THE VALUE-DISTRIBUTION OF RANDOM ENTIRE FUNCTIONS

By Takafumi Murai

1. It is well-known that, for a given entire function f(z), $\delta(a,f)=0$ $(a\in C)$ holds except possibly for a countable set, where " δ " denotes the deficiency and C the complex plane. We cannot generally remove the above exceptional set. The purpose of this paper is to show that the totality of entire functions f(z) with $\delta^*(f)=\sup \delta(a,f)>0$ is thin in a sense.

An open interval $\Omega = (-1/2, 1/2)$ is naturally a probability space. A Rademacher series $\varepsilon = (\varepsilon_k)_{k=1}^{\infty}$ in Ω is defined by $\varepsilon_k(\omega) = \operatorname{sign}(\sin 2^k \pi \omega)$ ($\omega \in \Omega$). For a sequence $(a_k)_{k=1}^{\infty}$ ($\neq 0$) $\subset C$ with $\limsup_{k \to \infty} |a_k|^{1/k} = 0$, a random entire function is defined by

$$(1) f_{\varepsilon}(z) = \sum_{k=1}^{\infty} \varepsilon_k a_k z^k = \left\{ f_{\omega}(z) = \sum_{k=1}^{\infty} \varepsilon_k(\omega) a_k z^k ; \ \omega \in \Omega \right\}.$$

A random entire function $f_{\epsilon}(z)$ is a probability space of entire functions. We write simply $\delta(a, \omega) = \delta(a, f_{\omega})$, $\delta^*(\omega) = \delta^*(f_{\omega})$. In this paper, we shall show the following

THEOREM. $\delta^*(\omega)=0$ almost surely (a. s.).

2. We denote by "Pr" the probability. Put

$$\left(\begin{array}{c} T(r,f_{\omega}) = 1/2\pi \int_{0}^{2\pi} \log^{+}|f_{\omega}(re^{it})| \, dt \\ \\ T_{0}(r) = \log^{+}A_{0}(r), \quad A_{0}(r) = \left(\sum_{k=1}^{\infty} |a_{k}|^{2}r^{2k}\right)^{1/2} \\ \\ m(r,a,\omega) = 1/2\pi \int_{0}^{2\pi} \log^{+}1/|f_{\omega}(re^{it}) - a| \, dt \qquad (a \in \mathbb{C}, r > 0), \end{array} \right)$$

where $\log^+ x = \max\{\log x, 0\}$ (x>0). Note that $\delta(a, \omega) = \liminf_{r \to \infty} m(r, a, \omega) / T(r, f_\omega)$ $(a \in \mathbb{C}, \omega \in \Omega)$. If $\#\{k \; ; a_k \neq 0\} < \infty$, then $f_{\varepsilon}(z)$ is a probability space of polynomials and we see easily $\delta^*(\omega) = 0$ for all $\omega \in \Omega$. The proof in the case where

Received March 20, 1981

 $\#\{k; a_k \neq 0\} = \infty$ is essential. For the sake of simplicity, we only give the proof in the case where $a_k \neq 0$ for all k. We use the following proposition, which is an improvement of Lemma 4 in [5].

PROPOSITION. Suppose that there exist a set $\Omega_0 \subset \Omega$ with $Pr(\Omega_0) = 1$ and mappings $\delta(\cdot; m, q, p)$ $(p=1, \dots, q; q=1, 2, \dots; m=1, 2, \dots)$ from Ω_0 to an interval [0, 1] such that:

- (3) If $\omega \in \Omega_0$ and ω' satisfy $\varepsilon_k(\omega') = \varepsilon_k(\omega)$ except for a finite number of k's, then $\omega' \in \Omega_0$.
- (4) $\delta^*(\omega) \leq \delta(\omega; m, q, p)$.
- (5) $\sum_{\omega' \in \Gamma(\omega, m, p)} \delta(\omega'; m, q, p) \leq 1 \quad \text{for all } \omega \in \Omega_0, \text{ where } \Gamma(\omega, m, p) = \{\omega' \in \Omega_0; \\ \varepsilon_k(\omega') = \varepsilon_k(\omega) \text{ for all } k \text{ with } k \neq (p-1)m+1, (p-1)m+2, \cdots, pm\} .$
- (6) $\delta(\omega; m, q, p) = \delta(\omega'; m, q, p)$ if $\varepsilon_k(\omega) = \varepsilon_k(\omega')$ for all $k \ge (p-1)m+1$. Then $\delta^*(\omega) = 0$ a.s..

Proof. For a sequence $(\varepsilon_n, \varepsilon_{n+1}, \cdots)$, $\varepsilon_k = \pm 1$, we put $\Omega(\varepsilon_n, \varepsilon_{n+1}, \cdots) = \{\omega \in \Omega_0; \varepsilon_k(\omega) = \varepsilon_k \ (k \ge n)\}$. Let $m, q \ge 1$ and $(\alpha_{qm+1}, \alpha_{qm+2}, \cdots), \alpha_k = \pm 1$, be a sequence such that $\Omega(\alpha_{qm+1}, \alpha_{qm+2}, \cdots) \ne \emptyset$. Then, by (3), $\sharp \Omega(\alpha_{qm+1}, \cdots) = 2^{qm}$.

Now we show that there exists an *m*-tuple $(\beta_{(q-1)m+1}, \dots, \beta_{qm}), \beta_k = \pm 1$, such that $\delta^*(\omega) \leq 2^{-m}$ $(\omega \in \Omega(\beta_{(q-1)m+1}, \dots, \beta_{qm}, \alpha_{qm+1}, \alpha_{qm+2}, \dots))$.

To see this, choose arbitrarily $\omega_0 \in \Omega(\alpha_{qm+1}, \cdots)$. By (5), we have

$$\sum_{\boldsymbol{\omega} \in \Gamma(\boldsymbol{\omega}_0, m, q)} \delta(\boldsymbol{\omega}; m, q, q) \leq 1.$$

Since $\sharp \Gamma(\omega_0, m, q) = 2^m$, there exists ω_0' such that $\delta(\omega_0'; m, q, q) \leq 2^{-m}$. Put $\beta_k = \varepsilon_k(\omega_0')$ $(k = (q-1)m+1, \cdots, qm)$. Then $\delta^*(\omega) \leq \delta(\omega; m, q, q) = \delta(\omega_0'; m, q, q) \leq 2^{-m}$ $(\omega \in \Omega(\beta_{(q-1)m+1}, \cdots, \beta_{qm}, \alpha_{qm+1}, \cdots))$. Thus the required m-tuple $(\beta_{(q-1)m+1}, \cdots, \beta_{qm})$ is obtained.

The above fact signifies that $\delta^*(\omega) \leq 2^{-m}$ ($\omega \in \Omega(\varepsilon_{(q-2)m+1}, \cdots, \varepsilon_{qm}, \alpha_{qm+1}, \cdots)$) holds if $(\varepsilon_{(q-1)m+1}, \cdots, \varepsilon_{qm}) = (\beta_{(q-1)m+1}, \cdots, \beta_{qm})$, and hence it holds for the at least 2^m number of 2m-tuples in the 2^{2m} number of 2m-tuples $(\varepsilon_{(q-2)m+1}, \cdots, \varepsilon_{qm}), \varepsilon_k = \pm 1$.

For every $(\gamma_{(q-1)m+1},\cdots,\gamma_{qm})\neq(\beta_{(q-1)m+1},\cdots,\beta_{qm}),\ \gamma_k=\pm 1$, we can choose an m-tuple $(\sigma_{(q-2)m+1},\cdots,\sigma_{(q-1)m}),\ \sigma_k=\pm 1$, such that $\delta^*(\omega)\leq 2^{-m}\ (\omega\in\Omega(\sigma_{(q-2)m+1},\cdots,\sigma_{(q-1)m},\gamma_{(q-1)m+1},\cdots,\gamma_{qm},\alpha_{qm+1},\cdots))$. These facts signify that $\delta^*(\omega)\leq 2^{-m}\ (\omega\in\Omega(\varepsilon_{(q-2)m+1},\cdots,\varepsilon_{qm},\alpha_{qm+1},\cdots))$ holds for the at least $2^m+(2^m-1)=2^{2m}-(2^m-1)^2$ number of 2m-tuples in the 2^{2m} number of 2m-tuples $(\varepsilon_{(q-2)m+1},\cdots,\varepsilon_{qm}),\ \varepsilon_k=\pm 1$.

Repeating this discussion, we see that $\delta^*(\omega) \leq 2^{-m}$ ($\omega \in \Omega(\varepsilon_1, \dots, \varepsilon_{qm}, \alpha_{qm+1}, \dots)$) holds for the at least $2^{qm} - (2^m - 1)^q$ number of qm-tuples in the 2^{qm} number of qm-tuples ($\varepsilon_1, \dots, \varepsilon_{qm}$), $\varepsilon_k = \pm 1$.

Since $Pr(\Omega_0)=1$ and $(\alpha_{qm+1},\alpha_{qm+2},\cdots)$ is arbitrary as long as $\Omega(\alpha_{qm+1},\cdots)\neq \Phi$, we have $Pr(\delta^*(\omega)\leq 2^{-m})\geq 1-\{(2^m-1)/2^m\}^q$. Since $q\geq 1$ is arbitrary, we have $\delta^*(\omega)\leq 2^{-m}$ a.s.. Since $Pr(\bigcap_{m=1}^\infty \{\delta^*(\omega)\leq 2^{-m}\})=1$, we have $\delta^*(\omega)=0$ a.s..

Q. E. D.

3. By the above proposition, it is sufficient to show the existence of such a set and such mappings. To define these, we need the following two lemmas, which are analogous to Lemma 3, 6 in [5]. Since these proofs are analogous, we omit the proofs.

LEMMA 1. There exists a constant C_0 such that, for any sequence $(\rho_n)_{n=1}^{\infty}$, $\rho_n > 0$, $\rho_n \to \infty$ $(n \to \infty)$,

(7)
$$\limsup_{n\to\infty} T(\rho_n, f_\omega)/T_0(\rho_n) > C_0 \quad a. s..$$

LEMMA 2. Put

(8)
$$\begin{cases} A_{l}(r) = \left(\sum_{k=l}^{\infty} \left\{ k! / (k-l)! \right\}^{2} |a_{k}|^{2} r^{2(k-l)} \right)^{1/2} \\ T_{l}(r) = \log^{+} A_{l}(r) \quad (a_{0} = 0, l = 0, 1, \cdots). \end{cases}$$

Then, for a given $K \ge 1$, there exists a sequence $(r_n)_{n=1}^{\infty} = (r_n(K))_{n=1}^{\infty}$, $r_n > 0$, $r_n \to \infty$ $(n \to \infty)$, such that:

(9)
$$A_0(r_n + \frac{1}{A_0(r_n)}) \leq 2A_0(r_n)$$
.

(10)
$$T_{l}\left(r_{n}+\frac{1}{T_{l}(r_{n})}\right) \leq 2T_{l}(r_{n}) \quad (l=0, \dots, K).$$

Now we put:

(11)
$$\Omega_0 = \bigcap_{m=1}^{\infty} \bigcap_{q=1}^{\infty} \{ \omega \in \Omega ; \limsup_{n \to \infty} T(r_n(mq), f_{\omega}) / T_0(r_n(mq)) > C_0 \}.$$

(12)
$$\delta(\omega; m, q, p) = \liminf_{n \to \infty, n \in \mathcal{A}_{n,m,n}} T(r_n(mq), 1/f_{\omega}^{((p-1)m+1)})/T(r_n(mq), f_{\omega}),$$

where $(r_n(mq))_{n=1}^{\infty}$ is the sequence in Lemma 2 with K=mq and

$$\Delta_{\omega m,q} = \{ n : T(r_n(mq), f_{\omega}) / T_0(r_n(mq)) > C_0 \} \quad (\omega \in \Omega_0).$$

Thus Ω_0 , $\delta(\cdot; m, q, p)$ $(p=1, \dots, q; q \ge 1; m \ge 1)$ are defined.

4. We show that the above Ω_0 , $\delta(\cdot; m, q, p)$ satisfy the conditions in Lemma 1. We see easily $Pr(\Omega_0)=1$ and (3). For given $m, q \ge 1$, we must prove that $\delta_p(\cdot)=\delta(\cdot; m, q, p)$ $(p=1, \cdots, q)$ satisfy (4), (5) and (6). So we write simply $r_n=r_n(mq)$ $(n\ge 1)$. We see easily (6). To prove (4) and (5), we need

the following two lemmas. Lemma 3 is proved analogously as in Theorem 2.1 in [1] and Lemma 4 is analogous to Lemma 8 in [5], and hence we omit the proofs.

LEMMA 3. Let g(z) be an entire function $(\neq a \text{ polynomial})$ and $\{P_j(z)\}_{j=1}^n$ multually distinct polynomials of degree ν . Then

(13)
$$\sum_{j=1}^{n} T(r, 1/g_{j}) \leq T(r, g^{(\nu+1)}) + \sum_{j=1}^{n} \sum_{\mu=1}^{\nu+1} T(r, g_{j}^{(\mu)}/g_{j}^{(\mu-1)}) + O(\log r),$$

where $g_{j}(z)=g(z)+P_{j}(z)$ $(j=1, \dots, n)$.

LEMMA 4. Let $\omega \in \Omega_0$. Then, for any $a \in C$ and any $l, 1 \leq l \leq qm+1$, we have $T(r_n, f_{\omega}^{(l)}/(f_{\omega}^{(l-1)}-a)) = o(T_0(r_n))$ $(n \to \infty)$.

First we prove (4). Let $\omega \in \Omega_0$. For every $a \in C$, we have

(14)
$$m(r_{n}, a, \omega) = T(r_{n}, 1/(f_{\omega} - a))$$

$$= T\left(r_{n}, \frac{f'_{\omega}}{f_{\omega} - a} \cdot \frac{f''_{\omega}}{f'_{\omega}} \cdots \frac{f''_{\omega}}{f_{\omega}^{((p-1)m)}} \cdot \frac{1}{f_{\omega}^{((p-1)m+1)}}\right)$$

$$\leq T(r_{n}, 1/f_{\omega}^{((p-1)m+1)}) + \{T(r_{n}, f'_{\omega}/(f_{\omega} - a)) + \cdots + T(r_{n}, f'_{\omega}^{((p-1)m+1)}/f_{\omega}^{((p-1)m)})\}$$

$$= T(r_{n}, 1/f_{\omega}^{((p-1)m+1)}) + o(T_{0}(r_{n})),$$

according to Lemma 4. Hence $\delta(a, \omega) \leq \delta_p(\omega)$. Since this inequality holds for all $a \in C$, we have (4).

Next we prove (5). Let $\omega \in \Omega_0$. In the same manner as in (14), we have

(15)
$$T(r_n, f_{\omega}^{(pm+1)}) = T(r_n, f_{\omega}) + o(T_0(r_n)) \quad (n \to \infty).$$

By Lemma 3, 4 and (15), we have

(16)
$$\sum_{\omega' \in \Gamma(\omega, m, p)} T(r_n, 1/f_{\omega'}^{((p-1)m+1)}) \\ \leq T(r_n, f_{\omega}^{(pm+1)}) + o(T_0(r_n)) = T(r_n, f_{\omega}) + o(T_0(r_n)) \quad (n \to \infty).$$

Note that $\lim_{n\to\infty} T(r_n, f_\omega)/T(r_n, f_{\omega'})=1$ ($\omega'\in \Gamma(\omega, m, p)$) and that there exists $n\ge 1$ such that $\Delta_{\omega\,mq}\cap [n, +\infty)=\Delta_{\omega'\,mq}\cap [n, +\infty)$ for all $\omega'\in \Gamma(\omega, m, p)$. Divide every term in (16) by $T(r_n, f_\omega)$. Letting $n\to\infty$ ($n\in\Delta_{\omega\,mq}$), we have (5). This completes the proof.

REFERENCES

- [1] HAYMAN, W.K., Meromorphic functions, Oxford (Clarendon press), 1964.
- [2] KAHANE, J.P., Some random series of functions, Heath M.M., 1968.
- [3] LITTLEWOOD, J.E. AND OFFORD, A.C., On the distribution of zeros and a-values of a random integral function II, Annals of M. 49 (1948), 885-952.
- [4] MURAI, T., Une remarque sur la distribution des valeurs des séries de Taylor

aléatoires, C.R.A.S. Paris, t. 287 (20 nobembre 1978), 931-934.

- [5] Murai, T., The value-distribution of random Taylor series in the unit disk, J. London M.S. (3), 24 (1981), 480-494.
- [6] NEVANLINNA, R., Analytic functions, Springer, 1970.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE NAGOYA UNIVERSITY CHIKUSA-KU, NAGOYA, 464 JAPAN