r, k) rekE,)
and
k(z)=1 (zed).

In view

Hence

Now, E, is open and so E,=\/;-:(sn, t,), where 0<s,<t,<1. Here we allow

repetition of intervals. Let

- (ta—sa) ,  (ta—sa) —
Tj— n&zjl |:Sn+ 3] ) tn 3] :I (]_]-) 2) 3) )-

Then by Lemma 2
M(r, B)=Cla)exp [—am(T;n[r, 1]  (=1,2,3, ).
Since m,(T;N\[r, 1])=my(E.NLr, 1]) (j—o0), we obtain for 0<r<1

ho(Rr [2)+(ha)o(Rr/2)— A,
&0 ho(R/2+ho R/ —4; =@ ePLmamdEanty, L)1
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Putting F;={r<(0, 1); (Rr/2)F;}, we deduce (3.6) that F;CE,, and so by
(3.7)

ho(Rr/2)+(hy)e(Rr/2)— A,

R RD—A, =C@exp [—am(F:nlr, 1] (0<r<1).

Hence for 0<r<R/2

ho(r)+-(hi)e(r)—As
ho(R/2)+(h1)e(R/2)— A,

<C(a) exp [——‘;imem[rf, (R/27D)|
(3.8) =C(a) exp [—% log ( R/Z) +—mz(GxﬂD’r (R/Z)T])]

=C@ )" exp Lam(Gar, (R/27D)]

=Cla) exp LGl o BT v /2)“ < oo
It follows from (24)-(2.7), and (3.8) that
T/ 72— A, AT(RTe")/z+8T(R")/3x
ro <B@ (R/2)"

This result may be written

T T(RTe")
e K1*(E*)r +Kyr®,

where K; and K, are positive and depend only on 6 and A. Replace #” by r
and R7¢’ by R. Then we have

7;(:) <K,

T(R) ) R
pi Tt (0<r<— o7 -)-

From this, it is easy to see that

li *T(Zr_)__l_oo:
T T
or
—_— 7
(3.9) o<1lm_7(1<lm 7;(r) i 0 4o

In what follows, we assume (3.9). Since a=1/2, the Poisson integral
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1 (e 7 sin @
— ry_ ey
(3.10) I(z) P So T t24-r2+2tr cos 4
is a positive harmonic function in the upper half plane, with boundary values
I(—r)=T@"), I(r)=0 for »=0. Then, arguing as in 2.3., we have

v(ret®)<I(ret?)+cos ral(re* =)+ A(x—0)

on the real axis. Since v(re!®)<T(")=0(*)<o(r), the above inequality holds
throughout the upper halp plane. Also equality holds for »"F? and f=r.

Hence
Io(—r)—cos malo(r)—A=ve(—r)=0 rrekFy),

so that
(3.1 Ty(—r)—A,=cos rally(r)—A] rrelFy).
By (3.10)
(3.12) n]ﬂn={“Mg(1+1)dT(ﬂyzyi—l—dTangflfgﬁwu
0 t ! o t+r o (t+7)? 7
and so by (3.9)
(3.13) o<mni§1§maggl<+m
If we put J(z)=1I4(z)— A, and
E,={r; m*(r, J)—cos naM(r, J)>0},
then by (3.11) and (3.13)
Sw [m*(r, J)—cos zaM(r, J)I* dr—g m*(r, J)—cos waM(r, J)
1 plta - ELna, e plta
<(1-cos o) M, J) g,
E Nt 7
1 o) . ,
=a mwmﬂ%mﬁ>ww dr=0(m, )< +oo.
Hence
(3‘14) ﬁa Srz Em*(r) ])—:lofaﬂaM(r’ le drgo .
T1,T27®JT]

Using Lemma 3, we deduce from (3.13) and (3.14) that

tim M0 0<acton), e

700

(3.15) lim 127 g

To
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By (3.12)
(3.16) Ig(r)=—1-S”T<ﬂ)—r—dt= 2+K(r)
7w Jo (t+7)? ’
where g(t)=T("), K(t)z%—(l—_lt_—t-)z—. Using Lemma 4 of [4], we deduce from
(3.15) and (3.16) that
i T gy TOD _ sinzac
T ¥ ro  F a

This completes the proof of our theorem.
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