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ON THE GROWTH OF ENTIRE FUNCTIONS OF

ORDER LESS THAN 1/2

BY HIDEHARU UEDA

0. Introduction. Let f{z) be meromorphic in the plane. Throughout this
paper we shall assume familiarity with the standard notation of the Nevanlinna
theory,

We define

M{r, /)=max |/(2)| , m*(r, /) = min |/(z) | .
| z |=r \z\=r

In [2], Anderson proved the following result.

THEOREM A. Let f{z) be meromorphic in the plane and such that for some
p, 0<p<l, either

πρN(r, 0, /)^s in πp log M(r, f)+πp cos πpN(r, f)

or

(1) sin πp log m*(r, f)^πρ cos πρN(r, 0, f) — πρN{r, f)

for all large r. Then

If, further, /3<co then

The inequality (1) and its conclusion have been used to show that for a
meromorphic function of lower order

Later, Edrei [6] obtained this estimate by making use of the notion of the local
form of the Phragmen-Lindelδf indicator. The estimate (2) is best possible.
(For example, see [β, p 151].)
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If f(z) is an entire function of order ρ<l/2, (2) implies that

(3) M l o g m ( r / ) ^ Q t

An important consequence of Theorem A is that if f(z) is an entire func-
tion of order p (0<1o<l/2) and minimal type, then

(4) log m*(r, f)>πp cot πρm(r, f)

holds for a sequence of r—rn ΐ °°.
The main purpose of this paper is to refine the estimate (3) for entire func-

tions of order p (0<ρ<l/2) and mean type.

THEOREM 1. Let h(r) be positive and continuous for r^r0 and, for each s>0>

h(sr) Λ . ,

Suppose that h(r)^O (r-»oo) and that

If f(z) is a n entire function of order p (0</)<l/2) and mean type, then

log m*(r, f)>πρ cot πp(l — h(r))m(r, f)

on a sequence of r-^oo.

This result is regarded as an analogue of the Barry's one [4, Theorem 2]
for the cos πp theorem. It is worth while to be pointed out that in his above
theorem the assumption that h'{r)> — Oir'1) (r-»oo) can be dropped. The proof
is essentially contained in the proof of our theorem.

For an entire (or a meromorphic) function f(z), we define

[ I r+τr Ίl/2

-2^\_χ{log\nretβ)\}*dθ\ .
In [9], we showed that if f(z) is an entire function of order p (<l/2) then

/c\ π ^ log m*(r, f) cosπ:/)
(5) l ^ ^ Γ
(The estimate (5) is best possible.) The method of the proof of Theorem 1
yields the following results.

THEOREM 2. Let f(z) be an entire function of order p (0<p<l/2) and
minimal type. Then

logm*(r, f)>A(p)mlr, f)
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for a sequence of r—>oo.

THEOREM 3. Let h{r) be given as in Theorem 1. // f(z) is an entire func-
tion of order p (0<p<l/2) and mean type, then

log m*(r, f)>A(pXl-h(r)) m2(r, f)

on a sequence of r—*co.

1. Proof of Theorem 1.

1.1. Preliminary discussion.
Let f(z) be an entire function of order p (0<ρ<l/2) and mean type. Since

ρ<l, we know that

(l.i) f(z)

where an's are the nonzero zeros of f(z) arranged in order of increasing mag-
nitude. Set

(1.2) /iU)
n

Then we have (cf. [5, 3.2])

(1.3) m*(r, f)^m*(r, A)=

And also

(1.4) m(r, f)^m(r,

This is due to Gol'dberg [7]. By (1.2),

logM(r,/ 1)=log/ 1(r)

(1.5) ^N(r)+r\
Jr

log M{t, f)
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Since f(z) is of order p (<1) and mean type, (1.4) and (1.5) imply that fλ(z)
is also of order p and mean type. By (1.3) and (1.4),

log m*(r, f) > logm*(r, Λ)
m{r,f) '= mirJύ '

provided that log m*(r, Λ)^0. Hence, we may prove our theorem for / = / i .

1.2. An inequality on a class of entire functions of order < 1/2.
Let fι(z) be a nonconstant entire function of order < 1/2, where fλ{z) is of

the form (1.2). Assume that, corresponding to fi(z)f there exists a function H{z)
defined in the whole plane satisfying the following conditions.

(2.1) H{z) is a one-valued positive continuous function in the whole plane, and
is harmonic in | arg z \ < π.

(2.2) B(r)=maxH(z) is of order less than 1/2.
\z\=r

(2.3) \ogf1(r)=o(H(-r)) (r -> oo).

Under the conditions (2.1)-(2.3), Barry's argument in [3, Lemma 5] implies
that given ε>0, there are two numbers a(ε), r(ε) such that

( 2 . 4 )

(\θ\ ^7Γ, r = r(ε) —> oo, a{ε) —> co as ε —> 0 ) .

1.3. Some properties of the Legendre's polynomials Pn(x) (n=0, 1, 2, •••)•
In the proof of our theorem, we need some properties of the Legendre's

polynomials Pn(x) (n=0, 1, 2, •••) defined by

1 dn

n W ~ 2» n ! d x κ l ' •

For the sake of convenience, we write down some properties.

(3.1) (l-2t cosθ+t2yί/2= ΣPn(cos#) r (UKD.

(3.2) | P n ( c o s ^ ) | ^ l ( n = 0 , 1, 2, •••).

(3.3) | P w ( c o s β ) | ^ 2 ( ? 2 ^ s in θ)~1/2 (0<θ<π, n = l,2, •••).

(3.4) | P n ( - c o s β ) | = | P n ( c o s β ) | ( n = 0 , 1, 2, •••).

1.4. A h a r m o n i c funct ion //(z).
W e set

h(t) = (t/ro)Ίι(ro)

and let
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(4.1)

where δ>0. Since /ι(ί)—>0 (t-*oo)} L(r) varies slowly. Hence

(4.2)

has order p. Further, by our assumption on h(t), L(r)} oo (r—>co). Hence, if
/Ί(Z) is of order p « l / 2 ) and mean type, then

(4.3) log M(r, f1)^o{Λ{r)) (r - oo).

Now, we put

(4 4) H{re«)= ^ Γ ^ H - s ) Λ ( s ) cos (0/2)
π)o s 1 / 2 (r 2 +s 2 +2rs cos θ) άS'

which provides a solution of the Dirichlet problem with boundary values

(4.5) H(-r)=Λ(r) (r^O).

In view of (4.1)-(4.5), H(z) satisfies the conditions (2.1)-(2.3), and thus, (2.4) holds.

1.5. An estimate of H(reiθ).
We write

H{rei9)=I1(rfθ)+h(r9θ)9

where

^L(r)cos (g/2) ^

j 7r Jo s 1 / 2 (r 2 +s 2 +2rscos0)

First, we compute /i(r, θ). Putting s=rt, we have

/ θ \Γ 1 f°° /P + l/2 1 poo +/B-1/2 η

W, θ)=ΛV cos ( χ ) [ - J o 7 q ^ ^ + Γ dt+ -1 f+2tcosθ+1~ dt] .
on shows that

1 Γ~ t" sin g ^^_ si

τrJoί 8 +2ίcosβ + ϊ si

Residue calculation shows that

sin θa

Hence

(5.1) 7i(r, θ)=Λ(r)'Cθs(-^-)"-r—n {sin
\ 2 / sm θ cos πp

., N cosθp
= Λ(r) .

COSTΓ^O

Next, we estimate 72(r, θ).
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θ \ f~ (r+s)st>lL{s)-L(r)-]

(5 2)

By (3.1)

Hence

cos

/ θ
C 0 S (- 2-

ds

rl/2

= Σ Pm(-cosθ)Pn(-cosθ)\—[r

m,n=0 L Γ Jo

sP-1/2+m+nr^m+^lL(s)-L(r)']ds

- Σ
m,n=0

(5.3)
m
m+n+ό/2+ρ

2 g p m ( _ c o s θ)Pn(-cos θ)\
m,n=o L

m+n+3/2+jθ

-r'M'rtL'irt) Σ
Jo m,n=o

375

The inversions in the order of integration and summation are legitimate because

(5.4)

Σ m+n+l/2+p Jo

Σ
m,n=o m-j-n-ro/l-\r p » ^ l dt<+oo.
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Here, we prove the first estimate of (5.4). Since h(t) is continuous in [0, oo)
and ft(f)-*0 as ί-*oo, there exists an M>0 such that

(5.5) (0<)Λ(ί)^M (ί^O).

The positivity of h(t) implies that L(r) is increasing. Hence

(5.6) 0<rtL'(rt) = δh(rt)L(rt)<δML(r).

From (5.5), (5.6), and (3.2)-(3.4) it follows that

m,n=X 772+n + l/2+ iO Jo

- lPm(--cosfl)Pn(-cosfl)|
*.»=r (7n + n + l/2+ io)2

=δML(r){ Σ + Σ }

_

(m + n + ϊ/2+ρ)2 Vnπsin

(m+3/2+p)2 Vm

lm=i

Also

IP f_roς/^

m- 8 / 2 + Σ n" 3 / 2 }<+co

Σ J -

Therefore, the first estimate of (5.4) holds.
For Bθ(r), we have

poo Γrsp-1/2+sp+1/2YL(s) — L(r)Ί °° /r\m+n
Bo(r)=\ ^ ±± , J L M s ; ^ l r j j Σ Pm(-cos^)P,(-cos^)(-) ds

Jr S m,n=o \ S /

= Σ Pm(-cosθ)Pn(-cosθ)\[~sP-5ί2-ίm+n>r1+m+nίL(s)-L(r)~]ds
TO,π=0 \_jr



ON THE GROWTH OF ENTIRE FUNCTIONS 377

= Σ j>»(-cos <?)P»(-cos θ)\ * r 1 + m + »Γs^ 5 ' 2 - ( m + ^sL'(s)rfs
TO,n=o Lm-τn-\-o/Δ—p Jr

(5.7) H r m + n ΓV~ 8 / 2 ~ c m + 7 °sL'(s)ύfsl
m+n + l/2—p Jr J

=r^" 1 / 2 Σ Pm(-cos^)Pn(-cos^)Γ--—-^όTo-
m,n=0 L ?Tl~r ?Ί-j-ό/Δ —

m+n + l/2—p

,n=o m+n+3/2— p

() Σ ^ ^
Ji m,n=o m + n + l/2—p

In order to prove

Σ
TO, 71 = 0

(5.8)
L

we may use (5.5), (3.2)-(3.4), and the fact that

(If we choose δ such that δM<l/2-p, (5.8) holds.) Substituting (5.3) and (5.7)
into (5.2), we have

r''cos (0/2)\h(r,θ)\=rPC°Siθ/2)\\~[rtL'(rt) Σ f
π II Jo m,n=o

-[rtL'irt) Σ - ^ I ^ 5 ^ = c o β β ) , + β +

Jo m,n=o m + n + 3 / 2 + ^ o

) Σ
m,n=o

+ . , Λ | I
J I

(5.9) < ""^lϊL^rtL'ίrt) Σ . -
TO,n=o

Σ J ^Σ ^ ^
m,n=o m+n+3/24-/?
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+ (rtL'(rt) Σ \
m+n+o/Z—p

[°rtL'(rt) Σ
m-\-n-\-l/2—p

= {/1+/2+/3+/J,

Further,

S I

0 m ^ n ^

9+771 + 71 + / ) -1/2

• s m i

2+771 + 71 + /) -1/2

+ 1 rtL'(rf) Σ 7 dt
Jo n>msi (w + n + l / 2 + | θ ) v WTΓ SΠ1 θ

+\1rtL'(rt)Σ 2ΓiT?Γ rf^ e t c

Jo m=o m + l / Z + p
Here, we use a result of Aljancic, Bojanic, and Tomic [1, p82] to obtain

Mr,θ)^-rΛ

where the o(l) tends to zero uniformly as r-^00 in 0e(O, π). Hence by (5.9)

(5.10)

where C(/?) is a positive constant depending only on p.

1.6. The final proof.
Let Λ(z) be an entire function of order p (0<p<l/2) and mean type. Then

as we have shown in 1.4, H{z) defined by (4.4) satisfies (2.4). By (5.10) and (4.5)

Since Λ(r)—>0 as r-^00, for given 37>0 (small) there exists a Ro = Ro(y) such that
r^R0, η^θ^π—η imply

s cos ̂ Γ^
 r Vsm β ~

Hence

(6.2) η η

Net, we consider g{r, θ) for π-η<θ<π. Put θ = π—ξ (0<ξ<η). Then
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σ(r θ) = G(r flg{r, ti)-G{r, ξ)

= cos pζ+tan πp sin pξ-

+tm πp(pξ-

If we choose η = η(p)>Q small enough, we have

g(r,

so that

From (6.1) and (6.3), it follows that

(6.4)

It remains to consider H{reiθ) for \θ\^η. By (4.4)

(6.5) H(reiθ)^cos-^H(r) (\θ\Sy).

An estimate for H{r) has been done by Barry [4, pp53, 54], which gives

(6.6) δhW
cos πp

Combining (6.5) with (6.6), we have

(6.7)

In view of (6.2), (6.4) and (6.7), we have

(6.8)

Now, we use (2.4). Taking (6.S) into consideration, we deduce that

(6.9) 0<
|Λ(-r)| - H(-r) \ ι~ p2tan2πp

Hence by (5.10) and (6.9)
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r.τ-452ΛCr)2cCjo)2/ |O2tan2π/o

2π J-^lcosTΓ^ r Vsm θ J

(r=rn

Since \og\fi(reiθ)\ is decreasing for \θ\ (^ίπ), we have

πp ' J l π—4o2/ι(r)2C( io)2/ io
2tan27r/o

Therefore

TδA(r)C(oΓr Γ n '

cot πρ(l — h{r)) (r=rn ] oo),

if <5>0 is sufficiently small. This completes the proof of Theorem 1.

1.7. A complementary note.
In Theorem 1, the assumption

hit)
t

is essential. In this section, we prove the following result.
"Let h(r) be positive and continuous for r^r0 and, for each s>0,

hisr)

Suppose that h(r)^0 (r—>oo) and that

(7.1)

Then, there exists an entire function /(z) of order /? (0</o<l/2) and mean type
for which

log?7i*(r, f)<πp cot πp(l-h(r))-m(r, f)

Proof. We refer to Barry's argument in [4, pp 55-58]. Define L(r) by (4.1).
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Let f{z) be an entire function of genus zero, all of whose zeros are negative
and such that /(0)=l and n{r, 0, /)=[r 'Z,(r)] . Then

log m*(r, f)<rpL(r)\π cos πp cosecπρ—δh(r) Σ {(n + ρ)~2

(7.2) L r

+(n + l-io)~2} + 0 {log r/r?L{r)} + o(ft(r))] (r -> oo),

and

(7.3) logM(r, f)^rpL(r)-πcosecπρ (r -* oo).

By (4.1), (7.1) and (7.3), f(z) is of order /9 and mean type. Now, we estimate
N(r, 0, /). Evidently,

where

Also

P

(r -> oo),

since h(r)L(r) is slowly varying. Hence

(7.4) Mr, 0, /)>- r^ ( r lΓl-A 1±^ 1 l)-A( r)-0{logr/r'Z,(r)}l (r->oo).
^ L p J

It is well known that

(7.5) Σ iin + pr'Mn+l-pr^Xip-n)-'^— .

It follows from (7.2), (7.4) and (7.5) that

(π cot πp—δΛ(r)τr2/sin2πio']

log m*(r,/) logw*(r,/) ίl+o(/i(r))+O(log rfr'L(r))
= N( 0 /) lm(r, f) = N(r, 0,
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p {cot πp-δ(l-oq))(π2/sm2πpMr)}
l

t l—δ(l—o{l))π(sm πp cos πpY
= np cot np{ — — — — ^

<πp cot *,{!-[ ϊ=j(i +

i-δ{\+o{l))

cot ̂ W - ^ - _i) J- AW I ( r _> oo)
r I V sin 2πρ J p 2 \

<πρ cot πp {I —h(r)},

if we choose (3>2io(2πio/sin 2πp—l)~\ This completes the proof.
The method of this section can be used also when we prove the following

results.
(i) Let h(r) be given as in Theorem 1. Then there exists an entire function

f(z) of order p (0<p<l/2) and minimal type for which

logm*(r, f)<πp cot πp'(l + h(r)) m(r, f)

Compare this with the estimate (4).
(ii) Let h(r) be given as in Theorem 1. Then there exists an entire function

f(z) of order p (0<p<l/2) and maximal type for which

logm*(r, f)<πρ cot πp (l — h(r)) m(r, f) (r^ri).

This shows that the conclusion of Theorem 1 does not hold in general for
entire functions of order p (0<p<l/2) and maximal type.

2. Proof of Theorem 2.

Given f(z), we associate fλ{z) as (1.2). Then Miles and Shea proved in [8]
that

(8.1) m^ir, /i)^m2(r, / ) .

Since f(z) is of order p (<l/2) and minimal type, (1.4) and (1.5) imply that fλ(z)
is also of order p and minimal type. By (1.3) and (8.1),

log m*(r, /) ^̂  log m(r, fλ)
niiίr, f) = m2{r, fx) '

provided that logm*(r, /i)^0. Hence we may prove Theorem 2 for f—fι.
Now, define H{reiθ) by (4.4) with Λ(r)=rp. A simple computation gives

(8.2) H(re)
cos πp
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Hence H(reiθ) satisfies (2.1)-(2.3), so that (2.4) holds. By (8.2), H(reiθ)>H(-r)
(I θ I < π). It follows from this and (2.4) that

r) cosπp

for a sequence of r—rn \ oo. Therefore

Ύ < -^—iM
) I

πΓTΎ < iM
logπrixny fi) cosπp I π

= vΊ/2+sin 2πpΓiπp .
cos7r,o r r

This proves Theorem 2.

3. Proof of Theorem 3.

By a similar argument as in the proof of Theorem 2, we may prove Theorem
3 for / = / i . Define H(reiθ) by (4.4). For our proof, the estimate (5.10) is not
suitable because

\
Jo sin θ

However, we can obtain the estimate

(9.1) |/2(r, θ)\ύδh(r)Λ(r)cos(-γ)c(p) (\

instead of (5.10). To prove this we may note that in (5.2)

( | 0 | < J Γ / 2 ) .

In view of (6.9), (5.10) and (9.1), we have for r—rn f oo,

{\og\f1{re'βWdθ
(log|Λ(-r)|)2 2π)-,

<-

. 1 Γ̂  r cos θp . . . ^ 1 ]2
H \ ^ t^+dhir)cos-ϊr-C(p) /-.—A dθ

π )πiΛco$πp 2 r Vsin θ J

J COS7Γ/?

Since {logl/^r^^^)!}2 is decreasing for |0|(<^7r), we have
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f 1 1 . sm2πρl 3δh(r)C(ρ) / I π \ 5 2 , 2 , ^ , ,2\

l c o s 2 7 r p L 2 Aπp J cosπp V2 16/ r J(logm*(r, Λ))2 I c o s 2 ; ^ L2 4τr^ J cos τr/o

r ^2Jι(r)^p)y_p2μn2_πp \

Thus

^r} 2 >(^)) 2 {i-
COSTΓ^O

p2ten2πp

if δ>0 is sufficiently small. Since log m*(rn, Λ)>0, we obtain

/ ^ (r=r r e ί co) .
)
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