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A THEOREM ON THE SPREAD RELATION

BY HIDEHARU UEDA

0. Introduction.

Let u — ux—u2 be nonconstant, where ux and u2 are subharmonic in the
plane C. For such a function u, we will write

Mr v)=—

Then the Nevanlinna characteristic of u — uλ—u2 is defined by

T(r) = T(r, u)=N(r, u+)+N(r, u2).

For £<Ξ(—OO, +OO) we define

r, u)=\{θ;u(re'θ)>b}\ .

(Here, and throughout this note, \E\ denotes the one-dimensional Lebesgue
measure of the set E. Also, θ is understood to vary between — π and +π.)

In [4], Baernstein proved the following result.

THEOREM A. Suppose u — Uι—u2 is nonconstant, where ux and u2 are sub-
harmonic in C. Let δ and λ be numbers satisfying

4 / δ \1 / 2

y s i n - 1 ^ )

Assume there exist r o^O and b^(—oo, -j-oo) such that r^r0 implies

N(r, u2)^(l-δ)T(rf

and

A / rϊ \ 1/2

(1) ^(r .uXj sin'1 (-j) .

Then

r->oo r Λ
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exists, and is positive or infinite.

Theorem A may be regarded as an analogue of Kjellberg's definitive form
[6] of the cos πp theorem.

In this note we consider the above result under somewhat weaker assumptions.

THEOREM. Let u, δ, and λ be as in Theorem A except for the condition (1).
Assume instead of (1) that there exists 6e(—oo, +°°) such that

ι{r>l;
N ~ 4 .

mι\r>\.\ σb(r, u)^—su

where mLE denotes the logarithmic measure of the set E. Then

y T(r, u)
lim \—-=α

exists, and is positive or infinite.

From this, we immediately deduce the fellowing

COROLLARY. Let u — ux—u2, where u± and u2 are subharmonic in C, and
suppose u has lower order μe(0, oo). // ^(OO)Ξ^(OO, U)>0, then for any fixed

(—co, +oo) and ε>0,

; σb(r, u)> min [2π, — sin"1 [—Kγ^) J - e | =

In the above corollary, the quantities μ and δ(oo) ore defined by

.. log T(r, u) ^ N{r, u2)

We remark that this corollary can be deduced also from Theorem 1 in [8].
Without loss of generality, we may prove our theorem under the following

additional conditions:
( i) u\ and u2 are harmonic in a neighborhood of 0,
(π) 6=0,
(iii) ux{z)^u2{z) for all z, Wi(0) = w2(0)=0.

For the details, see [4, p89].

1. Lemmas.

L E M M A 1. ([3]) Let u — uλ—u2 be nonconstant, where uλ and u2 a.e sub-

harmonic in C. Put

- r— \ u(reιω)dω
2π JE
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where the sup is taken over all sets Ed[_—π, +π~] with \E\—2Θ, and define

u*(reiθ) = u*(reιθ)+N(r, u2),

Then u*(z) is subharmonic in the upper half plane.

LEMMA 2. ([7], cf. [5, § 5]) Let nbea positive integer. Let Γ=\J?=1[-r[, —r»],
where O ^ r K r ^ ^ + ^ 1 , l ^ i ' ^ n , and rn+1=l. Put Γ+={r; -r^Γ}. Let u be
subharmonic in the unit disk Δ, and put m*(r, u)=inf\z\=ru(z), Mix, u)—ma.yL\2]=ru(z),
for 0 < r < l . For given λ^{0, 1), consider subharmonic functions in Δ which
satisfy

(1.1) m*(r, u)^cosπλM(r, u) ( Γ E Γ + - { 0 , 1}),

(1.2)

For such a fixed Γ and λ, there exists a function U{z) = U{z, Γ, λ) which has the
following properties:

( i ) U is bounded, continuous and subharmonic in J,
( i i) U is harmonic in Δ—Γ,
( i i i ) l im £ / ( * ) = 1 ( 1 0 | < τ τ ) ,

θ

(iv) U(-r)=cos πλU(r)
( v) if u is subharmonic in A, and if u satisfies (1.1) and (1.2), then M(r, u)

^U(r) for 0 < r < l ,
(vi) U is the unique function which satisfies (i)-(v),
(vii) *'/ rε[0, 1), then

-^mz(Γ+π[r, 1])],

where C(λ) is a positive constant which depends only on λ.

LEMMA 3. ([1]) Let v be subharmonic in C, and suppose that 0 < σ < l . //

and

then

Mir v)
α=lim—^-^-<+°o (M(r, v)=

r

jr— Γr2 m*(r, v)—cos πσMix, v) , . A , ., N . - / λNlim I - — - ± - J - — 7 — dr^O (m*(r, v)=mfv(z)),

y MiX, V)
lim — — a .

2. Preliminaries.

2.1. A function h{z). Set β and ^ as follows:
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Then

(2.1)

Ω 2 lίδY/2

β=Ίsm O2) '

, 2 . j
Ξ ^ = 7 s i n

- 2 '

By assumption, there exists a positive number A such that

r, u)+A (r^O).

Since u(z) is nonconstant, T(r, u) = T{r) is unbounded, and so there exists a
number ro>O such that

Now, Fix i?>2max(l, r0) and define

' ntη

r—) log

where Ti(ίr) denotes the logarithmic derivative of the function t->T(tr). Then
B(t) is a convex increasing function of logί, and the Poisson integral

y ' π)o ί 2 +r 2 +2ίrcos

is harmonic in the slit plane \argz\<π, is zero on the positive axis and tends
to B{r) as θ—>π—. Further,

(2.2)

and

(2.3) Aβ(-r)= lim

dB1(f) i\θ\<π)A ί (rβ l ί )=—("log
7Γ JO

. = lim Λ 0 ( 7 Ό = — I log
π—0 θ-*π- π Jo ' - 7

hold, where 5i(ί) is the logarithmic derivative of logarithmically convex non-
decreasing function B{t), which were established in § 3 of [2].

By (2.2), (iίi) in § 0 and (12) of [2]

= Bl{R~) log J
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i. e.

(2.4)

Also, for 0<r<R,

=B(r) = h(-r)=\πhβ(r)dθ<πhθ(r), i.e.
Jo

(2.5) hβ(r)>-T(rr).
It

2.2. A function hx(z). Let AR={z; \z\<R} and let hx(z) be the bounded
harmonic function in AR defined by

2ττ Jo v y R2+r2-2Rrcos(θ-t)

Then

( 2 6 )

R2—r2

_ T(J?Q Γ
"" 7r L R2+r2-2Rr cos ̂  i ? 2 + r 2 + 2 # r cos

Hence {hλ)θ{z) is also harmonic in AR and

2.3. A function H(z). Consider the harmonic function H(z) in
— {z;z^AR,lmz>0} defined by

H(reιθ)=h(retθ)+Q0$

The boundary values of H satisfy
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(2.8)

Now, set

Then by (2.8)

(2.9)

Hence, by Lemma 1 and (2.9)

(2.10) v

3. Proof of Theorem.

Set

H. UEDA

H(-r)=h(-r)=T(rr)

H(r)=cos πah( (0<r<R),

(0<r<R),

and
; σo(r, u)^2β}

Fλ=(0, oo)-Gλ.

Suppose rr^Fλ. Since z/^0 everywhere, we easily deduce that

(3.1) v(-r)=u*(rreιP) = T(rr).

It follows from (3.1), (2.9) and (2.10) that for rr^FλΓΛ(0, Rr)

(3.2) Hθ(-r)~ lim
π-θ

_ r ) ==γug(rγeiβ).

(Existence of the limit follows from (2.3).) Let u{reiθ) denote the symmetric
decreasing rearrangement of u(reίθ) (cf. [3, § 3]). Then

(3.3) uKrre^) = u(rrel^-') = 0 (

Hence, by (3.2) and (3.3), Hθ(-r)^0, i.e.

hθ(-r)+(hi)θ(-r)^cos πahθ(r)+A

If a<l/2, then by (2.6)

(3.4) hθ{

, Rr)).
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If α=l/2, then by assumption N(r, u2) is bounded. This implies that u2 is
harmonic, in which case N(r, u2) = u2(0)=0. Hence (2.10) holds with A=0.
Then, arguing as above, we obtain

This shows that (3.4) is true also for α = l / 2 with Aλ—A (an arbitrary positive
number).

Here, we consider the functioin k(z) defined by

hθ(Rz/2)+(h1)θ(Rz/2)-A1 Λ

(Note that the denominator is positive by (2.5) and the choice of R.) In view
of (2.2), (2.3) and (2.6), k(z) is subharmonic in Δ and

hβ{R/2)+{hι)β{R/2)-Άι

(3.5)

hθ{Rr/2)+{hι)β{Rr/2)-A1

"' R) hβ{R/2)+(hι)0{R/2)-Aι '

Combining (3.4) and (3.5), we have

(3.6) ra*(r, &)<cos πaM{r, k) ((Rr/2)r^Fλr\(0, (R/2)r)).

As is easily verified, m*(r, k)—cos πaM(r, k) is upper semicontinuous. Hence

£ α = { r e ( 0 , 1); m\r, k)—cos πaM(r,

is open. It is clear that

m*(r, ^)^cos πaM(r, k)
and

Now, Ea is open and so Ea—\JZ=ι{sni tn), where O^sn<tn^l. Here we allow
repetition of intervals. Let

rr\ i^ i , V r̂e Sn) \tn Sn) Ί / • i n n \

τ>= U L s-"*—37—» t n 37—J 0 = 1 ' 2 ' 3 ' -]

Then by Lemma 2

M(r, k)^C(a) exp [ - α m ^ T ^ C r , 1])] (; = 1, 2, 3, •••).

Since mι{TjΓ\{r, l~})^>mι(EaΓ\[r, 1]) (j->oo), we obtain for 0 < r < l

(3 7)
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Putting Fx = {re=(O, 1); {Rr/2)r^Fλ}, we deduce (3.6) that FλdEa, and so by
(3.7)

Hence for 0<r<R/2

hβ{r)+{h1)e{r)-A1

hβ{R/2)+{h1)β{R/2)-A1

^aa)exv[-jmι(Fλr\lrr, (R/2γj)\

(3.8) =C(α) exp [ - y log (^-J+jmι(Gλ nD"", (R/2Y1)]

exp ίλmι(Gλr\ίrr, (R/2γj)l

[1

^C(α) exp [ M G I ^ Γ sB(a) ( j g ^ ) g <+00 .

It follows from (2.4)-(2.7), and (3.8) that

r" ^ " J {R/2)a

This result may be written

where Kι and K2 are positive and depend only on δ and λ. Replace rr by r
and Rrer by R. Then we have

7(7?)

From this, it is easy to see that

or

(3.9)
τ=^ r ^ r_oo r λ r-00 r

In what follows, we assume (3.9). Since a^l/2, the Poisson integral
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{3 10 ) J W

is a positive harmonic function in the upper half plane, with boundary values
I(-r)=T(rr), 7(r)=0 for r^O. Then, arguing as in 2.3., we have

on the real axis. Since v(reίθ)^T(rr)=0(ra)<o(r), the above inequality holds
throughout the upper halp plane. Also equality holds for rr^Fλ and θ — π.
Hence

h(—r)—cos
so that
(3.11) Iθ(-r)-A

By (3.10)

(3.12)

and so by (3.9)

(3.13)

If we put J(z)=Iθ(z)—A1 and

£«— ir ', m*(r, J)—cos πaM(i

then by (3.11) and (3.13)

ι*(r, /) — cos πaM(r, / ) ] + _ Γ m*(r, /)—cos πaM{r, J)

Hence

to irz\

(3.15)

r

<(1—cos

= (1 —cos

Lemma 3, we

l + α

-4

Πrn 1

"' J

O(rα)

>2 [ m *( r , / ) - C l

lrt r'

deduce from (3.13)

lim-
7--»oo

M{r, J)
γCί

1 •*• θ V

lim—^

os πaMir, /)]
L + α =

and (3.14) that

( 0 < α < + c o ) , i.e.
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By (3.12)

(3.16)

where g(t)=T(tr), K(t)=—τγτfψ'' Using Lemma 4 of [4], we deduce from

(3.15) and (3.16) that

r T(r) r T(rr) s'mπa
h m — ~ - = hm — \ ~ = a .
r-oo r r-»oo r a

This completes the proof of our theorem.
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