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REMARKS ON NON EXPLOSION THEOREM FOR

STOCHASTIC DIFFERENTIAL EQUATIONS

BY KIYOMASA NARITA

§ 1. Introduction.

In this paper, we give sufficient conditions in order that the solutions of
the stochastic differential equations cannot explode. The results are improve-
ment of author's previous one [6], since the concavity condition is not imposed
on the function which appears in the restriction on the growth of the drift
and the diffusion coefficients.

In § 2, using the method of Liapunov functions, we obtain a key lemma.
And, by applying the lemma, we prove a generalization of Hasminskii's theorem
[3] and an analogue of Wintner's theorem [1], [2] which gives continuability of
the solutions of ordinary differential equations. In § 3, we give another direct
proof of the analogue of Wintner's theorem, so that the smoothness condition
on the function which appears in the restriction on the growth of the drift
coefficient is weaker than that given by the method of Liapunov functions.

First of all we introduce notations and definitions. Let Rd denote Euclidean
J-space. For x^Rd and y^Rd, let <x, y> be the inner product of x and y
and let \x\ be the Euclidean norm of ,τ. For a ί/xJ-matrix M={mιJ), define

~~ X 1 2. We shall denote by O 2 ([0, T ] x # d ) the family of scalar\M\=( Σ
\l,J = l

functions defined on [0, T~]xRd which are twice continuously differentiate with
respect to x^Rd and once with respect to fe[0, T]. Let (Ω, F, P) be a pro-
bability space with an increasing family {Ft t^O} of sub-σ-algebras of F and
let w{t)—{Wi{t)), z — 1, ••• , d, be a d-dimensional Brownian motion process adapted
to Ft. Consider the stochastic differential equation

(1.1) dX(t)=b(t, X(t))dt+σ(t, X(t))dw(t),

where b(t, x)=φί(t, x)), t — 1, ••• , d, is a d-vector function and σ{t, x) — {σιj{t, x)),
i, y = l , •••, d, is a c/Xύf-matrix function, which are defined on [0, oo)χRd and
Borel measurable with respect to the complete set of the variables. Equation
(1.1) is equivalent to the system of d equations

(LI/ d X t ( t ) = b t ( t 9 X ( t ) ) d t + Σ σ t J ( t , X(t))dwj(t), ί = l , »',d.
ι,j=i
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Throughout this paper, we assume the following conditions:
(1.2) b(f, x) and σ(t, x) are continuous in (t, x) for any T>0, b(t, x) and

σ(t, x) satisfy the local Lipschitz condition with respect to x<=Rd if tf^T.
As is well known, the stochastic differential equation (1.1) with the initial

condition X(tQ)—x0<^Rd (to^O) has a pathwise unique solution for t<e(t0, x0),
where e(t0, *o)=limen(fo, Xo) and en(t0, *0) = inf {f^f0; \X(t)\^n} An (cf. [6]). The

random time e(t0, x0) is called the explosion time of the solution of (1.1) with
the initial condition X(tQ)—XQ. The following remark enables us to understand
the meaning of the explosion time e(t0, x0) (see [4; §2, Chap. IV] and [6, §3]).

Remark. If b(t, x) and σ(t, x) satisfy (1.2), then

lim \X(t)\=oo for e(t0, Xo)<°°, almost surely.
ίteαo.^o)

We are interested in the question whether the explosion occurs or does not.
We shall use the differential generator

d d d I d d2

£ = -£-+ ΣW*, * b r - + τ Σ aτj{t, x) ° •
ύt ι=i OXτ 2ι,;=i όXiOXj

associated with the stochastic differential equation (1.1), where a(t, x)—{a%j{ty x))
is a dxd-matrix defined by a(t, x)=σ(t, x)σ(t, x)* (* means the transpose).

§ 2. Liapunov functions.

In the explosion problem, the Liapunov function approach provides an
effective method. To begin with, we prove a key lemma which will yield the
main theorem to us.

LEMMA. Let b(t, x) and σ(t, x) satisfy (1.2) and suppose for each T>0,
there exist positive numbers c — cT and r—rTy and there exist a function U—Uτ
eC^CO, T~]xRd) such that

(2.1) LU(t, x)^c for ail t^T and \x\^r

and

(2.2) lim inf ί/(f, *) = oo.

Then P(e(t0} * 0)=oo)=:l for all to^O and xo^Rd.

Proof. Assume that there exists some (£<>, Xo) such that P(e(t0, XO)^
for some To. In the following, we take a sample such that e(t0, xo)^To. For
simplicity of the notation we put e — e{tOy x0). Let T>T0 be arbitrary and be
fixed. Then we can take positive numbers c—cT) r—rτ and a function U=UT

in the hypothesis. By Remark in § 1, we notice that \X(e—)\=oo for such a
sample and hence put

p=sup{t>t0; \X(t)\=r} .

Then Ito's formula concerning stochastic differentials implies that
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U(t, X(t))-U(p, X(p)) = [ LU(s, X(s))ds+M(t)-M(p)

for all p^t<e, where

M(t)=[ <graάU(s, X(s)), σ(s, X(s))dw(s)> .

Notice that M(t)=z(φ(t)), where z(t) is a new Brownian motion process and

φ(t)= Γ I σ(s, Z(s))*grad U(s, X(s)) \ 2ds (see McKean [5 Problem 1, § 2.9]). Then

we get by (2.1) that

ί/(f, X(t))-U(p, X(p))ύc(t-p)+z(φ(t))-z(φ(p))

for all ρSt<e. Let ί tend to e in the above equation. Then it follows from
Remark in § 1 and (2.2) that

oo=limί/(ί, X(t))~U(p, X(p))
tie

inf z(φ(t))-z(φ(p))

<CO,

which is a contradiction. Hence the proof is complete.
The following theorem is a generalization of Hasminskii's result [3, p. 113].

THEOREM 2.1. Let b{t, x) and σ(t, x) satisfy (1.2) and suppose for each T>0,
there exist positive numbers c — cτ and r—rτ, and there exist a nonnegative func-
tion V—T/

ΓeC1)2([0, T~]xRd) and a nondecreasing, differentiable function
β = βτ: [0, oo)->[0, CXD) such that

(2.3) LV(t, x)^cβ(V(t, x)) for all t^T and \x\^r.

(2.4) lim inf V(t, x) =

and

P(e(ί0, Λ;0) = OO)=1 for all to^O and

Proof. Let T > 0 be arbitrary and be fixed. Then, let c — cτ and r—rτ be
positive numbers and let V—Vτ and β—βτ be the functions in the hypothesis,
respectively. We set

=(Vr^ΓΎ a n d

Jo l + / (
Then we see that W^Ch2{[_0f TlxRd) and so
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LW(t, x)=(LV(t, x))f'(V(t, x))

+j\σ(t, x)*gradV(t, x)\*f"(V(t, x))

LV(t, x)

l+β(V(t, x))

for all t^T and U|Ξ>r, since (2.3) holds and since β is nondecreasing by the
assumption. Further, for any t^T,

)^f( inf V(t,x)),

since / is nondecreasing by the definition. Then we obtain by (2.4) and (2.5)
that

inf W{t, x)—> oo as |x|—>oo.

Therefore, W(t, x) satisfies (2.1) and (2.2) and Lemma applies if we take
Uτ—W{t, x) for each T>0. Hence the proof is complete.

Hasminskii's theorem is a special case of Theorem 2.1, where V=VT satisfies
(2.3) for all t^T and x<=Rd with the function β=βτ(u)=u such that (2.5) holds
obviously. In particular, if we take V=Vτ=\x\2 in Theorem 2.1, then we
obtain the following restriction on the growth of the coefficients in order that
X{t) cannot explode.

COROLLARY. Let b{t, x) and σ(t, x) satisfy (1.2) and suppose for each T>0,
there exist positive numbers c — cτ and r—rτ, and there exist a nondecreasing,
differentiable function β — βτ'- [0, °°)—>[0, oo) such that

(2.6) 2<x, b(t, x)>+\σ(t, x)\2^cβ(\x\2)

for all t^T and | x | ^ r , where β satisfies (2.5). Then, P(e(t0, X o ) ^ 0 0 ) ^ ! for all
to^O and

EXAMPLE. Suppose that (cf. Yershov [7, Theorem 5.2])

(2.7) \b(t, x)\2+\σ(t, x)\2^C(l+\x\η\og(l+\x\)

with a constant C>0 for all t^O and x^Rd. Then we see that

2{x, b{t, x)>+\σ(t, x ) \ * £ \ x \ 2 + \ b ( t , x ) \ 2 + \ σ ( t , x)\*

with a constant C'X) for all t^O and x^Rd. Therefore, if (2.7) holds, then
(2.6) holds, where β = βτ(u)=u+(l+u) log(l+w1 / 2) satisfies (2.5), and hence
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Corollary will apply.
In the above Theorem 2.1 and Corollary, the concavity condition is not

imposed on the function β — βτ{u)f which improves author's previous results [6;
Theorem 2.2, Corollary].

The following result corresponds to an analogue of Wintner's Theorem of
continuability of solutions of the ordinary differential equation dX(t)/dt—b(f, X(t)).

THEOREM 2.2. Let b(t, x) and σ{t, x) satisfy (1.2) and suppose for each T>0,
there exist positive numbers c—cτ, c'—c'τ and r—rTf and there exist a nondecreas-
ing, differentiable function β=βτ' [0, oo)—>(0, oo) such that

(2.8) \b(t, x)\^cβ(\x\) for all t^T and

(2.9) \σ(t,x)\2^c' for all t^T and

and

Then, P(e(t0, * 0) = oo)=l for all to^O and xo<=Rd.

Proof. For each T>0, let c=cτ, cf — cf

τ and r—rτ be the positive numbers
and let β=βτ be the function in the hypothesis, respectively. We set

d vS ixi d v

r ~β{u)~~

for all t^T and | x | ^ r , and extend it smoothly to | x | <r . Then it is easy to
see from (2.8) and (2.9) that ί/eC1>2([0, T l x i ^ ) satisfies

nut x ) — K ^ ^ ^ i^^L2

2\x\β(\x\)

r σ [ f ] '

for all t^T and | x | ^ r . Therefore, we can get the conclusion by Lemma since
(2.10) holds.

Such functions as U(t, x) and V(t, x) which appear in lemma and theorems
of this section are said to be Liapunov functions of X{t).

§ 3. Another proof of Theorem 2.2.

In this section, we give another direct proof of Theorem 2.2 without using
the method of Liapunov functions. In the proof, the smoothness condition on
the function β=βτ of Theorem 2.2 can also be weakened.
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THEOREM. Assume all the conditions of Theorem 2.2 except that the differ-
entiability condition on β is replaced by the condition such that β is continuous.
Then, P(e(t0, * 0 )=oo)=l for all to^O and xo^Rd.

Proof. Assume that there exists some (tOf x0) such that P(e(t0> x o ) = '
for some To. In the following, we take a sample such that e(t0, xo)^To. For
simplicity of the notation we put e = e(t0, x0). Let T>T0 be arbitrary and be
fixed. Then we can take positive numbers c=cτ, c' = c'τ and r=rτ, and a
continuous function β=βτ in the hypothesis. By Remark in §1, we notice that
\X(e—)\=oo for such a sample, and hence we put p — sup{ί; \X(t)\=r}. Then
we have by (1.1/ that

Xi(t)=Xι(ρ)+[t bt(s, X(s))ds+Mi(t)—Mi(p)
Jp

for all p^t<e (z = l, ••• , d), where

"' σtJ(s, X(s))dwj(s).
0

By the time substitution rule (see [5; Problem 1, §2.9]), we see that Mt{t)
d rt

=Zi(φi(t)) for a new Brownian motion process Zi(t) and φS)= Σ \ o\j(s, X(s))ds.

Then (2.9) implies that φi(t)^c'(T-t0) for all tQ^t<e, and hence \Mί(t)-Mι(p)\
^ jup^Jzt(t)—Zi(φi(ρ))\=ki<oo (ι = l, ••• , d). Thus, we have,

\bί(s,X(s))\ds + kι
J p

for all pSt<e, which yields

β(\X(s)\)ds {k = k,+ ••• +kd)
p

f o r a l l p S t < e , s i n c e ( 2 . 8 ) h o l d s a n d s i n c e \x\ ^ \xλ\ + | J C 2 | + ••• + \xa I ^ d | x | f o r

Jc = Ui, ^2, ••• , xd)^Rd. Set M(ί)=dr+fe + cdΓ 5(|Z(s)|)ds. Then we see that
J p

u(p)=drJrk, \X(t)\^u(t) and u'(t)=cdβ(\X(t)\) for all pSt<e, where M'U) is
the sample derivative of u(t) and is continuous. Since β is nondecreasing by
the assumption, we get

u'(t)^cdβ(u(t))}

Divide the both sides of the above equation by β(u(t)), which is possible since
β is positive by the assumption, and then integrate from p to t{<e). Then, we
obtain,

S uit") rjy

and therefore
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(•'*«>' du
—Ωγ-r

Ur+k β(u)

for all p^t<e. Let t tend to the time e in the above equation. Then, the

left-hand side of the above equation becomes infinity since \X(e—)\=oo and

since (2.10) holds, while the right-hand side is finite, which is a contradiction.

Hence the proof is complete.
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