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THE VALUE-DISTRIBUTION OF RANDOM
ENTIRE FUNCTIONS

By TAKAFUMI MURAI

1. It is well-known that, for a given entire function f(z), d(a, f)=0 (a€C)
holds except possibly for a countable set, where “ § ” denotes the deficiency and
C the complex plane. We cannot generally remove the above exceptional set.
The purpose of this paper is to show that the totality of entire functions f(z)
with 6*(f):sug o(a, f)>0 is thin in a sense.

ac

An open interval 2=(—1/2, 1/2) is naturally a probability space. A Rade-
macher series e=(e;); in £ is defined by ¢.(w)=sign(sin 2*7w) (ws ). For a
sequence (a)i-; (F0)CC with 1irglsup|ak|””=0, a random entire function is

defined by
(1) @)= 3 et ={f,0= 3 exwlart; 0},
k=1 k=1
A random entire function f.(z) is a probability space of entire functions. We

write simply d(a, w)=4d(a, f,), 0% (w)=0*(f,). In this paper, we shall show the
following

THEOREM. 0*w)=0 almost surely (a.s.).
2. We denote by “ Pr” the probability. Put
T(r, f)=1/2x( " log*| fu(re')] dt
oo 1/2
(2) Tir)=log*Ar), A=( 3 lasl*r*)
m(r, a, w):l/an:”logﬂ/f forey—aldt  (aeC, r>0),
where log*x=max {log x, 0} (x>0). Note that d(a, w)=liminf m(r, a, 0)/T(, f,)

(aeC,weR). If #{k; a;+0}<oco, then f.(z) is a probability space of poly-
nomials and we see easily 6*(w)=0 for all w= Q. The proof in the case where
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#{k; a,#0} =co is essential. For the sake of simplicity, we only give the
proof in the case where a,#0 for all k. We use the following proposition,
which is an improvement of Lemma 4 in [5].

PROPOSITION. Suppose that there exist a set 2,2 with Pr(£2,)=1 and
mappings o(-; m, q, p) (p=1, -, q; ¢=1, 2, ---; m=1, 2, ---) from £, to an in-
terval [0, 1] such that:

(3) If w2, and o’ satisfy e )=ew) except for a. finite number of Ek’s,
then o' €£,.

(4) o¥w)=d(w; m, q, D).
(5) 2 0wm g, p)=1 for all w2, where I'w, m, p)={0'€2;
D

w el tw,m,

er@)=eplw) for all k with k#(p—1m+1, (p—Dm+2, -, pm} .
(6) olw;m,q, p)=0 ;m, q, p) 1f erlw)=er(@) for all k=(p—m+1.
Then 6*(w)=0 a.s..

Proof. For a sequence (e, €ns1, ++), €x==x1, we put Q(en, €nty, =)=
{wef,; ex(w)y=¢, (k=n)}. Let m, ¢=1 and (@gm+1, Agm+e, =), ar=zt1, be a
sequence such that Q(@um+1, Agm+s, )+ D. Then, by (3), #Q(agm+1, --)=27".
Now we show that there exists an m-tuple (Bq-vm+1, 5 Bem), Br==£1, such
that 5*(w)§2_m (weg(ﬂ(q—nnwh ) ,qu; Agm+1, Kgm+2, ))

To see this, choose arbitrarily wo= 2(aym+1, ---). By (5), we have

olw; m, q, )=1.
wEF(u)D,’m,q)
Since #I(w,, m, g)=2™, there exists w} such that d(w;; m, ¢, ¢)=<2"™. Put .=
ex(w) (R=(g—1m+1, ---, gm). Then 0*(w)=d(w; m, q, )=0d(ws; m, g, ¢)=27™
(wEQ(By-vm+1, > Byms Agm+1, =+)).  Thus the required m-tuple (Bq-vm+1, ** » Bom)
is obtained.

The above fact signifies that 6*(@)<2"™ (WE2(eq-0m+1, " » Eqm) Xgms1, ***)
holds if (eq-vm+1, = » €qm)=(B@-vm+1, =, Bem), and hence it holds for the at
least 2™ number of 2m-tuples in the 2°™ number of 2m-tuples (eq-zym+1, ***
Eqm)y Er=1.

For every (rq-vm+1, = Tan)#(Bq-vm+1, =+, Bem), Te==1, we can choose
an m-tuple (6 g-mm+1, =+, Gg-vm), =1, such that §*(@)=2"™ (W€ L2(0 q-vym+1,
o, OeDmy Fg-vm+1s s Tam» Qgm+1, ~++)). These facts signify that 0*(w@)=2™™
(e 2(eq-2yme1, " » Eqms Xgms+1, =) holds for the at least 2™4(2™—1)=
28m—(2™—1)2 number of 2m-tuples in the 2°™ number of Zm-tuples (e-2rm+1,
-, Eqm), €x==%1

Repeating this discussion, we see that 6% (w)<2"™ (wE(ey, -+ , €qm, Agm+1s ***))
holds for the at least 2¢™—(2™—1)? number of gm-tuples in the 2¢™ number of
gm-tuples (g, -+, €gm), €x==1.
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Since Pr(2¢0)=1 and (agm+1, Agm+s, *--) 18 arbitrary as long as 2(agm+1, )
+@, we have Pr(0*(w)=2-™)z=1—{(2™—1)/2™}% Since ¢=1 is arbitrary, we
have 0*(w)=2 ™ a.s.. Since Pr( f_\l{ﬁ*(w)§2‘m}):1, we have 0%(w)=0 a.s..

Q.E.D.

3. By the above proposition, it is sufficient to show the existence of such
a set and such mappings. To define these, we need the following two lemmas,
which are analogous to Lemma 3, 6 in [5]. Since these proofs are analogous,
we omit the proofs.

LEMMA 1. There exists a constant C, such that, for any sequence (0y)5-1,
02>0, pr—00 (n—00),

(7) lirnr1§OUPT(pn, J)/Tol02)>Co  a.s.
LEMMA 2. Put

had 1/2
) A= Z Y= 0y |7
T, (r)=log*A,(r) (a,=0, (=0, 1, --).

Then, for a giwen K=1, there exists a sequence (ry)n-1=((K))5-1. 72 >0, r,—00
(n—c0), such that:

1
(9) Ao(fn-i-m)éZAo(?’n) .
1 .
(10) Turat gy JS2Tur) (=0, = K).
Now we put:
(11 Q0= N {weQ; limsup T(ramg), f.)/To(ra(mg)>Cal .
m=1 g=1 T =00
(12) olw; m, g, p)= limeiglf T(ra(mg), 1/f P2 0) /T (ro(mg), fu),
n=e0, REA ymq

where (r,(mq))%-, is the sequence in Lemma 2 with K=mgq and
Aung=1{n; T(ra(mg), fu)/Tora(mg)>Co} (w0 2,).
Thus 2,, 6(-;m, q, p) (p=1, -+, q; ¢=1; m=1) are defined.

4. We show that the above 2, 6(-;m, g, p) satisfy the conditions in
Lemma 1. We see easily Pr(Q2,)=1and (3). For given m, ¢g=1, we must prove
that 6,(:)=0(-; m, g, p) (p=1, ---, ¢) satisfy (4), (5) and (6). So we write
simply r,=7r,(mq) (n=1). We see easily (6). To prove (4) and (5), we need
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the following two lemmas. Lemma 3 is proved analogously as in THEOREM 2.1
in [1] and Lemma 4 is analogous to Lemma 8 in [5], and hence we omit the
proofs.

LEMMA 3. Let g(z) be an entire function (#a polynomial) and {P;(2)}7-
multually distinct polynomials of degree v. Then

13) ]ZZII T@r, 1/gp=T({, g¥)+ JZZI :Sl T(r, g~ /gs*~")+0(ogr),
where gi(z)=g(z)+P,(2) (j=1, -, n).

LEMMA 4. Let ws2,. Then, for any a=C and any [, 15I<qm-+1, we have
T(ra, fPIfEP—a))=0(T(rn) (n—c0).
First we prove (4). Let w=£,. For every a=C, we have

(14) M, a, 0)=T(r,, 1/(fo—a))
fo oo f{@-hmD 1 )

fu—a '7{;’ ’7a§<p—1)7n>” ' TfaE(P-l)ﬂHI)

ST(ra, USSP M)+ T, f3f(fum @A FT (1, fSO0mDf50D))
=T(ra, 1/f52m D)+ 0(To(r)

:T(rn,

according to Lemma 4. Hence d(a, ®)<d,(w). Since this inequality holds for
all a=C, we have (4).
Next we prove (5). Let w=£,. In the same manner as in (14), we have

15) T(ra, [P )=T(rn, fu)F0o(To(rz)) (n—o0).
By Lemma 3, 4 and (15), we have
(16) 2 T(ra, 1/7520m0)

D)

w'EF((u, m,
ETn, [P )+ 0(T o)) =T (rp, fu)F0(To(rs)) (n—o0).

Note that lim T'(r,, fu)/T(ra, fu)=1 (@' €l(w, m, p)) and that there exists n=1

such that A,meN\[1, +00)=A, me\[1, +0) for all ' €l (w, m, p). Divide every
term in (16) by T(ra, f,). Letting n—co (n€A,n,), we have (5). This completes
the proof.
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