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AN EXTREMAL PROBLEM ON THE CLASSICAL
CARTAN DOMAINS, HI

BY YOSHIHISA KUBOTA

1. Let Dlt •••, DN be the classical Cartan domains. We define the numbers
nDv and λDv as follows:

if Dv=R4r, s),

^ψ^, if Dv=Rm(q),

m , if Dv—Rιγ{m)y

VT , if D9=RJir, s),

Vq—ί , if Dv—Rm{q) and q is even,

V q , if Dv=Rm(q) and q is odd,

Vm , if Dv=Rlγ(m),
where

^(r, s)={Z=(2Ί; ): I—ZZ'X), where Z is an rXs matrix}, (r^s),

Rι\{p)—{Z={zιj): I—ZZf>0, where Z is a symmetric matrix of order _£},

£π(ί)={Z=(*t;): ztJ=V2xtJ (iΦj), zu=xiU where X=(x%j)&Rj&p)}t

Rm(q)= {Z — {zτj): /—ZZ'>0, where Z is a skew-symmetric matrix of order q},

Riv(m)={z=(zlf — , zn): l+\zz'\2-2zz'>0, l - | ^ Ί > 0 } .

We set
D=AD1D1X " XADNDN , IX — TID^ "' ~\~TLDN ,

and denote the family of holomorphic mappings from D into the unit hyperball
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Bn in Cn by g(D). In [5] we proved that

(1) sup
f<ECF(

403

where (df/dz) is the Jacobian matrix of / :

U 9/.
Zl dZn

dzi dzn i

In this paper we shall prove that fo(z)=z/Vn is the unique extremal map-
ping, up to unitary transformations:

THEOREM. // / is a mapping in <2(D) such that

d e t (4-)4
oz

= 7 2 "

then VTΓf is a unitary transformation of Cn.

2. We shall prove the theorem for the case that N=2, D1-=Rιι{p) (p is
odd) and D2—RιY{m) (m^3). The same argument as in [5] gives the proof of
the general case.

Firstly we give an improved proof of (1). Instead of RιY(m) we consider
the following domain

l-\2z1z2+zl+' '+z2

m\>0},

which is the image of RιY(m) under the unitary transformation

\Z\, " , Zm) ^("yy

Now we consider the domain

, ~Tψ\Zi IZ2), Z3) "' , Zm)

Rfγ(m), n 2

We represent the points z in D in the form of vectors in Cn

z=(x, y), x=(xn, •••, x l p , X22, -••, *2p, -" , Xpp), y={yi, •••, ym)

Let / be a mapping in £F(D). We may assume that /(0)=0 (see [4]). We set

We denote by σ a one-to-one mapping from {!,••-,/>} onto itself such that
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G{J,Q)—IQ for a certain z0 and σ{i)Φι, σ°σ(i)=t for iφio, and denote by τ a map-

ping from {1} into {3, •••, m). We take a point w—{u, v), where u — (un, •••,

ulp, u22, ••• , ι/223, ••• , wp p) is a point such that

/>+l

(otherwise),

Z-'<it<p, ik<σdk)),

or

V 2

0

•C*

(otherwise).

and v=(vlf is a point such that

or

( ί = l , 2),
2ς*

0

If ζ ι and ft are complex numbers with | ζ t | < 1 and | ξt \ < 1, the point w belongs

to D. Hence fι(w) has an expansion

which converges uniformly on every compact subset of the polydisc J = { ( d ,

ζa,ξi,ξβ): I C t K l , I f t K l } , where α = ί + l or p, and ^ = 1 or 2. We set

then we have

l-l Vi,μj

Letting p/\ we have

ZJ ZJZJ ZJ \Cυι Vaμιμβ
l-l Vi,μ3

To obtain (1) from (2) we set
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and define the numbers A and B as follows:

Λ-J-1 n V

2 z=i t=-i

or

2~I = 1

where p=2t+l, I^ ϊ1<-~<it<p, ik<β(ik), and

Since

we obtain

(3)

From this inequality we can prove

Indeed, by taking appropriate p mappings σ, we have, from (3),

^ Σ Γ ί ; |flίί)l8+2Σ

Further from (3) we have

n P

Σ Σ Iflίί
ί=l ί=l

Adding these two inequalities, we have

( 5 ) Σ Σ \aiγy

Next, by taking the m—2 mappings τ, we have from (5)

(m-2) Σ Σ \ali)

Further from (5) we have

n
2 y v i/7»-

n Tίi

Σ Σ
i l 1
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Adding these two inequalities we obtain (4).

Let λlt •" , λn be the characteristic values of CCf, where C—{df/dz)z

Since λlt ••• , λn are non-negative, we have

d e t ( 4 r - -

[ 1 n / m

Thus we conclude that

Ht),
3. EXTREMAL MAPPINGS. Let / be a mapping in <3(D) such that

T h e n / m u s t s a t i s f y t h e c o n d i t i o n s : ( i ) / ( 0 ) = 0 (see [ 4 ] ) , (ii) λι= ••• =λn=—,
n

hence C=—,=--U, where U is a unitary matrix of order n, (iii) Cvl

1

).Vaμίμβ=^ fo r

Vi+ ••• +va

Jrμ1+μβ^2, 1=1, ••• , n, where c^.Vaμιμβ is the term in (2).

Let z={x, y) be a point in D. There is an automorphism φx of .

having the properties: (a) φ1(x)=u = (un, ••• , ulp, u22, ••• , u2p, ••• , upp), where

uτj=0 for iΦj, (b) | |<piU)INI|x|| for I G Λ | ^ — R u i P ) , where | |x| | is the Euclidean

norm for i e C n i , n1=-^-^~—. The property (b) implies that the restriction

of ψx to pBni is an automorphism of pBni that fixes 0, where p is sufficiently

small. Hence ψx is a unitary transformation of Cni. Further there is an

automorphism ψ2 of Vm R*γ(?n) having the properties: (a) ψ2{y)=v=(ζu ξ2, 0,

•••, 0), (b) ψ2 is a unitary transformation of Cm. We denote by ψ the mapping

(x> y)-*(ψi(x), ψϊky))' Then ψ is an automorphism of D with <p(z)=w=(u, v)

and a unitary transformation of Cn.

Since h=f°φ~ι is also an extremal mapping, by (ii) we have

\ dz Λ=o \/n

1 ,,r,

and by (iii)

where V is a unitary matrix. Thus we obtain

-l.
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Hence \\Vn~f(z)\\ = \\z\\ for all Z G D , where ||z|| is the Euclidean norm for
This implies that the restriction of VrΓf to ρBn is a holomorphic mapping from

pBn into itself such that (—=——) is unitary, where a is sufficiently small.
\ OZ /2 = 0

Therefore we conclude that VrΓf is a unitary transformation of Cn (see Theo-
rem 8.1.3 in [6]).

4. If Bn is replaced by the unit polydisc Un in our extremal problem, the

extremal mappings need not be unique.
Actually, for every holomorphic mapping / from B2 into U2, the inequality

det(
OZ /z=0

holds [1], and equality holds not only for fo(z)=z but also for the mapping

(zlf z^yz^—zt, z2+-^ziy
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