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ON THE GROWTH OF ENTIRE FUNCTIONS OF
ORDER LESS THAN 1/2

By HIDEHARU UEDA

0. Introduction. Let f(z) be meromorphic in the plane. Throughout this
paper we shall assume familiarity with the standard notation of the Nevanlinna
theory,

T(r, ), N(r, ), m(r, f), (a, f), .
We define

MG, Hi=max|f@],  m*r, fH=min |f@)].
In [2], Anderson proved the following result.

THEOREM A. Let f(z) be meromorphic in the plane and such that for some
0, 0<p<1, either

noN(, 0, f)<sin mp log M(r, f)+xp cos rpN(r, )
or

e8] sin wp log m*(r, f)<mp cos pN(r, 0, f)—zpN(r, f)
for all large r. Then
>0.

T(r, ) _

If, further, B<co then

=Ilim

700

T, f) <oo
P

The inequality (1) and its conclusion have been used to show that for a

meromorphic function of lower order 2<1/2,
o log*m*(r, f) _ =2

2) lrl_r.g_“T(r, 7 Zsnx (cos xA—14+0(c0, f)).
Later, Edrei [6] obtained this estimate by making use of the notion of the local
form of the Phragmén-Lindel6f indicator. The estimate (2) is best possible.
(For example, see [6, p1517.)
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ON THE GROWTH OF ENTIRE FUNCTIONS 371

If f(z) is an entire function of order p<1/2, (2) implies that

— log m*(r, f)
® e

An important consequence of Theorem A is that if f(z) is an entire func-
tion of order p (0<p<1/2) and minimal type, then

=Zrpcotmp.

(4) log m*(r, f)>mp cot rom(r, f)

holds for a sequence of r=r, | co.
The main purpose of this paper is to refine the estimate (3) for entire func-

tions of order p (0<p<1/2) and mean type.

THEOREM 1. Let h(r) be positive and continuous for r=v, and, for each s>0,
h(sr)

") —>1 (r — o0).
Suppose that h(r)—0 (r—o0) and that
Swﬂ)— dt=co.

If f(z) 1s an entirve function of order p (0<p<1/2) and mean type, then
log m*(r, f)>mp cot wp(l—h@)mr, f)
on a sequence of r—oo,

This result is regarded as an analogue of the Barry’s one [4, Theorem 2]
for the cos wp theorem. It is worth while to be pointed out that in his above
theorem the assumption that A’(»)>—0(r"?) (r—o0) can be dropped. The proof
is essentially contained in the proof of our theorem.

For an entire (or a meromorphic) function f(z), we define

mar, =[5 toglstreilyea0] .

In [9], we showed that if f(z) is an entire function of order p (<1/2) then

— log m*(r, f) CoS TP _
©) I, ) = V1j2%sin 2npfdnp — 0D

(The estimate (5) is best possible) The method of the proof of Theorem 1
yields the following results.

THEOREM 2. Let f(z) be an entire function of order p (0<p<1/2) and
minimal type. Then

log m*(r, f)> A(p)my(r, f)
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for a sequence of r—co.

THEOREM 3. Let h(r) be gwen as in Theorem 1. If f(z) is an entire func-
tion of order p (0<p<1/2) and mean type, then

log m*(r, f)> A(p)1—h(r))-mu(r, f)

on a sequence of r—oo,

1. Proof of Theorem 1.

1.1. Preliminary discussion.
Let f(z) be an entire function of order p (0<p<1/2) and mean type. Since
o<1, we know that
an )’

where a,’s are the nonzero zeros of f(z) arranged in order of increasing mag-
nitude. Set

(1.1) f(z)=cz? H(l—

(1.2) fi@=lelz” A1+ 2 0).

Then we have (cf. [5, 3.2])

(1.3) m*(r, [lzm*(r, fH=1/,(—=n]  (=0).
And also

(1.4 m(r, l=m(r, ) (#=0).

This is due to Gol’dberg [7]. By (1.2),

log M(r, f1)=log fi(r)

_rg n(t)—n(0)
ety

dt+p log r+log|c|

_<_Sf,7/l,(,_t2jfl(g), dt+rr n() dt+0(log 7)

—Jo t

dN(t)

(1.5) <N()+r S S O(log 7)

dt+O(log )

Il

g

A

rgr log M, 1)

o -dt+0(log ).
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Since f(z) is of order p (<1) and mean type, (1.4) and (1.5) imply that fi(z)
is also of order p and mean type. By (1.3) and (1.4),
log m*(r, f) _ logm*(r, )

m(r, f) = omr, f)

provided that log m*(r, f1)=0. Hence, we may prove our theorem for f=f,.

1.2. An inequality on a class of entire functions of order<1/2.

Let f,(z) be a nonconstant entire function of order<1/2, where f,(z) is of
the form (1.2). Assume that, corresponding to f,(z), there exists a function H(z)
defined in the whole plane satisfying the following conditions.

(2.1) H(z) is a one-valued positive continuous function in the whole plane, and
is harmonic in |arg z|<=.

(2.2) B(r)=max H(z) is of order less than 1/2.
12)=1

(2.3) log fi(r)=o(H(—7)) (r — ).

Under the conditions (2.1)-(2.3), Barry’s argument in [3, Lemma 5] implies
that given ¢>0, there are two numbers a(e), »(¢) such that

H(—r)

- . H(—r)
2.8 log | fi(—7r)|— Hiret) log | fi(re'?)] Za(e>{1— 7H(re“’)}

(|101=7, r=r(e) — oo, ale) — o as ¢ —0).

1.3. Some properties of the Legendre’s polynomials P,(x) (n=0, 1, 2, ---).
In the proof of our theorem, we need some properties of the Legendre’s
polynomials P,(x) (n=0, 1, 2, ---) defined by
1 dr

Pn<x): on

2ot dxr D

For the sake of convenience, we write down some properties.

3.1) (1—2t-cos O+12)" /2= ZOP,L(COS 0)-t* (Jt1<1).
(3.2) [Py(cos 8)| =1 (n=0,1, 2, ---).

(3.3) | P,(cos 8)| <2(nz sin )1/? 0<b<z, n=1,2, ).
(3.4) | Po(—cos 8)| = | P,(cos 0)] (n=0,1, 2, ).

1.4. A harmonic function H(z).
We set
h@®)=@/ro)-h(ry)  0=t1=r,,
and let
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@1 L()=exp {5S ﬂfidt}
where 6>0. Since h(t)—0 (t—o0), L(r) varies slowly. Hence
4.2) A@r)=re L(r)

has order p. Further, by our assumption on A(t), L(r) 1 oo (r—o0). Hence, if
fi(z) is of order p (<1/2) and mean type, then

(4.3) log M(r, f)=0(A(r))  (r— o).

Now, we put

) 1 (e r¥2(r+s)A(s)cos(0/2)

0y— _—
(4.4 Hre*)= T So sYE(r24-s24-2rs cos 8)
which provides a solution of the Dirichlet problem with boundary values
(4.5) H(—r)=A(@) (r=0).

In view of (4.1)-(4.5), H(z) satisfies the conditions (2.1)-(2.3), and thus, (2.4) holds.

1.5. An estimate of H(re®?).
We write
H(T’ew)'_—ll(ry 0)+1y(r, 6),
where
rV¥(r+s)s? L(r)cos (6/2)
o sM¥(ri4s:4-2rscos ) S

r%(r+s)sP[ L(s)— L(r)] cos (6/2)
s¥%(y24-s2+42rs cos )

1 o=

L(r, )=~ SO ds.

First, we compute I,(r, ). Putting s=r¢, we have

7} 1 (= potiz 1 (= o~z
Ii(r, )= A(r)cos (_2w>[—7r—go 242t cos O+1 di+—- S 1242t cos §+1 dt ]

Residue calculation shows that

1 Sw t*sin @ __sin fa (—1<a<l).

— = —
7w Jo 1242t cos f+1 sin T«
Hence

G.1) L, 0):A(r>-cos(-‘;—) 'Ti‘a* {sin 6(p+1/2)—sin 6(p—1/2)}

CosS T p

cos 0 e
coswp

=Ar)— ——

Next, we estimate I,(r, ).
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Fu2 (r+s)sPLL(s)—L(r)]
Ly(r, 0)—"—005( 2 ) So sV2(r2 24275 cos )

12 T (e L(s)—L(r)]
(5.2) = rnl cos <—g_) [S 0 +S r] s(f’;t:zipstz—é;)rs co'(sr; ) ds

1/2

=-——cos (%)[A0(7)+Bo(r)], say.

By 3.1)
(+2t-cos G+1)2= 3 Po(—cos 0)-¢"  (Jt]<1).
Hence
Ap(r)

:ST[Sp-l/zr_;_spﬂ/?[L(s)—L(V)] i Pm(__cos0)Pn(~—cosﬁ)(—s—)m+nd8
, " m =0 r

o0

= X Pm(——cos0)Pn(—cos0)[—7{—525f"”“’”*”f‘(m*")[L(s)—L(r)]a’s

m,n=0

—

+=

0

sp+1/2+m+ﬂr'(m+n)[L(s)___L(r)]ds]

<

1

=2 mindl/2 4o

m,n=0

P,.(—cos 8)P,(—cos 0)[

r—(m+n+1)s Sm+n+p—1/2SL/(s)ds
0

(5.3) r*""*"“”S:s"‘*"““’“”sL/(s)ds]

1
© m+n+3/2+p
1
m—l—n—l—l/2+p

oo
:rp—llz E
m,n=

Pou(—c0s 0)P,(—cos 0)[ S fmnto-12 L/ (rt)

0

1

- m+n+ 1/2
m+n+3/2+,ogt el (rt)dt]

P,(—cos §)P,(—cos 0)
0 m+n+1/2+p

P (—cos 6)P,(—cos 8)
0 m—+n-+3/2+p
The inversions in the order of integration and summation are legitimate because
| Pp(—cos @)P,(—cos §)]
m, n=0 m-l—n+1/2+p

| Pp(—cos @)P,(—cos 8)]
m, =0 m-+n-+3/2+p

= —r”"’2§:rtL’(rt) E}_

m,

L gmantp-1/z 4y

pmEnto+1/2 4y

—rf- ”28 rtL/(rt) f}_

m,

S |7t L/ (r)Em+n+0-1/2| df < F 00 |
(5.4)

S [Pt L/ (re)Em 404112 df < 00,
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Here, we prove the first estimate of (5.4). Since A(f) is continuous in [0, co)
and h(t)—0 as t—oo, there exists an M >0 such that

(5.5) O<HRt)=EM (t=0).
The positivity of h(¢) implies that L(r) is increasing. Hence
(5.6) 0<rt L' (rt)=0h(rt) L(rt)<oML(r).

From (5.5), (5.6), and (3.2)-(3.4) it follows that

Y lg’"(:coi,ﬁlp"{:cof@ L ! ’ men+p-1/2
m,;=1 m+n+1/2+p SolrtL (rt)t | dt

| Pr(—cos 8)P(—cos )]
1 (m+n+1/2+p)*

=0ML(r){ + >}

mznzl na>mzl

<oML() 3

1 2
S (m+n+1/2+p)* v/mz sin 6
1 2
B Gt 1728 g am sin )
2 { o m 1

SOMLD) G sin 0 2 3724 ) v/m

i n—1 1
2 32ty Vil

_2M
~/7 sin 0

§5ML(r){m

= L(r){";ijlnrm—l—né n'3/2}<+oo.

Also

< Pm - 0 ! ’ ~1/2

® 1
SOML(r) mz=1 (m+1/2+p)*

Therefore, the first estimate of (5.4) holds.
For By(r), we have

<Aoo

Bo(r):Sj [7’81"-1/2‘{‘sﬂ+l;Z]EL(S)—L(7’)] m2=0 Pm(—COS B)Pn(_COS 0)(%>m+nd8
= 3} Pa(—c0s 0)Py(—cos a)[gmsv-m-<m+">r1+m+"[L(s)—L(r>]ds

_I_S:asp—3/2-‘(m+‘ﬂ)7/ln+7l[L(S)__L(r)]ds]
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— < — — _l___ 1+m+n « -5/2-(m+mn) ’
= 2 pul—cos )Pu(—cos 0)[m+n+3/2_P r S s sL'(s)ds
1 e
- ,m+n p-3/2-(m+n) ’
6D i, s SL/(s)ds |
oo 1 oo
— -1/2 - _ -5/2-(mM+n) ’
re m,‘:‘io P(—cos 8)P,(—cos 0)[~—————m+n+3/2_psl e rtL'(rt)dt
+ 1 Smtp_3/2_(m+n)7'tL/(Vt)dt]
m+n+1/2—pJ1
(™ @ Pp(—cos §)P,(—cos §) -
—p0-1/2 ’ DY/ 4p-5/2-(m+n)
rel Ly 3 iy v dt

Pp(—cos §)P,(—cos 0) po-sre-cmny gy
0 m+n+1/2—p )

m

el Ly B
s =

In order to prove

e | Pn(—cos 0)Py(—cos )| (= , ereecman
o m+n+3/2—p S [Pt L (riype e mem | di< oo,
i | Prn(—cos 6)Pn(—cos 0)|
S0 m+n+1/2—p

we may use (5.5), (3.2)-(3.4), and the fact that

%(r:)) =exp Mtﬁ;‘t)‘ de] <.

(If we choose d such that 6M<1/2—p, (5.8) holds.) Substituting (5.3) and (5.7)
into (5.2), we have

(5.8)

[TirtLiae-sn-nn g < foo,

m

P, (—cos §)P,(—cos )
m+n+1/2+p

tm+n+p—1/2dt

—S:rtL’(rt) mé:j:o Bﬂ;ﬁii—)g‘%&) frEnre gt
Horon_$, PeESBOPCERD)
Wt g, PCBORCE )
(5.9) < Licos(o/2) Coi(ﬁ/ 2 {S:rtL’(rt)m§=o |P"‘(;C_$i)f;;;i)os OL s o-sr2gy
frtn SO
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oo

+S1 rtL/(rt) | Prn(—c0S §)Pr(—cos 0)] 0-512-(m+n) g

0 m-+n-+3/2—p
| P(—cos @)P,(—cos )]
0 m+n+1/2—p

m,

+ST7’1LI(7’Z‘) i_ tp—3/2-(m+n)dt}

m,

= PSR 1y ot Jik 3, say .

Further,

Qpmtntp-1/2

]1(7’, 0)<SOTtL/(Tt)mEn;1 (m—l—n-l—l/z-l-p)\/mﬂ-' SID 6 d

QpmEntp=1/2

1
+SortL (rt) >Zm);1 (m4n+1/2+p)v/nx sin 6 j

w  Qpmtp-1/2
S rtL'(rt) 2 mdt etc.

Here, we use a result of Aljancié, Bojanié, and Tomié [1, p 82] to obtain

tm+n+p 1/2

I, 0= 5——p (1+o(1))5h(r)L(r){S I e e TR
1 tmEn+e=-1/2 (1w pmtp-l/2
+S0n>%21(m—|—n+1/2+p)\/‘n— dt++/'m Somzjom——l—l/-i——l—?dt}’ etc.

where the o(1) tends to zero uniformly as r—oo in §<(0, ). Hence by (5.9)

(5.10) \Lu(r, 0)] = 5f/(;)/1(” ws(5) o) 0<0<r, 20,

where C(p) is a positive constant depending only on p.
1.6. The final proof.

Let fi(z) be an entire function of order p (0<p<1/2) and mean type. Then
as we have shown in 1.4, H(z) defined by (4.4) satisfies (2.4). By (5.10) and (4.5)

6.1)  Hre ){EO:ZZ —8h(r)C( )Cff(a/Z)}H(—> 0<6<x, r=0).

Since h(r)—0 as r—oo, for given »>( (small) there exists a Ry=R,(») such that
r=Ry, n=0=m—y imply

__cosfp cos (0/2)
g(r, 0)= s —0h(r)C(p )\/ =1.
Hence
6.2) H(re'YzH(—r) (n=|0|=m—7, 7=Ry).

Net, we consider g(r, §) for r—5<f<m. Put §=r—& (0<&E<y). Then
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_ _cos(z—§)p cos ((1—§)/2)
8l =6l == O S e )

=cos p§+-tan p sin p§— 5h(r)C(p)\/2 cos (£/2)
(pE) () N7
21— aanp(pe— ) =anrClo 0 g
>1+(ptan mg—(f’;ew »"—35%“—’5’1 &) —3h(r)C(p)VE.
If we choose p=7(p)>0 small enough, we have

g7, 0>>1+fitazﬁ‘~’~s—5h(r>C<p>«/é 0<E<p(p)),

so that
48°h(r)*C(p)*
(6.3) g0zt (2= 0.
From (6.1) and (6.3), it follows that
]

‘ 48h(r?C(o)*

6 _ R
(6.4 HreYzH=n  (7(p)=10]Se— =00 0).

It remains to consider H(re'’) for |8|<7. By (4.4)
(6.5) H(re%)=cos H(r) (161=9).
An estimate for H(r) has been done by Barry [4, pp 53, 54], which gives
1
(6.6) Hz{ o —0h)Ci)}Ar)  (r20, Cip)>0).
cosmp
Combining (6.5) with (6.6), we have

6.7) H(re*?)=cos (--”-)( E —3h(r)Cy( )) (—P)ZH(—7)

2 /\cosmp

(p<2zp, r=R,=R\(n)).

In view of (6.2), (6.4) and (6.7), we have

43°h(r)*C(p)?

>
p*tan’zp r=R2>O> :

(6.8) Hre")zH(—r) (10157~

Now, we use (2.4). Taking (6.8) into consideration, we deduce that

log|fi(re*®)| _ H(re*)
log|fi(=n)| = H(—r)

Hence by (5.10) and (6.9)

6.9) 0< (7':1',, Moo, |0 <n—

p*tan®zmp

40°h(r)*C(p)? ) ‘

379
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1 1 S:—452h(r>ZC(p)Z/p2tanan
log|fi(—=n)| 2x

1 cos b p cos ((9/2)
27r>g {_COSn' HORC(p )«/s }dﬁ

log | fi(ret?)|do

- +402h(r)2C(p)2%/ p2tan2 7 p

II/\

< tar;;f" F/20h(C(p)  (r=ral o).

Since log|fi(re!?)| is decreasing for |8| (<x), we have

1 1 (+= i
gl AT 2w )L OB e 140
tanzp _AG*h(r)*C(p)*/p*tan® wp _
<{ 70 +4/2 5/1(r)C(p)}{l—l— 13°h(r¥C(0)"/ p* tan® rcp} (r=ry1co).

T—
Therefore
log m*(r, f1) _ 1—40°h(r)*C(p)*/ p* tan® np( rolo0)
m(r, fl = tan zp/mp++/23h(r)C(p)
V20 40%h(r)*C(p)?
>mp cot n'p{l—'—nt-pn7r ~C(p)h(r )}‘{ W}

>rpcotwp(l—h(r))  (r=ry1co),

if 0>0 is sufficiently small. This completes the proof of Theorem 1.

1.7. A complementary note.
In Theorem 1, the assumption

[~ RUONTE

is essential. In this section, we prove the following result.
“Let h(») be positive and continuous for r=#, and, for each s>0,

h(sr)

71‘(’:)”‘ —>1 (r — ).
Suppose that A(r)—0 (r—oo) and that
.1) [ ﬂﬁm<w

Then, there exists an entire function f(z) of order p (0<p<1/2) and mean type
for which

log m*(r, f)<mpcotwp(l—h(r))-m(r, f) (rzry).”

Proof. We refer to Barry’s argument in [4, pp 55-587. Define L(r) by (4.1).
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Let f(z) be an entire function of genus zero, all of whose zeros are negative
and such that f(0)=1 and n(», 0, f)=[7°L(»)]. Then

log m*(r, f)<r”L(1’)[7r cos 7 p - cosec 7 p—0h(r) 2) {(n+p)*

(7.2)

+n-+1—p)H+0 {log r/r LI} +olh(r) | (r—e2),
and
(7.3) log M(r, f)~7r°L(r)-mcosecp (r — 00).

By (41), (7.1) and (7.3), f(z) is of order p and mean type. Now, we estimate
N(r, 0, f). Evidently,

P Ll

N, 0, H=[-,

- L(r)S:t"’ldt+S:l“"1 (L&)~ L)} dt+ K,

where
dt

| K, éS:T —logr.

Also
[l Lo-Lowar=[2 oLy ]
0 o ’

——l—STtPL’(t)dt:—igrh(t)L(t)ﬂ"‘dt
o Jo 0 Jo

~m%%%®ﬂ (r — o),

since h(r)L(r) is slowly varying. Hence

T4 No, 0, f)> ”f)’(r) [1— 5(110(1*))Ah(r)—0{10g r/r”L(r)}] (r — o0).

It is well known that
2

= -2 — )2 — = — —2:,,,3?___“,
(7.5) n% {(n+p)*+(n+1—p)% ngm(p n) sin*zp
It follows from (7.2), (7.4) and (7.5) that
{77: cot np—&h(r)nz/sinznp}
0

log m*(r, f) _ log m*(r, f) +o(h(r)+0(ogr/r°L(r)))
m(r, f) T N0, f) = 1—(01+o0(1))/p)h(r)—0(og r/r® L(r))
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<0 {cot mp—d(1—o(1))(#*/sin* zp)h(r)}
1—(6(1+40(1))/ p)h(r)

- 1—0(1—o(1)z(sin zp cos zp) *h(r)
=apcotp] 1—3(1+o(1)p*h(r) f

1)2zp(sin 27 p)~*—d(140(1)) i
1—d6(1+o0(1))p*h(r) ] P h(r)}

<mp cot np{l—[ a—of
2 1 h

<mp cot np{l-—é(ﬁ%‘;—p —l)p—-f({l} (r — o)

<mpcotmwp{l—h()},

if we choose 0>2p(27p/sin 2zp—1)~1. This completes the proof.

The method of this section can be used also when we prove the following
results.

(i) Let A(r) be given as in Theorem 1. Then there exists an entire function
f(z) of order p (0<p<1/2) and minimal type for which

log m*(r, f)<mpcotzp-(1+h(r))-m(r, f) (r=ry).

Compare this with the estimate (4).
(i) Let h(r) be given as in Theorem 1. Then there exists an entire function
f(z) of order p (0<p<1/2) and maximal type for which

log m*(r, f)<zmpcotmp-(L—h(x))-m(r, f)  (r=ri).

This shows that the conclusion of Theorem 1 does not hold in general for
entire functions of order p (0<p<1/2) and maximal type.

2. Proof of Theorem 2.

Given f(z), we associate fy(z) as (1.2). Then Miles and Shea proved in [8]
that

8.1) ma(r, f)=zmy(r, f).

Since f(z) is of order p (<1/2) and minimal type, (1.4) and (1.5) imply that f,(z)
is also of order p and minimal type. By (1.3) and (8.1),
lOg m’k(r; f) log m(?’, fl)
my(r, f) ma(r, f1)

provided that log m*(r, f;)=0. Hence we may prove Theorem 2 for f=f,.
Now, define H(re'%) by (4.4) with A(»)=r*. A simple computation gives

v

cosfp ,o

=> <
prp (r=0, |0|=x).

8.2) H(ret%)=
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Hence H(re'?) satisfies (2.1)-(2.3), so that (2.4) holds. By (8.2), H(re*®)>H(—r)
(10| <x). It follows from this and (2.4) that
log|fi(re*®)| _ H(re'’) _ cosfp (16

0<Yogifl=n| < H—r ~ coszp

| <),

for a sequence of »=r, ] co. Therefore

mz(rn: i) 1 1= 1z
log m*(ra, f1) < cos Tcp{ T So cos 0‘0(10}

1
= cosp V'1/2+sin 2zp/4znp .

This proves Theorem 2.

3. Proof of Theorem 3.

By a similar argument as in the proof of Theorem 2, we may prove Theorem
3 for f=f,. Define H(re*’) by (4.4). For our proof, the estimate (5.10) is not
suitable because

o sinf df=co

Sr cos2(6/2)

However, we can obtain the estimate
©.1) |Ir, O =) Arcos (5 )Clo) (1015 7/2, r20)
instead of (5.10). To prove this we may note that in (5.2)

cos (g-)B@(r)
7,1/2

- cos(%)B,,m(r) (101<=/2).

1/2

L(r, )<

<

In view of (6.9), (5.10) and (9.1), we have for r=r, ] oo,
1 1 Sn—462h2(7)0(p)2/p2tan2rrp

(log [ f+(—=1)* 2z,

<_LS7:/2{ costfp +5h(r)cos——C(p)}

{log | fi(re*?)|}2d6

- +402h2(r)C(p)2/p2tanmp

T Jo lcosm
+LS” {COSHP ~“+0h(r)cos ———C( ) e }ng
w Jrplcosmp e \/smﬁ
_ L[l sin2zp, S0AIC() (L. % \speeo
008271"0[2 4rp ]Jr CosS TP +(2 +Tg>5h(r)C(p)

Since {log|f.(r,e*?)|}? is decreasing for |0|(<r), we have
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mi(r, f1) 1 1 sin2zp 30R(C() (1 | T \sy,s .
(o o E e R A A e RS

40°h(rClp)*/p*tan*mp 1\
X{1+’”7{:452h(r)20<p>2/p2tan2np } (r=rn).

Thus
log m*(r, f1)2 2 _w 2 _1_ T \s» 2 2 .
{—fmz(f, fl)ﬁﬁ} > (4D {1 cos p Alp) (2 T 6 )5 h(r)*Cp) A(P)}
% { - @i’l@ﬁ(ﬂ?i}
pitan®*wp
2 6C(p) 2
Sctr- 400

> (A(p)*1—h(r))* (r=rs100),
if >0 is sufficiently small. Since log m*(r,, f1)>0, we obtain

log m*(», f1) L B N
mo(r, f1) >Alp)1—h(r))  (r=ra]co).

This proves Theorem 3.
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